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ABSTRACT
This paper reports our experience with software development 
based on the Software Product Line (SPL) approach employed for 
Clinical Instrument Integration Management Software (CIIMS).
CIIMS is the system software which systemizes heterogeneous 
clinical instruments. These instruments require their particular 
management so that various parts of CIIMS are forced to be 
changed. This makes it difficult to create development plans to 
connect new instruments to CIIMS. In this paper we summarize a
new estimate method called the Architecture Domain Matrix 
(ADM) method which effectively solved this problem in our 
experience. In ADM each architectural element is further 
decomposed into clinical operation flow elements and core assets
of software are extracted from these elements. This method 
estimates the CIIMS commonality with precision and finally 
enables to successfully connect new instruments. In addition this
method provides a Work Breakdown Structure (WBS) and 
supports development team building. WBS is generated by 
collecting all the changes for each operational flow element. A
development team suitable for change is organized by taking into 
consideration all the changes for each architecture element. We 
integrated three different instruments into CIIMS in 18 months 
after applying this method to a real project and achieved 2.5 times 
greater productivity with the embedded software than that with 
our previous non-SPL process.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software – Domain 
engineering; D.2.11 [Software Engineering]: Software

Architectures – Domain-specific architectures; D.2.9 [Software
Engineering]: Management – Cost estimation

General Terms
Measurement

Keywords
Software Product Lines, Domain Analysis, Architectures, Cost 
Estimation

1. INTRODUCTION
Laboratory automation has contributed to improvements in the 

speed, costs, and quality of clinical inspection. A variety of 
automated instruments have been used in clinical laboratories to 
inspect medical specimens such as blood.

An example of advanced automation is the system shown in our 
previous work [1] to connect multiple automated instruments on
conveyance roads. Clinical Instrument Integration Management 
Software (CIIMS) intensively controls instruments and 
conveyance roads in the system. The source codes of CIIMS are 
large and make it difficult to add new instruments. The source 
codes in vehicle control software and mobile phone software are
more than millions of lines of code [2]. The scale of CIIMS is 
comparable to that of those software so that we have to deal with 
difficulties in developing CIIMS.

One of the solutions is to provide a common platform for 
CIIMS to connect instruments to reduce development costs. The 
software product line (SPL) [3] [4] is known as a methodology of 
development that can properly update and maintain such a 
common platform. SPL is expected to reduce the amount of 
application software contained in CIIMS by core assets and to 
improve productivity by managing the core assets.

A common platform is typically built by analyzing source codes 
contained in multiple products [5]. This analysis extracts
commonality and variability from existing multiple software 
products. Although we can find reference source codes in legacy
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CIIMS developed in the past, they are too old to be used for 
reference because it takes more than a year to develop one product 
in CIIMS. Therefore, we have to select products developed most 
recently as reference.

Refactoring techniques can also be used to build a common 
platform from existing software [6]. The techniques modify
source codes to improve variability and maintainability without 
changing external specifications. However, it is necessary to 
control how much should be modified in refactoring because we 
have to avoid too much refactoring cost.

This paper introduces a commonality estimate technique as a 
best practice learned from our experience. In the technique core 
assets are extracted from source codes of a single existing product 
and refactoring cost is controlled. The technique also supports the 
planning of development processes where both core assets and
multiple products are simultaneously developed after estimates are 
made.

We solved three problems to develop new multiple products 
based on the analysis of a single product.
Problem 1: How to control the costs of developing core assets 

in an estimate phase.
Problem 2: How to improve the precision of estimates in the 

whole cost of development.
Problem 3: How to reduce the difficulty in simultaneously 

developing both core assets and multiple products.
First, we solved Problem 1 by confining our variability scope to 

multiple products planned on the road map. It may be possible to 
expand the variability scope to virtual future products which 
contain new imaginary variability. However, we abandoned this 
expansion because cost control may become difficult through 
unnecessary variability expansion.

We introduced a matrix for Problem 2 that consisted of
architectural elements and domain elements as an analysis mesh 
for refactoring and classifying source codes. The classified source 
codes limited the range of commonality of core assets by 
examining what should be core assets as not only functions
(architectural elements) but also demand (domain elements).

We assigned core asset engineers to an architectural element 
unit to cope with Problem 3 by taking into consideration the 
difficulty of core asset development from the previously 
mentioned matrix. We also derived a Work Breakdown Structure 
(WBS) from the matrix as a design review tool that was used by 
all engineers including core asset engineers. WBS describes what 
changes in the functions led to demand.

We simultaneously developed a common platform and multiple
products after planning core assets from a single product by 
analyzing the matrix in an estimate phase. This paper contains a 
section for lessons learned which we hope will contribute to the 
development of common platforms with limited reference source 
codes.

The remainder of this paper is structured as follows. Section 2 
describes related work and Section 3 explains problems with 
developing CIIMS. Section 4 introduces a method of analyzing 
the matrix. We present our application of matrix analysis in
Section 5, describe lessons learned in Section 6, and finally 
conclude the paper in Section 7.

2. RELATED WORK
The successful practices of SPL have been summarized in a 

practical framework [7]. Domain understanding is one of these
frameworks, and Feature Oriented Domain Analysis (FODA) has 
been introduced as an associated technique [9]. This extracts a 
common set of features from products, models their combinations,
and develops an individual product that logically combines
features inside core assets. If too many features are extracted to be 
combined, the cost of validating the feature settings increases. 
Therefore, a technique of rationalizing logical combinations of 
features has been proposed [11]. However, it proposed to reduce 
the combinations of features and did not address the reduction of 
features themselves. Core assets that may be excessive are not 
controlled in advance because known approaches in past papers 
sought the maximum variability through features inside core 
assets.

In addition, Schmid [12] suggested a technique of choosing
features in a feature design. This compared the risks and benefits
caused by using features and determined whether a feature would 
be adopted or not. However, it did not enable the cost of 
developing application programs to be evaluated specific to a 
product. The general economy in SPL has been explained with a
break-even point [13]. In other words, a cost in developing a core 
asset in SPL is regarded as a fixed cost that will be recovered by 
using it in as many products that can compensate for the cost. 
Thus, the balance in development costs between core assets and 
application programs is not evaluated or controlled.

Stoermer and O’Brien [14] suggested mining architectures for 
product lines to build a product line from existing source codes. 
They extracted information about the architecture and evaluated a
product line. However, domain knowledge was not included in 
their evaluation.

Knodel et al. [15] built core assets with reverse-engineering 
information acquired from specification sheets, instruction 
manuals, or experts. Although architectural elements were 
examined, further grain size was not analyzed. Koziolek et al. [16] 
reported examining re-availability from both the architecture and 
the domain. They described a highly abstract architecture drawn 
from interviews with architects and used the architecture for 
rebuilding. Neither research group utilized both the architecture 
and the domain to analyze source codes.

Jones and Bergey [17] nominated the generation of WBS for a
future problem in core asset development. The difficulties in SPL 
projects have not been overcome through WBS, which was
generated in the estimate phase of core assets development in our 
study.

There have been studies that have taken into consideration
either architectural or domain knowledge, but they have not used
all the knowledge to extract core assets from a single product. Our 
study utilized two kinds of knowledge to analyze the source codes 
of a single product and extract core assets. A development plan 
could be derived even from a single product by exploiting these 
two kinds of knowledge.
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3. AUTOMATED INSTRUMENTS
IN CLINICAL LABORATORIES

3.1 CIIMS
Many clinical laboratories adopt an automation system that 

connects multiple instruments to conveyance roads and 
automatically analyzes one specimen such as blood with these 
multiple instruments. The test tubes containing specimens are 
conveyed to the instrument automatically via an appropriate 
conveyance path. A clinical test item is acquired through a bar 
code at the conveyed point and an analysis process is carried out 
with the instruments. After all the test results output by multiple
instruments are confirmed for the specimen, and the validity of the 
data is confirmed by a laboratory technician, a report to a doctor is 
printed for the specimens. CIIMS plays a role in supporting 
laboratories in practice and automating combinations of 
conveyance roads and instruments.

CIIMS is remodeled whenever we need to connect a new 
instrument. Whenever a new instrument needs to be connected to 
CIIMS, this remodeling occurs, and CIIMS evolves each time.  
We also have to connect the evolved CIIMS to instruments that 
were connected in the past for upward compatibility. A platform 
that can survive evolution is therefore required.

3.2 Remodeling of CIIMS
The architecture of CIIMS is composed of (1) a user interface

(UI) such as a screen and printing forms, (2) a database (DB), (3)
a specimen handler (SH), (4) instrument communication (ICOM),
(5) instrument control (ICNT), and (6) external communication 
(ECOM). The SH (3) is a component that tracks the specimen in 
the system until all the test results are reported after the inspection 
items of the specimen are ordered. ECOM (6) is a component that 
communicates with a host computer that manages the accounts of 
medical businesses.

It will be ideal to connect a new instrument to CIIMS by 
changing only a part or none of architecture. However, we were 
practically forced to change all the architecture from (1) to (6) to 
connect it. SH and ICOM need to be changed to communicate 
with a new instrument. In addition, it is necessary to remodel UI
and DB to monitor the state of the new instrument mechanics and 
to manage the new reagent. We are also forced to change ECOM
for the host computer to manipulate new instrument functions.

Our main goal was not only to establish measures for estimates
but also to control the entire development cost in environments
where such change chains occur.

4. ADM METHOD

4.1 Application of SPL
SPL engineering is defined by three activities of domain 

engineering (or core asset development), application engineering 
(or product development), and management [7].

Figure 1 outlines the flow of development based on these 
activities. Domain engineering outputs core assets according to 
the business plan for future new products, which should be 
maintained in a specific domain. Products that can maximize 
customer satisfaction while effectively applying core assets are 

developed in application engineering. This paper suggests an 
approach to supporting both domain and application engineering
by an intensive estimate technique as shown in Figure 1.

Product A Product B Product C

Application Engineering

Core Assets

Domain Engineering

Business Plan

M
anagem

ent

Estimation

Figure 1 Development processes in SPL.

There are two approaches to develop core assets, i.e., proactive 
and reactive [8]. While core assets are developed in advance 
before products are developed in the proactive approach,
enhancement and application of core assets run in parallel in the 
reactive approach. We adopted a reactive approach because there
were very few reference products for core assets in our cases. It 
takes more than a year to develop CIIMS to adapt a new 
instrument due to compliance with reliable regulated development 
processes. Source codes other than the most recent CIIMS are too 
old to serve as a reference. Therefore, we decided to analyze core 
assets in an estimate phase by referring to the most recent CIIMS
and the new instrument specifications written in a business plan.

4.2 Model of Idealized Core Assets
When N products are developed, the main purpose of SPL is to 

provide dominant development techniques in terms of cost, 
quality, and speed that are better than when the N products are
individually developed. Core assets play a role in reducing the 
burden of developing these N products. Then, what kinds of 
factors influence idealized core assets?

Let us assume that we will independently develop three 
products of A, B, and C without core assets. Because these three 
development projects are independent in this case, each project 
has to redundantly create a tool, a design, and the source codes 
that should be shared. We call the cost to develop a product 
individually in this way an individual development cost. However,
let us assume that we can form core assets that can be used in the 
three products. Then, we can decrease duplication by using core 
assets. If we increase core assets, we can finally acquire one large
accumulation of core assets in an extreme case. The source codes 
of the three products become common, and the three products 
may emerge by managing the configuration of feature parameters 
[9]. If there are large differences in the specifications of the three
products, the parameters referred to in each architectural layer 
increase and their logical combination becomes too costly to be 
managed. We call the cost of developing core assets costs in this 
way a core asset cost.

We previously discussed two extreme cases. The actual 
development will take an intermediate form that falls between 
them. The relationship between an individual development cost 
and a core asset cost is outlined in Figure 2. While the 
commonality ratio, which is the ratio of common source codes to 
three product source codes, varies from zero to one, the individual 
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development cost decreases; however, the core asset cost 
increases. The total development cost will be the sum of a core 
asset cost and an individual development cost and will be 
minimized somewhere with a commonality ratio between zero and 
one. That is our idealized scale of core assets.

Development
Cost

Commonality
Ratio

A

B C
A/B/C

0 1

Each product
developed
individually

Every product
developed
by core assets

Core Asset
Cost

Individual
Development
Cost

Total Cost

Min

Figure 2 Relationship between individual development cost 
and core asset cost.

A-
Specific

B-
Specific

C-
Specific

Core
Assets

Product B

Product A

Product C

Figure 3 Relationship between core assets and products.

The idealized relationship between resources of products A, B, 
and C is depicted in Figure 3. The core assets to minimize the 
total development cost are combined with the application 
programs of products A, B, and C. A technique to control such an 
ideal development mix is required in an estimate phase.

4.3 ADM Method
This paper presents the architecture domain matrix (ADM) 

method as a technique of extracting core assets. ADM is a matrix 
consisting of two elements, i.e., domain knowledge elements
(simply called domain elements in the following) and architectural
components (Figure 4).

The general way to generate core assets will be to analyze each 
architectural element and extract common source codes from it. 
The ADM method enables to further decompose each 
architectural element into domain elements so that CIIMS 
commonality can be estimated with precision even from a single 
product. 

The source codes in the ADM method are assigned to a cell of 
ADM and analyzed in each matrix cell to determine whether they 
can be used as core assets. Then, the cost to make the change is 
estimated. The range of variability is defined because a pair of a

domain element and an architectural element is regarded as the
relationship between requirements and achieved functions.

䕿 䕿

䕿 䕿

䕿 䕿
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Figure 4 Architecture Domain Matrix.

The source codes of the existing product (called a base product) 
are analyzed through the ADM method together with the 
specifications of planned multiple new products. If the source 
codes assigned to the matrix cell should be shared by multiple
products, they will fully or partially be candidates of core assets. 
After the cost estimates of all cells have finished, the development 
cost estimated in each matrix cell is summed up. If the total 
development cost does not fit the plan, the number of core assets
to be developed is adjusted. Reduction in core assets may be 
chosen when multiple specifications are too different to be 
implemented in core assets. Increase in core assets may be chosen 
in reverse when the difference in specifications should be 
implemented with less cost by more abstraction. The design of 
core assets in either case can be controlled by gaining a broad 
perspective in the ADM. These assessments are conducted 
through cooperative consultation by domain experts and architects.

The grain size of architectural elements in the ADM is a range 
to be developed by one leader and engineers. Because all changes 
to an ADM architectural element can be seen when a vertical 
group of cells is viewed in Figure 4, the necessary skills for that 
element can be recognized and appropriate engineers can be 
assigned to the vertical group of cells. If an architectural element 
includes core assets, engineers of core assets are assigned to that 
element.

The grain size of domain elements in ADM is a range to be 
validated in a system test. A series of changes to an architectural
element can be identified as being necessary to achieve a domain 
element when a horizontal group of cells is viewed in Figure 4.
WBS is created by collecting changes in each domain element that 
is achieved. WBS supports design reviews during development.

Thus, the support to allocation of engineers and promotion of 
design reviews can reduce the difficulty of developing programs
including those in the development of core assets.

We used clinical laboratory workflow elements as domain 
knowledge in this study. The workflow, for example, includes the 
preparation of instruments before inspections are practiced,
practiced inspections, and maintenance of instruments. The 
laboratory workflow was also handled as domain knowledge 
about medical devices in a report [10]. Because clinical 
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instruments should be devices to automate strict medical practices,
the workflow will be stable domain knowledge for analysis of 
source codes.

In addition, the workflow was comprised of an independent 
process of duties. The architectural element was also assumed to
build an independent layer structure surrounded by clear input and 
output. If the architecture had the structure of independent layers,
we could secure independence in ADM cells, and ADM would 
become a stable tool to analyze source codes. We assumed the 
cells of ADM were independent and the ADM framework would 
continue to be used in the long term.

4.4 Procedures in ADM Method

Core Assets

EstimateWBS
Team

Formation

ADM

Development
Road Map

Product

Base
Product

Yes

No

ProductProduct

Can estimate realize road map?

Development of 
Core Assets and Products

Figure 5 Development workflow using ADM method.

The development workflow for the ADM method is explained 
in Figure 5. The input for the method is the legacy CIIMS (the 
base product described in the figure) and the development road 
map. The map indicates the shipping plan for the multiple, say, N 
instrument models to be connected to CIIMS in the future.

The source codes of the base product are assigned to the ADM 
cells and are examined to see how much of the code can be core 
assets to be shared among the N models. The development cost of 
core assets and application program can be estimated depending
on each model.

The number of core assets to be developed is adjusted so that 
the total development cost satisfies the shipping plan. Harmony 
between individual development costs and core asset costs is 
planned, as seen in Figure 2. The remodeling cost, Ci,j, for the 
source codes of the domain element, i, and the architectural
element, j, is calculated as:

� �jijijiji CACDCCC ,,,, ,,min ,

where CCi,j, CDi,j, and CAi,j are the development costs for core 
assets, separation of core assets and application programs, and 
pure application programs that are dependent on each model. The 
cost is estimated through various factors. It depends on how 
deeply source codes can be analyzed, how well-structured the 

source codes are, and how valuable information can be acquired 
by domain experts and architects. Finally, the total development 
cost is calculated by summing all CCi,j. Because ADM cells are 
assumed to be independent as previously described, tuning each 
CCi,j leads to the total development cost being adjusted.

The five practical steps in the procedures for the ADM method 
are below.

Step 1. Set up the development program
The first step is to choose what we call a base product that is a 

proven product used by customers. In addition, the N instrument 
models planned in a development road map are chosen in this step.
Further, similarities between the base product and N models
should be taken into account.

Step 2. Analyze the base product
An ADM table equivalent to that in Figure 4 should be created 

for the base product. First, the source codes of the base product 
are classified and assigned to each ADM cell. Next, the source 
codes for the base product assigned to the cells are analyzed to
classify them into three categories: 

c: Codes to be commonly used as core assets 
d: Codes to be separated into core assets and application 

programs
a: Codes to be independently developed as application 

programs that are dependent on each model

These are encoded with c (core), d (dual), and a (application), 
which are written in the ADM cells.

Step 3. Estimate the N models
An ADM table equivalent to that in Figure 4 for N models

should be created. The contents in the table of the N models are 
the same as those of the base product, but a dash (') is attached to 
the three codes c, d, and a in the cell where remodeling is needed. 
The meanings of these dashed codes are as follows.

c': Modify core assets to fit application programs.
d': Modify the interface inside the source codes.
a': Modify application programs to fit core assets.

The table of the base product may acquire a dash, which means 
that a change occurred when the core assets in the base product 
absorbed N model instruments. After coding in the ADM table is
completed the total man-hours spent in developing the core assets 
and N models are estimated. Codes other than c mean remodeling 
work. If there are too few core assets of c, the effect of reducing
costs through commonality is slight, and the total man-hours for 
development increase. When there are too many c', d', and a', on
the other hand, the number of man-hours will increase due to the 
remodeling workload in c', d', and a'. We return to Step 2 and
plan core assets again as long as the total development cost can be 
reduced by increasing c, or decreasing c', d', and a'. If the 
increase and decrease in core assets does not contribute to 
reducing the total man-hours spent in development, the total man-
hours in development are accepted as final estimates.

Step 4. Form development teams
Development teams are formed to correspond to each 

architectural element. Development man-hours are calculated for 
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each team by vertically viewing the cells in the ADM table. 
Talented engineers are allocated to the teams depending on the 
number of changes and degree of difficulty. If the cells contain 
core assets, core asset engineers are added to the team.

Step 5. Design WBS
When cells in the ADM table are viewed horizontally, what 

changes in architectural elements have affected the 
implementation of the workflow can be inspected. These are 
summarized in WBS, where the practice of the workflow and its 
related changes in architectural elements are documented. The 
role of WBS is to guide design reviews by teams involved in 
implementing workflow practices.

5. APPLICATION OF ADM METHOD
We applied the ADM method to a real development project 

according to the steps described in Section 4. We selected the 
most recently developed CIIMS as a base product.

5.1 Step 1: Set up the development program
Table 1 Schedule for case project.

First Year Second Year
4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9

Base Product
Connection A
Connection B
Connection C

The case project was required to connect three new instrument 
models (A, B, and C) to CIIMS in 18 months (1.5 years). The 
development schedule on a monthly basis is summarized in Table 
1. The colored rectangles in Table 1 mean terms in the 

development process. The base product was expected to be 
completed by March in the first year. 

The development process for instruments A and B began with a 
design for each and ended after quality assurance (QA) was 
completed after being implemented and tested. Instrument C was 
the same as A and B except that the process did not include the 
QA process because the purpose of Connection C was to 
internally test the performance of instrument C.

In general after the QA process is finished, we continue 
exhaustive tests to validate the system, which is also carried out in 
an actual clinical environment. Such validation tests are out of the
scope of this paper because we focus on the embedded software.

Before Connections A, B, and C were developed together with
core assets, we applied the ADM method to control the design of 
core assets in the estimate phase.

5.2 Steps 2 & 3: Analysis and Estimates
Table 2 is an ADM table merged with the tables for the base 

product P and the three instrument models A, B, and C in Step 1.
We classified the workflow elements vertically and the 
architectural elements horizontally. The divisions of P, A, B, and 
C are written in the last line of the table. We classified the source 
codes in the table as explained in Step 3 of Section 4.

We reconsidered two cases that led us to return from Step 3 to 
Step 2. The first was where we reduced core assets in the 
architectural element called ICOM because the communication 
protocols were too different to be covered by core assets. The 
second was where we increased core assets in the architectural
element called SH because we expected costs would be reduced
by enhancing the abstraction level of programs and absorbing the 

Table 2 ADM table for P, A, B, and C products.

UI: User Interface, DB: Database, SH: Specimen Handler, ICOM: Instrument Communication, ICNT: Instrument Control
ECOM: External Communication
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㻥 㻾㻼㻠 㼐 㼐 㼐 㼐 㼐 㼐 㼐㻓 㼐 㼍 㼍 㼍㻓 㼍 㼐 㼐 㼐 㼐 㼍 㼍 㼍 㼍

㻝㻜 㻹㼑㼍㼟㼡㼞㼑㼙㼑㼚㼠㻌䠄㻹㻕 㻹㻝 㼐 㼐㻓 㼐㻓 㼐㻓 㼏 㼏㻓 㼏㻓 㼏㻓 㼐 㼐㻓 㼐㻓 㼐㻓 㼍 㼍㻓 㼍㻓 㼍㻓
㻝㻝 㻹㻞 㼐 㼐㻓 㼐㻓 㼐㻓 㼏 㼏㻓 㼏㻓 㼏㻓 㼐 㼐㻓 㼐㻓 㼐㻓 㼍 㼍㻓 㼍㻓 㼍㻓
㻝㻞 㻹㻟 㼐㻓 㼐㻓 㼐㻓 㼐㻓 㼏㻓 㼏㻓 㼏㻓 㼏㻓 㼐 㼐㻓 㼐㻓 㼐㻓 㼍㻓 㼍㻓 㼍㻓 㼍㻓
㻝㻟 㻹㻠 㼐 㼐㻓 㼐㻓 㼐㻓 㼐 㼐 㼐㻓 㼐㻓
㻝㻠 㻯㼍㼘㼕㼎㼞㼍㼠㼕㼛㼚㻌䠄㻯㻕 㻯㻝 㼐 㼐 㼐 㼐㻓 㼐 㼐 㼐 㼐㻓 㼏 㼏 㼏 㼏㻓 㼏 㼏 㼏 㼏
㻝㻡 㻯㻞 㼐㻓 㼐 㼐㻓 㼐㻓 㼐㻓 㼐 㼐㻓 㼐 㼏㻓 㼏 㼏㻓 㼏㻓 㼏 㼏 㼏 㼏
㻝㻢 㻽㼡㼍㼘㼕㼠㼥㻌㻯㼛㼚㼠㼞㼛㼘㻌㻔㻽㻯㻕 㻽㻯㻝 㼐 㼐 㼐 㼐㻓 㼐 㼐 㼐 㼐㻓 㼏 㼏 㼏 㼏㻓 㼏 㼏 㼏 㼏
㻝㻣 㻽㻯㻞 㼐 㼐 㼐㻓 㼐 㼏 㼏 㼏㻓 㼏㻓 㼏 㼏 㼏㻓 㼏㻓
㻝㻤 㻽㻯㻟 㼐 㼐 㼐 㼐 㼏 㼏 㼏 㼏
㻝㻥 㻵㼚㼟㼜㼑㼏㼠㼕㼛㼚㻌㻔㻵㻕 㻵㻝 㼐㻓 㼐 㼐 㼐 㼐㻓 㼐 㼐 㼐 㼏 㼏 㼏 㼏
㻞㻜 㻵㻞 㼐 㼐 㼐 㼐 㼐 㼐 㼐 㼐 㼏 㼏 㼏 㼏
㻞㻝 㻵㻟 㼐㻓 㼐 㼐 㼐㻓 㼐 㼐 㼐 㼐㻓 㼏 㼏 㼏㻓 㼏㻓 㼏 㼏 㼏 㼏
㻞㻞 㻵㻠 㼐㻓 㼐㻓 㼐 㼐㻓 㼐 㼐 㼐㻓 㼐 㼏 㼏 㼏㻓 㼏 㼏 㼏 㼏 㼏
㻞㻟 㻵㻡 㼐 㼐 㼐 㼐㻓 㼏 㼏 㼏 㼏 㼐 㼐 㼐 㼐 㼍 㼍 㼍 㼍㻓
㻞㻠 㻵㻢 㼏 㼏 㼏 㼏 㼐 㼐 㼐 㼐 㼍 㼍 㼍 㼍
㻞㻡 㻿㻴㼁㼀㻰㻻㼃㻺㻌䠄㻿㻰㻕 㼏 㼏 㼏 㼏 㼏 㼏 㼏 㼏 㼏 㼏 㼏 㼏 㼐 㼐 㼐 㼐 㼍 㼍 㼍 㼍

㻵㼚㼟㼠㼞㼡㼙㼑㼚㼠㼟 㻼 㻭 㻮 㻯 㻼 㻭 㻮 㻯 㻼 㻭 㻮 㻯 㻼 㻭 㻮 㻯 㻼 㻭 㻮 㻯 㻼 㻭 㻮 㻯

㻰㼛㼙㼍㼕㼚㻌㻯㼍㼠㼑㼓㼛㼞㼥 㻭㼞㼏㼔㼕㼠㼑㼏㼠㼡㼞㼑
㼁㻵 㻰㻮 㻿㻴 㻵㻯㻻㻹 㻵㻯㻺㼀 㻱㻯㻻㻹
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differences between instruments.
We finally determined there were no changes in six out of 25 

domain elements (e.g., line numbers 2 and 5 of the domain 
elements) and there were changes in the rest of the 19 domain 
elements. We were able to control the remodeling costs with the 
ADM method having been given the specifications for the three 
instrument models in the business plan.

5.3 Step 3: Final estimates
The final estimates are listed in Table 3. 

Table 3 Development cost estimates.

Base
Product

Case Project

Core
Assets

Connection
A

Connection
B

Connection
C

Total

100 11.3 18.9 34.0 52.8 117.0

The table summarizes by relative scale the costs in man-hours
required for each development of core assets, i.e., the instruments
for connections A, B, and C. These values are relative to the man-
hour costs that were originally required to totally develop the base 
product where this was assumed to be 100. It was a significant 
result that we were able to estimate the three products to be 
developed with 117% effort for one base product. The cost for 
Connection C was relatively higher than that for the others 
because a great deal of remodeling was required inside instrument 
C for evaluation purposes.

Project risk was greatly lowered because the subdivided source 
codes were analyzed in the estimate phase. 

5.4 Step 4: Form development teams
The results for designing the formation of teams are 

summarized in Table 4. The development teams were formed for
each architectural element. We assigned core asset engineers to 
teams where checks were indicated in the second row of Table 4. 
If checks are indicated in the last row of Table 4, this means that 
teams should be divided into sub-teams by each instrument. 

Table 4 Summary of design of development teams.

㻭㼞㼏㼔㼕㼠㼑㼏㼠㼡㼞㼑㻌㻱㼘㼑㼙㼑㼚㼠㼟

㼁㻵 㻰㻮 㻿㻴 㻵㻯㻻㻹 㻵㻯㻺㼀 㻱㻯㻻㻹

㻯㼛㼞㼑㻌㻭㼟㼟㼑㼠㼟㻌㻱㼚㼓㼕㼚㼑㼑㼞㼟 9 9 9 9 9
㻵㼚㼟㼠㼞㼡㼙㼑㼚㼠 㻱㼚㼓㼕㼚㼑㼑㼞㼟 9 9 9

We only located core asset engineers in the teams for the 
architectural elements of DB, ICOM, and ECOM. This is because 
these architectural elements required relatively little instrument 
based development as can be seen from the ADM table. Because 
the architectural elements of ICNT did not contain any core assets 
for total development, the team was formed based on instruments.

We could harmonize engineering skills with a degree of 
technical difficulty by arranging organization placements into a 
matrix in this way.

5.5 Step 5: Design WBS
Figure 6 has a simplified example of a WBS specification sheet

that we created during this project.

No. Requirement Description
Maintenance tool
for instrument C

To perform maintenance program for instrument C

Project
A B C

9

Architecture
Element

Minor
Category

Remodeling Cost

ECOM

UI
System To add a screen to set up parameters
Overview To add a screen to monitor progress

DB To register parameters

SH
Control To plan test tubes to run for maintenance
Status To monitor state of tubes

ICOM To execute maintenance program

ICNT
Control To control mechanics

Figure 6 WBS specification sheet initiated by ADM.

The sheet was filled with information about workflow elements
and related changes to individual architectural elements. The 
workflow elements in this example involved practicing the use of 
maintenance tools, which were implemented due to changes to UI,
DB, SH, ICOM, and ICNT. The engineer in charge of 
architectural elements wrote specifications by referring to the
WBS sheet and conducted design reviews together with engineers 
for the other architectural elements written on the WBS sheet. 
After all the related architectural elements had been implemented,
we tested the maintenance tool in practice.

5.6 Results
We started with a project to develop core assets and CIIMS 

connections with instruments A, B, and C after specifying a
development plan using the ADM method described in Subsection 
5.5. The outcomes for the project are summarized in Table 5.

The start of this project was actually delayed for two months 
due to the delayed development of the base product. However, we 
were able to complete the project for A three months ahead of 
schedule and two months ahead of schedule for B. Although the 
project for C was delayed for two months because additional 
functions were required in instrument C, as a whole, we 
completed the development of the three instrument models in 
eighteen months (1.5 years).

Table 5 Actual progress in case project.

First Year Second Year
4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11

Base Product
Connection A
Connection B
Connection C

Our experience in the past revealed that it could take 2.5 years 
to complete the development of two instrument models where 
SPL was not employed. The average development scale of the two 
past models was approximately equal to that of instruments A, B, 
and C discussed in this paper. Therefore, as the number of 
development models per year was improved with 2.0 (models per
year) from 0.8 (models per year), we achieved 2.5 times greater
productivity. These results demonstrate that core assets were 
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effectively controlled by the ADM method so that the period for 
development went according to schedule.

There are two reasons behind the achievement of our goal: high 
estimate precision and effective commonality extraction.

The estimated effort to complete the three product project was 
1.17 times greater than that of the base product project as shown 
in Table 3. Because the base product was developed with our non-
SPL process for one instrument, the actual effort was 2.5(years for 
2 instruments)/2(instruments) = 1.25 year for all the engineers in 
our engineering section. Therefore, the estimated effort for the 
three product project was 1.25×1.17=1.46 year for all the
engineers. On the other hand, the actual effort was 1.5 year for all 
the engineers. Given no difference in the number of engineers 
between two projects, the estimate error rate was 2.7%, which 
indicates the estimate was practical.

Table 6 Ratios (%) of core assets in UI, DB, and SH.

Connection A Connection B Connection C

Estimated Ratio 95.4 93.7 76.0

Actual Ratio 96.5 98.1 60.8

Table 6 summarizes the ratios of core assets, expressed as a 
percentage, in the total line of codes for the architectural elements 
of UI, DB, and SH. The estimated and actual ratios are compared 
in the table. The lines of codes other than those for core assets 
became the source codes dedicated to the instruments. There are 
few differences in the results between estimates and actual ratios
in Connections A and B. The estimates were very precise as the 
entire development was undertaken without fluctuations. The 
ADM method definitely enhanced precision.

However, the actual rate for core assets fell for Connection C. 
This was due to requirements that were added after development
started. Nevertheless, the rate of core assets of more than 60% 
indicated that core assets were available.

To wrap up the estimate error rate and the commonality 
extraction rate described in the above, these prove that it was 
advantageous to control costs in the estimate phase with the ADM 
method.

The whole and parts of the architecture could easily be 
understood through WBS generated by the ADM table because
the final goals for individual changes were indicated on the WBS 
sheet. We could conclude that development was efficiently
enhanced with the help of WBS introduced by using the ADM 
method.

The core assets extracted here were utilized for five new 
instrument models and two new conveyance road models in the 
next four years. This indicates how effectively and practically the 
core assets were extracted with the ADM method.

6. LESSONS LEARNED
We learned many invaluable lessons in over a year of 

experience in a real project. Although this was our first SPL 
experience, we are satisfied with the results in which higher 
productivity was attained. In what follows, we would like to share 
the lessons we learned with those who may have suffered from 
productivity difficulties in long-term projects where few 
references to the development of core assets have been available.

Organizational support to start with SPL
A great variety of integration products are being developed by 

the entire Hitachi Group. The production engineering (PE) teams
at Hitachi, Ltd. are dedicated to strengthening the productivity of 
their products. SPL was one of their methodologies that they 
recommended to enhance the productivity of embedded software 
engineering. Our engineering team had joined the embedded 
software reform program driven by the Hitachi PE team before we 
started the project described in this paper. The program shared the 
effective methodologies used by Hitachi group companies in the 
meeting once every two months. After our project was chosen to 
be a jointly promoted case project in the program, we received 
support through the monthly progress management meeting where 
the project technical challenges are addressed by our engineers 
and the specialists from the PE team and the R&D headquarters at 
Hitachi, Ltd. In addition, two engineers from the PE team 
participated in our project. They worked to promote SPL in the 
project as they were members of our project. The project members 
could continue to insist on the importance of core assets 
throughout the long term project despite being inexperienced with 
SPL. We could not achieve our goal without organizational 
support led by Hitachi, Ltd.

Balance core assets and application programs
We adopted a reactive approach in SPL because we have few 

references to source codes to extract core assets as discussed in 
Subsection 4.1. In a proactive approach the development cost of 
core assets will be covered every time they are frequently applied 
to subsequent new systems. The more applications of core assets 
will lead to the more values customers will enjoy. Adopting a 
reactive approach, we were urged to create values of core assets in 
one long term project.

This caused us to be careful not to generate excessive core 
assets. The risk of our project was to postpone the completion of 
all the planned instrument connections due to too aggressive
versatility of core assets beyond our technical skills. The 
commonality for core assets is extracted comparing the differences 
in specifications of new planned products. If the difference is too 
big to be implemented in one program with features, it may take 
longer time than planned. For example, we reduced core assets in 
an architectural component ICOM (Instrument Communication). 
A communication program can be typically standardized to absorb 
the specification difference by parameters and software libraries.
Nevertheless, we made a decision to build an application program 
for each instrument communication because we found a huge gap 
among the instruments about how to handle communication state 
management.

Not only did we reduce core assets, but we also increased them.
Although it was an aggressive plan to build core assets in the SH 
(Specimen Handler) component, we made a decision to increase 
them by enhancing the abstraction level of programs. And this 
abstraction was a must because how to handle samples is the core 
of CIIMS. Thus, a perspective view by the ADM method gives us 
a chance to consider the cost comparison between core assets and 
application programs.

A relationship between core assets and application programs 
was observed as we proceed with the estimate by ADM. First, 
those two types of programs are mixed inside even one 
architectural component depending on domain elements. Second, 
some of the source codes assigned to ADM cells have to be 
changed as denoted by dash (') regardless of core assets or 
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application programs. Three categories (c, d, and a) were assigned
to every ADM cell when the base product was analyzed. A dash 
was attached to the three codes when three new products were 
analyzed. This means that core assets and application programs 
coexist in a coordinated manner. This does not say “we make core 
assets and you use them,” nor “we use core assets and you make 
them.” Both core assets and application programs can be a 
candidate for remodeling. It depends on the total development 
cost. We see the ADM table as an environment to adjust such 
costs.

The ADM table as core assets
We confined our variability scope to the three products planned 

on the road map. This decision was made to clarify the width of 
our specification control. Some readers may think that the core 
assets applied to only the three products are not a core program to 
generate as many products as possible. However, we think that 
our core assets include not only the program but also the ADM 
table. The table shows the difference between a legacy product
and future products. In that sense, we can use the table as a 
change management tool to cope with another instrument 
connection. It gives us a possible change design of source codes 
in considerable detail as if it encapsulated the program. In fact the 
core assets described in this paper were connected to five the next 
five new instruments and two new conveyance roads in the next 
four years. This indicates how durable the core assets are.

Preparation for Estimation
The ADM method is an estimate technique to break down 

source codes into an architecture and domain mesh. This greatly
enhanced the estimate precision as a result. Before starting this 
project, we prepared team building concentrating on capability to 
understand domain knowledge. A researcher from Hitachi, Ltd. 
joined our development projects two years ahead of our project to 
analyze domain knowledge because this knowledge in clinical 
instruments is greatly specialized. His domain knowledge was 
systematized in two years in relationship with source codes and 
shared with sub-leaders of each architecture component. That 
helped us analyze the source codes more precisely by both 
aspects: architecture and domain. That led to our commitment to a 
decision to rely on the estimate.

Possible contribution to regulated industry segments
The main reasons the goal of development was achieved were 

considered to result from a chain reaction where the quantity of 
remodeling was controlled, the precision of estimates was 
improved, and the recycling of source codes was increased. The 
matrix of architectural elements and domain elements contributed 
to the reaction. However, the matrix will not work for all types of 
projects. Our experience demonstrated that it will help to enhance 
productivity for large scale and long term projects where the 
domain scope is considerably specialized but rather stable. We 
think that the application of the ADM method can be expanded to 
regulated industry segments because the development processes in 
these segments tend to be rigid and prolonged and they have to 
comply with regulations. Regulations will specify due practices in 
segments and it may be possible for the domain scope viewed by 
users to become stable.

For example, laboratories related to measurement are generally 
required to prepare standard operating procedures (SOPs) as a 
document which all the operators should follow. SOPs include the 
procedures of data calibration and quality control. No matter how 

specialized equipments laboratories install, they have to control 
data quality through SOPs. Therefore, the specification of 
laboratory equipments tends to fit general SOPs. Data automation 
features of the equipments are encouraged to implement rather 
stable SOPs. Thus regulations related to SOPs can make the 
domain scope stable.

Core asset team embedded in product teams
The talented engineers who played an active part in the 

development of the base product became candidates to become 
team members in the development of core assets. It should be 
standard to maintain the independence of application-program and 
core-asset engineers because core assets should not be derived
from the interests of some, and not all. Talented engineers, on the 
other hand, should intelligently play important roles in the 
development of new products. We settled on a compromised
structure by considering the limited intelligence to be shared in 
total development. We decided that the core asset team would be 
embedded as a horizontal organization in product development 
teams as discussed by Takebe et al. [18]. Core assets and products 
are developed in parallel under managed communications between 
two types of teams through that team structure.

Deploy sub-leaders in projects
Talented engineers should be effectively assigned to the 

development team. The ADM method gives us tools to assign sub-
leader. Sub-leader candidates are specialized in particular 
architectural elements, for example, UI. The limited number of 
candidates should be divided into core-asset and product-specific 
teams with the goal of efficient management. The number of sub-
leaders is calculated as N multiplied by the ratio of lines of code 
(LOC) in core assets or product-specific programs to the total 
LOC, where N is the number of sub-leaders. Because the 
calculated results usually contain a decimal point, the number 
needs to be rounded up to take into consideration the difficulty of 
the programs. Otherwise, one sub-leader can be assigned to 
multiple teams if all the calculated results of the considered 
multiple teams are less than one.

Sub-leader allocation is a tough assignment. Some sub-leaders
may not feel confident that they can take over a post. If their 
anxiety grows, it may cause the lack of motivation. One of the 
solutions is to discuss the allocation with all the sub-leaders based 
on objective data. This simple calculation objectively weighs the 
difficulty of posts. It worked to provide objective information to 
the allocation discussion and to balance the structures of teams.

Work Breakdown Structure (WBS)
The WBS introduced by the ADM method was effectively 

utilized in development. The engineers in development teams 
belonged to implementers of architectural elements, instrument-
oriented implementers, or core-asset implementers. WBS played a
role as a communication tool for various implementers. Because 
all the changes related to the final workflow elements were 
documented in WBS, it offered information about what engineers 
should discuss software interfaces. The engineers could also see 
which workflow elements their remodeling tasks would lead to. 
WBS overcame the difficulties caused by a variety of 
implementers and improved productivity.
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7. CONCLUSIONS
We presented a new tool for estimates called the ADM method

in this paper. The source codes were broken down into matrix 
cells of architectural elements and domain elements in the method 
and were transformed to the portion of core assets to be extracted
from one legacy product. In addition, the method helped with 
team formation and WB. The ADM method generated a
development plan to improve the productivity of overall 
development.

The core assets developed here were applied to the CIIMS of 
new products for the next four years. In the future we would like 
to report the effectiveness after repeating to use core assets 
through the method.
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