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ABSTRACT

There are two major ways of selling impressions in display
advertising. They are either sold in spot through auction
mechanisms or in advance via guaranteed contracts. The
former has achieved a significant automation via real-time
bidding (RTB); however, the latter is still mainly done over
the counter through direct sales. This paper proposes a
mathematical model that allocates and prices the future
impressions between real-time auctions and guaranteed con-
tracts. Under conventional economic assumptions, our model
shows that the two ways can be seamless combined program-
matically and the publisher’s revenue can be maximized via
price discrimination and optimal allocation. We consider
advertisers are risk-averse, and they would be willing to pur-
chase guaranteed impressions if the total costs are less than
their private values. We also consider that an advertiser’s
purchase behavior can be affected by both the guaranteed
price and the time interval between the purchase time and
the impression delivery date. Our solution suggests an opti-
mal percentage of future impressions to sell in advance and
provides an explicit formula to calculate at what prices to
sell. We find that the optimal guaranteed prices are dynamic
and are non-decreasing over time. We evaluate our method
with RTB datasets and find that the model adopts different
strategies in allocation and pricing according to the level of
competition. From the experiments we find that, in a less
competitive market, lower prices of the guaranteed contracts
will encourage the purchase in advance and the revenue gain
is mainly contributed by the increased competition in future
RTB. In a highly competitive market, advertisers are more
willing to purchase the guaranteed contracts and thus higher
prices are expected. The revenue gain is largely contributed
by the guaranteed selling.

1. INTRODUCTION

Over the last few years, the demand for automation, inte-
gration and optimization has been the key driver for making
online advertising one of the fastest advancing industries. In
display advertising, a significant development is the emer-
gence of real-time bidding (RTB), which allows buying and
selling display impressions in real-time and even a single im-
pression at a time [19, 32]. Yet, despite the strong growth
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of RTB, according to [16], 75% of publishers’ revenue in
2012 still came from 20% guaranteed inventories, which were
mainly sold through direct sales by negotiation.

Guaranteed inventories stand for guaranteed contracts sold
by top tier websites. Generally, they are: highly viewable
because of good position and size; rich in the first-party
data (publishers’ user interest database) for behavior tar-
geting; flexible in format, size, device, etc.; audited content
for brand safety. Therefore, it is not surprising that guaran-
teed inventories are normally sold in bulk at high prices in
advance than those sold on the spot market.

Programmatic guarantee (PG), sometimes called program-
matic reserve/premium [14, 24], is a new concept that has
gained much attention recently. Notable examples of some
early services on the market are 1SOCKET . com, BuySellAds. com
and ShinyAds.com. It is essentially an allocation and pricing
engine for publishers or supply-side platforms (SSPs) that
brings the automation into the selling of guaranteed inven-
tories apart from RTB. Figure 1 illustrates how PG works
for a publisher (or SSP) in display advertising. For a spe-
cific ad slot (or user tag'), the estimated total impressions in
a future period can be evaluated and allocated algorithmi-
cally at the present time between the guaranteed market and
the spot market. Impressions in the former are sold in ad-
vance via guaranteed contracts until the delivery date while
in the latter are auctioned off in RTB. Unlike the traditional
way of selling guaranteed contracts, there is no negotiation
process between publisher and advertiser. The guaranteed
price (i.e., the fixed per impression price) will be listed in
ad exchanges dynamically like the posted stock price in fi-
nancial exchanges. Advertisers or demand-side platforms
(DSPs) can see a guaranteed price at a time, monitor the
price changes over time and purchase the needed impressions
directly at the corresponding guaranteed prices a few days,
weeks or months earlier before the delivery date.

Developing a revenue maximization model for the pro-
grammatic guarantee is sophisticated and challenging. We
need to solve the problem of selling unstorable impressions
in advance. Similar problems have been studied in many
other industries. Examples include retailers selling fashion
and seasonal goods and airline companies selling flight tick-
ets [29]. However, in display advertising, impressions are
with uncertain salvage values because they can be auctioned
off in real-time on the delivery date. The combination with
RTB makes our work interesting and novel.

Several economic assumptions are made in our study. We
consider that future supply and demand of impressions from
an ad slot (or user tag) can be well estimated and assume
that advertisers’ purchase behavior of guaranteed contracts
are determined by both the guaranteed price and the time

LGroup of ad slots which target specific types of users.
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Figure 1: A systematic view of programmatic guar-
antee (PQG) in display advertising: [to,t»] is the time
period to sell the guaranteed impressions that will
be created in future period [tn,tn41].

interval between the purchase time and the impression de-
livery date. For RTB, we consider the seal-bid second price
auction and discuss both probabilistic and empirical distri-
butions of advertisers’ bids. Under the above assumptions,
we develop an algorithmic framework that gives out a func-
tional form of the dynamic optimal price and computes the
optimal amount of future impressions to sell in advance.

We evaluate our development with two RTB datasets. Ad-
vertisers bidding behaviors in RTB are investigated and we
find that the developed model adopts different strategies in
pricing and allocating impressions according to the level of
competition on the spot market. If the spot market in future
is less competitive, a small amount of impressions would be
sold via guaranteed contracts at low prices. The maximized
revenue is mainly contributed by the spot market because
there is a significant growth in the expected price of auctions
in the future. In a highly competitive market, the model al-
locates more future impressions into guaranteed contracts at
high prices and the maximized revenue mainly comes from
the guaranteed selling. Under either situation, the revenue
can be maximized successfully.

The rest of the paper is organized as follows. Section 2
reviews the related work. In Section 3, we formulate the
problem, discuss our assumptions and provide a solution.
Section 4 presents the results of our experimental evaluation
and Section 5 concludes the paper.

2. RELATED WORK

In online advertising, revenue maximization is always the
key issue for publishers, search engines and SSPs. Various
attempts have been made to address this challenge, includ-
ing inventory management and allocation [7, 27, 26], ads
selection and matching [8, 9, 31], reserve price optimiza-
tion [25, 15] and advertising ratio control [13] etc. In this
section we review the related work on guaranteed delivery.

In [17], an ads selection and matching algorithm is stud-
ied where a publisher’s objective is not only to fulfill the
guaranteed contracts but also to deliver well-targeted im-
pressions to advertisers. The allocation of impressions be-
tween guaranteed and non-guaranteed channels is discussed
by [18], where a publisher is considered to act as a bidder
and to bid for guaranteed contracts. A good property of
this setting is that the publisher acts as a bidder would pos-
sibly allocate impressions to online auctions only when the
winning bids are high enough. The same allocation prob-
lem is discussed in [4] by using stochastic control models.
For a given impression price, the publisher decides whether
to send it to ad exchanges or to assign it to an advertiser
with a fixed price. The total revenue from ad exchanges and
reservations are then maximized. The work of [27] considers

Table 1: Summary of key notations and terminology.

to, -+ ,tnt+1 The discrete time points: [to, t,] is the period to sell
the guaranteed impressions; [t,,tn+1] is the period
that the estimated impressions should be created, auc-
tioned off (in RTB) and delivered.

t e 0,T) The continuous time where to =0, t, = T

T The remaining time to the impression delivery period
andt=T—1t€[0,T].

Q The estimated number of total demanded impressions
for the ad slot in [t,, tp41].

S The estimated number of total supplied impressions
for the ad slot in [ty tn41].

p(T) The guaranteed price to sell an impression when the
remaining time till the delivery period is T.

0(t,p(t)) The proportion of those who want to buy an impres-
sion in advance at T and at p(T).

f(o) The density function so that the number of those who
want to buy in advance in [T, T + dT] is f(T)dT.

w The probability that the publisher fails to deliver a
guaranteed impression in the delivery period.

K The size of penalty: if the publisher fails to deliver a
guaranteed impression that is sold at p(T), he needs to
pay kp(T) penalty to the advertiser.

I3 The number of advertisers who need an impression in
RTB, also called the per impression demand.

®(€) The expected payment price of an impression in RTB
for the given demand level €.

P (&) The expected risk of an impression in RTB for the

given demand level &.

A The level of risk aversion for advertisers.

(&) The expected winning bid of an impression in RTB for
the given demand level &.

a similar framework to [4], where the publisher can dynam-
ically select which guaranteed buy requests to accept and
then delivers the guaranteed impressions. Compared to [4],
the uncertainty in advertisers’ buy requests and the traffic
of website are explicitly modeled in revenue maximization.
A lightweight allocation framework is discussed by [6]. It
intends to simplify the computations in optimization and
to let real servers to allocate ads efficiently and with little
overhead. The work of [7] proposes two algorithms to cal-
culate the price of selling guaranteed impressions in bulk.
However, the effects of online auctions are not considered
in their research and the developed algorithms are purely
based on the statistics of users’ visits to the webpages.

In the process of providing the guaranteed delivery, a pub-
lisher or search engine may also want to cancel the guaran-
teed contracts if he thinks the non-guaranteed selling is more
profitable. In such a situation, the cancellation functional-
ity of a guaranteed delivery system is beneficial to the sell
side. Cancellations are discussed in [3, 12], where a publisher
can cancel a guaranteed contract later if he agrees to pay a
penalty. Publishers can enjoy a lot of flexibility with can-
cellations but there may exist speculators in the game who
pursue the penalty only. In fact, the cancellation penalty
in online advertising is very similar to the over-selling book-
ing of airline tickets. Several important over-selling booking
models are discussed in [29].

The so-called ad option contracts are a more flexible guar-
anteed delivery mechanism in online advertising [10, 23, 30].
Advertisers are guaranteed a priority buying right (but not
an obligation) of their targeted future inventories. They can
decide to pay fixed prices to obtain the inventories or rejoin
the auctions in the future. The ad option contracts require
advertisers to pay an upfront fee first in exchange for the
right in the future. In [23, 30], the ad option contracts allow
advertisers to choose a combined payment scheme of fixed
prices. For example, an advertiser can pay a fixed cost-per-
click (CPC) for display impressions. In [10], the contracts
enable advertisers to target multiple keywords in sponsored
search. However, the studies of [10, 23, 30] focus on the
option pricing methods under various objectives and do not
discuss how to effectively allocate the inventories.



3. THE MODEL

Consider there is a premium ad slot on a publisher’s web-
page. If there is a user comes to this webpage, the ad slot
can generate a chance of ad view, usually referred to as an
impression. In RTB, an impression is auctioned off simulta-
neously once a user comes and the winning bidder (i.e., the
advertiser) has his ad displayed to the user [19, 32]. Sup-
pose that the publisher can estimate supply and demand
of impressions from an ad slot (or user tag) from historical
transactions and plan to sell some of the future impressions
via guaranteed contracts in advance in order to maximize
the revenue. We consider an environment that is risk-averse
and both publisher and advertiser make their strategies by
maximizing their expected utilities [5]. In other words, the
advertiser is willing to pay a higher price for a fixed num-
ber of future impressions if the delivery is guaranteed. This
gives the publishers an additional possibility of increasing
their revenue by pre-selling some future impressions, apart
from the price discrimination over time.

3.1 Problem Formulation
The optimization problem can be expressed as

max{ | (= amppte. o) e

G = Expected total revenue from guaranted selling minus

expected penalty of failling to delivery

( /ew Fo )80 } ()

= Expected total revenue from RTB

ot p(o):{mmw(s), ir(e) 2 90 + 200 )

(&), f (&) < (&) + Mp(8),
where
- Remaining demand in [tn,tnt1] @ — fOT 0(t, p(1)) f(T)dT
" Remaining supply in [tn, tns1] S — [ o(t,p(v) f(t)dr

The notations are given in Table 1. The publisher’s ex-
pected total revenue contains: the expected revenue from

guaranteed impressions sold during [0, T']; the expected penalty

of failing to delivery guaranteed impressions in [tn,tnt1];
the expected revenue from RTB in [t,,tn+1]; and the price
constraint that ensures the advertisers’ willingness to buy
guaranteed impressions. Eq. (2) shows that an advertiser’s
decision of buying either a guaranteed or non-guaranteed
impression depends on the expected payment price and his
level of risk-aversion. For simplicity and without loss of gen-
erality, we consider each guaranteed impressions as a single
guaranteed contract, where in practice this settings can be
extended to a bulk sale.

The solution to the above optimization problem appears
a bit complicated as it needs to answer how many future
impressions to sell and at what prices to sell. Before dis-
cussing the solution, we need to make several assumptions,
such as the distribution of bids in RTB and the advertisers’
purchase behavior in advance.

3.2 Distribution of Bids in RTB

Advertisers bid for individual impressions separately in
RTB [19, 32]. Therefore, we consider the following second-
price auction: for a single impression from a specific ad slot
(or user tag), advertisers submit sealed bids to the publisher

Algorithm 1 Estimate ¢(§) by using the robust lo-
cally weighted regression (RLWR) method [11].

function RLWRSDLVE(&)
// (57 ¢7) Jj=1,

,m, are the learning data with size m.

B(E)  argmin S1L, ;(6) (05 — o - ﬁla — BagD)?,
£-¢,
where @, (§) + { ( ‘ h(E) ) ! h(g) <1
if h(s) > 1.

// h(€) is the distance from £ to the most distant neighbor of &
within the span, and we choose d = 2.

¢ — Zk 0 Bk 6)¢ k
loopi+ 1tob // rcpcat the update in 5 iterations

€+ ¢ — 4), x(€) + median(] € |).
for j < 1 to m do

@;(§) { (gl
__ end for
B(§) < argmin E;"L=1 w; (€)(¢; — Bo — P& —
b o Br(£)E".
end loop

return ¢(§) <+ é.
end function

—(ad)?)? it |ej|< 6x(e),
it | e |> 6x(e).

= BaghH2.

(or SSP), and the highest bidder wins the impression but
finally pays at the bid next to him.

We can consider either probabilistic or empirical distribu-
tion of bids in RTB. Bidders are assumed to be symmetric
in probabilistic method; therefore, advertisers would truth-
fully bid (i.e, bid at their private values). We adopt the
settings in [25] and assume bids follow the log-normal dis-
tribution, denoted by X ~ LN(u,0?). Then, the expected
per impression payment price from a second-price auction is

o€ = [ atle=19@) (1 - F@) (F@) e @)

where g(z) and F(z) are log-normal density and its cumu-
lative distribution function, respectively, given by

. ln(:r) w
1 _ (n(@)—w? V2o
r)=———F7—=—8¢€ 202 , F 7+—/ _Z dz,
9la) = — = (@) = 5+ =

so that (& —1)g(x)(1— F(z))(F(z))*~? represents the prob-
ability that if an advertiser is the second highest bidder, then
one of the £ —1 other advertisers must bid at least as much as
he/she does and all of the £ —2 other advertisers have to bid
no more than he/she does. We can check if bids follow the
log-normal distribution by Kolmogorov-Smirnov (K-S) [28]
and Jarque-Bera (J-B) [21] statistics (see Table 6). Once the
log-normal distribution is met, we can obtain ¢(£) numeri-
cally because the values of g(z) and F(z) in each integration
increment can be calculated.

If bids do not follow the log-normal distribution, we refer
to an empirical method to compute ¢(£). Simply, for an ad
slot (or user tag), the winning payment prices are trained to
develop a regression model that explains their correlation to
the level of demand. In this paper, we use the robust locally
weighted regression (RLWR) method [11] (see Algorithm 1
and an empirical example in Section 4.4). Other statistical
learning methods can be developed to estimate ¢(§) but we
are not going to further investigate them here.

3.3 Risk Aversion and Purchase Behavior

Eq. (2) tells that at time 7" an advertiser’s decision be-
tween guaranteed and non-guaranteed channels are indiffer-
ent. In this paper, we do not model the advertisers’ arrival
as a stochastic process [29], instead, we consider that the
total demand for future impressions is deterministic but can
be shift from future to present. The possibility of this shift
is because advertisers are assumed to be risk-averse.



Algorithm 2 Solution to Eq. (1).

function PGSoLvE(w, 3,(, 1, w, k, A, S, Q,T)
t< [to, ,tn],0=to <t1 <+ <ty,="T.
T+ T —t, m < 500.
loop i<+ 1tom
7i < RandomUniformGenerate([0, 1])
I3 0(t, p(0) f(Ddt = 7S
€+ (Q—7S)/(S —~S)
H;i (1 —v:)S¢(&)
Gi + [ (1 = wr)p(T)0(T, p(T)) f(T)dT
p; < argmax G, (6)

s.t. /OT (T, p(7))f(T)dT =~;S, (7)

_ (&) + A(&), i m(&) > d(&:) + (&),
Pl = {w(&-),if m(&:) < 9(€:) + MH(E). ®)

R; «+ maxG; + H;

end loop
7" < argmax, cq,){R1,..., Rm}
p" + argmax, cop){R1,..., Rm}

return v*, p*
end function

Under our risk aversion settings, m(§) and %(§) can be
estimated by the RLWR method, and A can be set as any
non-negative number. First, the estimation of 7 (&) is as
same as Algorithm 1 while we consider highest bids (per
transaction) rather than payment prices (per transaction).
Second, the estimation of ¥ (&) is slightly different. We com-
pute a series of standard deviations of daily winning pay-
ment prices and use Algorithm 1 to compute (&) for the
given demand level. Third, advertisers’ risk-averse prefer-
ence are not same; therefore, A can be regarded as the aver-
age risk-aversion level of all advertisers or of key advertisers
(we consider the former in the experiments). The larger A
the more risk-averse advertisers. More detailed discussion
about the estimation of 7(&), ¥(£) and X is given in Sec-
tion 4.4.

Similar to flight tickets booking [1, 2, 22], we have the
following two economic assumptions on demand:

A-1 Demand is negatively correlated with guaranteed price
as advertisers would buy less impressions if price in-
creases. Given T and 0 < p1 < po, then 6(t,p1) >
0(t, p2), subject to the boundary condition 6(t,0) = 1.

A-2 Demand is negatively correlated with the time interval
between purchase and delivery because more advertis-
ers’ would want to buy impressions when the delivery
date is approached. Given p and 0 < T2 < T1, then

0(t2,p) > 0(11,p).

We adopt the functional forms of demand proposed by [1]
(which are used in flight tickets booking):

Q(T,p(’t)) _ e—ap(T)(l-&-BT)7 (4)
flr)=¢e ™, (5)

where « is the level of price effect, 5 and 7n are the levels
of time effect, and the demand density rises to a peak ¢ on
the delivery date. Therefore, f(t)dt shows the number who
would be willing to purchase in advance, and 0(t, p(T)) rep-
resents the proportion of advertisers who want to purchase
an impression in advance at T and at p(T).

3.4 Optimal Dynamic Prices

The optimization problem in Eq. (1) can be solved by
Algorithm 2. We simulate many values of v; € [0,1],7 =
1,...,m. For each given +;, we solve the optimization prob-
lem in Eq. (6), find the optimal series of guaranteed prices
and calculate the optimal total revenue R;. Then, in the

global comparison, we can find the optimal v* that gener-
ates the maximum value of total revenue.

Let us discuss how to solve the optimization problem in
Eq. (6). We consider the following Lagrangian:

L, p(1)) = /0 (1 — wr)p(1)0(T, p(T)) f(T)dT
+X<%—S— /0 9(T,p(’t))f(’t)d’t>, (9)

where \ is the Lagrange multiplier. The Kuler-Lagrange
condition is L/9p = 0. For T € (0,T], we have

(1m0 () + (1 mp()3) LN =

Substituting Eq. (4) into Eq. (10) then gives the formula
of the optimal guaranteed price:

0. (10)

A N 1
a(l + pr)’

Consider a small time step dT, then in [0,0 + dT], there
are 6(0,p(0) f(0)dT demand fulfilled. Therefore, we have

p(T) (11)

- 1—wk

. 0(t,p(0))f(T)dt = %S — 6(0, p(0)) f(O)dT  (12)
By substituting Eqs. (4)-(5) & (2) into Eq. (12), we have

ot —wme ) (i) ()
aAB + (1 — wrk)n
S e PO (13)

Eq. (13) shows that the value of X is dependent on ;S and
other parameters; however, the explicit solution of A cannot

be deduced. We can approximate the value of A by using
the numerical methods (e.g. the Newton-Raphson method)
and rewrite Eq. (11) as follows

_ X(a7ﬂ14an>w7ﬁ77is) + 1
- 1—-wk a(l + B1)’

p(7) (14)

The notation X(a, B,¢,n,w, Kk, S) represents the dependency

relationship among A and other parameters. Figure 2 gives
a numerical investigation on the relationships between p(t)
and model parameters. Recall that in Eqgs. (4)-(5) a large
value of @ means advertisers are price sensitive; therefore,
p(T) decreases if « increases. Similar negative correlations
are with 8 and 7. These two parameters describe the time
effect on advertisers’ willingness to purchase. The model
thus encourages advertisers to purchase in advance by selling
guaranteed contracts at low prices. Conversely, the optimal
price is positively correlated with ¢ because the parame-
ter shows the maximum number of advertisers that would
be willing to buy guaranteed impressions at a time point.
More advertisers means more competition; therefore, more
advertisers would purchase in advance in order to secure the
targeted impressions. In such a situation, the model gives
out high guaranteed prices and allocates more impressions
to guaranteed contracts. While the expected penalty wk has
less effect on price, the larger wk the higher p(t). It is worth
noting that w and x are considered as given parameters in
this paper because: (i) k can be set by negotiation between
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Figure 2: The impact of model parameters on the
guaranteed selling prices: «, 8, ¢, n are defined in
Egs. (4) & (5); wk is the expected size of penalty; v
is the percentage of estimated future impressions to
sell in advanced; T is the length of guaranteed selling
period; T is the remaining time to the delivery date;
p(T) is the guaranteed selling price at T.

Table 2: Summary of RTB datasets.

Dataset SSP DSP

From | 08/01/2013 | 19/10/2013

To | 14/02/2013 | 27/10/2013

# of ad slots 31 53571

# of user tags NA 69
# of advertisers 374 4
# of impressions 6646643 3158171
# of bids 33043127 11457419

Bid quote | USD/CPM | CNY/CPM

Table 3: Experimental design of the SSP dataset.

From To

Training set | 08/01/2013 13/02/2013

Development set | 08/01/2013  14/02/2013
Test set 14/02/2013

publisher and advertiser; (ii) w can be estimated? and up-
dated once the PG system runs for a certain period of time.
In this paper, we set w = 0.05, K = 1. With less and less
supplied impressions to sell on the market, the price p(T)
increases. The total length of time period to sell guaranteed
contracts positively affects the guaranteed price, the longer
T, the higher the p(T).

4. EXPERIMENTAL EVALUATION

We describe our datasets in Section 4.1, investigate the
RTB campaigns in Sections 4.2-4.3, discuss the estimation
of model parameters in Sections 4.4-4.5, and evaluate the
performance of revenue maximization in Section 4.6.

4.1 Datasets

We use two different RTB datasets: one from a medium-
sized SSP in the UK and the other from a DSP in China.
Table 2 shows a brief summary of these two datasets. The
SSP dataset is used throughout the whole experiments while

2w can be approximated by the percentage of guaranteed

impressions that the publisher fails to delivery.
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Figure 3: Overview of the winning advertisers’ statis-
tics from the SSP dataset in the training period.
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the DSP dataset is used for further exploring advertisers’
strategies in RTB. In these two datasets, all the bids are
expressed as cost per mille (CPM), i.e., the measurement
corresponds to the value of 1000 impressions.

Table 3 illustrates our experimental design, where the SSP
dataset is divided into one training set, one development set
and one test set. In the training set, we investigate RTB
campaigns and estimate model parameters. In the develop-
ment set, we use the discussed model to allocate and price
the impressions that are created on 14/02/2013. Guaran-
teed contracts are sold over the period from 08/01/2013 to
13/02/2013 and the rest impressions are auctioned off on
the delivery date 14/02/2013. In the development set, we
simulate the transactions of guaranteed contracts and calcu-
late the remaining campaigns of RTB on 14/02/2013. The
test set contains the actual bids and winning payment prices
of 14/02/2013, which is used to evaluate the revenue max-
imization performance. Note that time periods of training
and development sets can be different. For example, the
development period can be a few days/weeks later than the
training period. However, this requires a number of forecast-
ing methods to estimate all the model parameters (features).
As our primary intention here is not to discuss better fore-
casting methods, we choose a learning period that is close to
the impression delivery date so that the learned parameters
are more accurate for the evaluation purpose.

4.2 Bidding Behaviors

We first examine if selling guaranteed impressions in ad-
vance can be a viable way to segment advertisers according
to their bids, and then discuss how much of revenue growth
can be expected.

Let us first look at advertisers behaviors in RTB. From the
SSP dataset, we find that advertisers mainly join auctions
in the morning from 6am to 10am. It is the time period
that supplied impressions arrive peak. We also find that the
winning advertisers’ final payments are much less than their
bids. Figure 3 gives some descriptive statistics about this
finding across all 31 ad slots. We simply divide the win-
ning advertisers into two groups. The first group contains



Table 4: Summary of the winning advertisers’ statis-
tics from the SSP dataset in the training period: the
numbers in the brackets represent how many adver-
tisers who use the combined bidding strategies.

Bidding # of # of  Average  Ratio of
strategy advertisers imps change payment

won rate of price to

payment winning

prices bid

Fixed price 188 (51) 454681 188.85% 43.93%
Non-fixed price 200 (51) 6068908  517.54% 58.94%

Table 5: Summary of advertisers’ winning cam-
paigns from the DSP dataset. All the advertisers
use the fixed price bidding strategy. Each user tag
contains many ad slots and an ad slot is sampled
from the dataset only if the advertiser wins more
than 1000 impressions from it.

Advertiser | # of # of # of  Average Ratio of
1D user ad slots imps change payment

tags won rate of price to

payment winning

prices bid

1 69 635 196831 58.57% 36.07%

2 69 428 144272 58.94% 34.68%

3 69 1267 123361 79.24% 30.89%

4 65 15 3139  104.19% 22.32%

those who always offer a fixed bid; the second group contains
those who frequently change their bids. Figure 3 shows that
more winning advertisers adopt the non-fixed price bidding
in RTB. They intend to offer higher bids on each impression,
endure more variance in payment prices due to the second
price auction, and obtain more impressions. The second
price auction in RTB provides an opportunity for making
more revenue by selling impressions in advance: 1) a risk-
averse advertiser is willing to buy in advance to lock in the
price; 2) the publisher would be able to increase the price
for the guaranteed contracts by charging advertisers their
private valuations rather than the second price bids. The
question is how big the difference between the top bids and
actually payments (the second price). Table 4 shows that
the publisher can expect 100% increase in revenue because
the current average ratio of actual payment price (the second
price) to winning bid (the first price) is about 50%.

We further examine the DSP dataset, and find all 4 ad-
vertisers use the fixed price strategy in their bidding. This
might be because the DSP itself adopts the fixed price strat-
egy for these 4 advertisers. While the DSP dataset itself is
biased, we can still take a look at the average volatility of
the advertisers’s payment prices and the average ratio of
payment price to winning bid. In the DSP dataset, we see
an advertiser actually bids for an user tag instead of a spe-
cific ad slot. Each user tag contains a set of ad slots that
have similar features and can allow the advertiser to target
a certain group of online users. In short, RTB is the user
targeting bidding. Consider in an user tag the advertiser’s
bids are not well distributed among ad slots, we only investi-
gate the ad slots where the advertiser wins more than 1000
impressions. Table 5 confirms our earlier statement from
a buy side perspective. Even using the fixed price bidding
strategy, advertisers’ payment prices are volatile (more than
50% from each impression). In fact, these advertisers can
afford more to reduce the risk because the current payment
prices are much lower than their private valuations (around
30% across 4 advertisers).

4.3 Supply and Demand

Figure 4 shows some descriptive statistics about supply
and demand of all 31 ad slots from the SSP dataset in the
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Figure 4: The overview of daily supply and demand
of ad slots in the SSP dataset in the training period:
S is the number of total supplied impressions; @ is
the number of total demand impressions; £ is the per
impression demand (i.e., the number of advertisers
who bid for an impression).
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Figure 5: The hierarchical cluster tree of ad slots in
the SSP dataset where the cluster metric is average
distance in the per impression demand ¢£.

training set. The ad slots have the same daily supply levels
as well as their upper and lower bounds. However, the levels
of daily demand are significantly different: AdSlot25, Ad-
Slot27, AdS1ot29 and AdSlot31 are in higher demand than
others, about 9 bidders per impression while the rest ad slots
have the average value around 5. As shown in Figure 5, we
take the average distance [20] in £ as the metric to cluster
ad slots and obtain two groups. Note that £ significantly de-
viates from its mean value in a day’s period because many
more advertisers join RTB at peak time from 6am to 10am.
In these hours, £ is 118.96% higher than other hours. We
can develop regression or time-series models to estimate @Q
and S on the delivery date; however, this is not a significant
part of our study so we consider them as given parameters.

4.4 Bids and Payment Prices

Once ¢ is given, we can use either probabilistic or empiri-
cal model to estimate the corresponding payment price ¢(&)
in RTB. For the probabilistic model, we consider symmetric
bidders and assume their bids follow a log-normal distri-
bution. However, the distribution tests shown in Table 6
reveal the fact that actual bids in RTB are not log-normally
distributed. This confirms the statement that advertisers
in the real-world are not symmetric. They may frequently
change their bids for unclear reasons. Therefore, we use the



Table 6: Summary of bids distribution tests, where
the numbers in the Kolmogorov-Smirnov (K-S) and
Jarque-Bera (J-B) tests represent the percentage of
tested auctions that have lognormal bids.

Group of ad slots | # of auctions K-S test J-B test
where £ > 30

Low competition 286 0.00% 0.00%

High competition 15702 0.00% 0.00%

Table 7: Comparison of estimations between the em-
pirical distribution and the actual bids: ¢(&) is the
expected payment price; (&) is the standard devia-
tion of payment prices; 7(£) is the expected winning
bid; and the per impression demand & = Q/S.

Group of ad slots | Difference Difference Difference
in ¢(€) in ¥ (€) in 7 (&)
Low competition 14.35% 814.45% 24.43%
High competition 6.23% 11.25% 1.22%

empirical method to estimate ¢(€) as well as ¢(§) and 7 (&).

Figure 6 illustrates an example of our empirical distribu-
tion method for AdSlot25. In the learning set, each winning
price can be plot against the demand level £&. We then use
Algorithm 1 to compute ¢(£). As described earlier, (&) and
(&) are obtained numerically in the similar manner. In our
experiments, we allow 10% span of smoothing. As shown
in Figure 6, ¢(£) and 7(§) are increasing with £ while (§)
shows a quadratic pattern on . Once £ is given, we can cal-
culate the value of the terminal condition p(0) by Eq. (2).
Figure 6 also confirms our earlier statement on \. Advertis-
ers are not risk-averse if A = 0; and they are risk-sensitive
for a large A. In our experiments, we set A\ = 1.

Table 7 examines the forecast performance of empirical
method and compares the estimated values of ¢(§), ¥(£),
(&) to the results of actual bids in the test set. The estima-
tions of ¢(§) and (&) are much better accurate than that
of 1(&). We find that the weak estimations of ¥(£) mainly
come from AdSlot24, AdSlot26, AdSlot28 and AdSlot30.
Their average per impression demand (in both learning and
test sets) are around 1.3. As also shown in Figure 6, the
lower ¢ the larger 1(£). Therefore, for the ad slots with a
very low level of competition, we set p(0) = 7(€).

4.5 Demand for Guaranteed Impressions

The advertisers’ purchase behavior of guaranteed impres-
sions is modeled by parameters «, 3, (, n as well as be
restricted by the expected risk-aversion cost ¢(&) + A(&).
Here we discuss how to learn the values of o and (.

If we only consider the price effect, we can create the func-
tion ¢(p) = e~ °? from Eq. (4) to represent the probability
that an advertiser would like to buy an impression at price
p when T = 0. In RTB, this probability can be learned from
the data by investigating the inverse cumulative distribution
function (CDF) of all bids, denoted by z(z) = 1— F(z). For
a same domain space of p and x, we can have two series of
probabilities ¢(p) and z(x). Therefore, a can be calibrated
as the value that gives the smallest root mean square error
(RMSE) between ¢(p) and z(z). Figure 7 illustrates an em-
pirical example of this calibration graphically for AdSlot25
where the estimated o = 1.72.

The values of ¢ can also be calibrated from data. Consider
a small time step dT, then we have the following inequality

e PN om0 < Qx (1 - F({z >=p})). (15)
If dT = 1, then we can have ( = Qx (1—F({z >=p}))/e”“".

It is difficult to learn the values of parameters 8 and n
given our current datasets. The two parameters represent
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Figure 6: An empirical example of estimating = (¢),
¢(€) and ¥ (&) for AdS1lot25 from historical bids, where
¢ is the per impression demand, () is the expected
winning bid, ¢(§) is the expected payment price and
(&) is the standard deviation of payment prices.

the time effect on advertiser’s buy behavior of guaranteed
impressions. Here we simply adopt the initial parameter
settings used in the flight tickets booking system [1, 22] and
set f =n = 0.2. These two parameters can be then updated
if the PG system runs for a certain period of time. By having
the values of all the model parameters, we can construct the
demand surface for a certain range of price series. Figure 8
presents a demand surface that satisfies A-1 and A-2. It
is convex in the guaranteed price and in the time interval
between the purchase time and the delivery date.

4.6 Revenue Analysis

We first present two empirical examples to illustrate how
the developed model works with different levels of competi-
tion and then provide the overview results.

Figure 9 shows an example of a less competitive market.
The learned average per impression demand on AdSlot14 is
about 3.39 (in the test set the actual & = 6.21). In such
a market, advertisers would be less willing to purchase fu-
ture impressions in advance because they think they can
obtain the targeted impressions at lower payment prices.
The model finally allocates 42.40% of future impressions to
the guaranteed contracts. In the meantime, the calculated
guaranteed prices are not expensive. The prices start with a
value lower than the expected payment price from RTB and
steadily increases into the level that is close to the maximum
value of advertisers’ bids. In Figure 9, we find that our fore-
casting values are close to the actual campaigns because the
estimated RTB revenue B-I1I is almost as same as the actual
RTB revenue B-III. Therefore, the estimated advertisers’
demand for guaranteed impressions arrives are as similar as
the actual daily demand (see Figure 9(b)&(c)). We also test
the guaranteed selling with the actual bids in the test set and
find that the calculated revenue R-II is still higher than ac-
tual second-price RTB revenue B-II. This shows that the
developed model successfully segments advertisers.

Figure 10 describes an example of a competitive market,
where the learned average per impression demand for Ad-
Slot27 is 9.63 (in the test set the actual £ = 11.61). More
advertisers would be willing to purchase guaranteed impres-
sions in advance because of the increased level of competition
and risk. The model finally allocates 66% future impressions



z(x) = 1-F(x)
c(p) to z(x)a = 1.72

0.8

0.6

0.4

Demand (probability)

0.2

15 2
X or p (x=p)

Figure 7: An empirical example of estimating the Figure 8:

=
o
o
o

Daily demand on
—6— specific series of
guaranteed priceg

;:‘
QRR

2000
"O

N
R
R

N
’$

500

X

R
055
9%

N

8(t, p)f(r)dt

X

T=T-t

A numerical example of demand sur-

value of o for AdSlot25, where « is calculated based face for guaranteed impressions of an ad slot, where
on the smallest RMSE between the inverse function ?(T, (7)) f(T)dt represents the number of advertisers

of empirical CDF of bids z(z) = 1 — F(z)
function c(p) = e™“P.

and the Who will buy guaranteed impressions at p(t) and in

[T, T+ dt]; other parameters are a = 1.85; 3 = 0.01;{ =
2000;71 = 0.01; T = 30.

Table 8: Summary of plot notations in Figures 9 & 10.

Calculated revenue:
R-I

R-II
Baseline:
B-I

B-II
B-III

The optimal total revenue calculated based on the estimated demand;
The optimal total revenue calculated based on the actual bids in the test set;

The RTB revenue calculated based on the actual winning bids (1st price) in the test set;
The RTB revenue calculated based on the actual payment (2nd) price in the test set;
The estimated RTB revenue based on the learned empirical distribution;

Table 9: Summary of revenue evaluation of all 31 ad slots in the SSP dataset.

Performance of revenue maximization Performance of price discrimination

Estimated Actual  Difference of RTB | Ratio of actual Ratio of actual

Group of ad slots revenue  revenue revenue between 2nd price reve optimal reve

increase increase estimation & to actual to actual

actual payment 1st price reve 1st price reve

Low competition 31.06% 8.69% 13.87% 67.05% 81.78%

High competition 31.73% 21.51% 6.23% 78.04% 94.70%
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