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Abstract

Clinicians in intensive care units (ICUs) rely on standardized scores as risk prediction models to 

predict a patient’s vulnerability to life-threatening events. Conventional Current scales calculate 

scores from a fixed set of conditions collected within a specific time window. However, modern 

monitoring technologies generate complex, temporal, and multimodal patient data that 

conventional prediction models scales cannot fully utilize. Thus, a more sophisticated model is 

needed to tailor individual characteristics and incorporate multiple temporal modalities for a 

personalized risk prediction. Furthermore, most scales models focus on adult patients. To address 

this needdeficiency, we propose a newly designed ICU risk prediction system, called icuARM-II, 

using a large-scaled pediatric ICU database from Children’s Healthcare of Atlanta. This novel 

database contains clinical data collected in 5,739 ICU visits from 4,975 patients. We propose a 

temporal association rule mining framework giving clinicians a potential to perform predict risks 

prediction based on all available patient conditions without being restricted by a fixed observation 

window. We also develop a new metric that can rigidly assesses the reliability of all all generated 

association rules. In addition, the icuARM-II features an interactive user interface. Using the 

icuARM-II, our results demonstrated showed a use case of short-term mortality prediction using 

lab testing results, which demonstrated a potential new solution for reliable ICU risk prediction 

using personalized clinical data in a previously neglected population.

1. Introduction

Critically ill patients need intensive care due to impaired vital functions that have to be 

monitored with a higher frequency and fidelity, and at greater resource utilization. One of 

the main tasks in intensive care is to provide continuous treatments until the patient’s body 

recovers to resume these functions. The modern intensive care unit (ICU), equipped with 

high-level body sensing and monitoring, generates a large volume of complex and 

multimodal data that allows clinicians to provide timely and effective treatments. However, 

because of the limitation of human intellectual abilities [1], making sense of such 

comprehensive but heterogeneous data with hundreds of variables becomes impossible. In 

other words, the data becomes richer, but the extracted knowledge is still limited, which 

raises the need for computer-based data mining techniques to assist in patient care.
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Developing risk prediction models is one of the major purposes of ICU data mining [2]. 

Models with significant validations and refinements became widely used illness scoring 

systems, such as Acute Physiology and Chronic Health Evaluation (APACHE) [3], Mortality 

Prediction Model (MPM) [4], Simplified Acute Physiology Score (SAPS) [5], Multiple 

Organ Dysfunction Score (MODS) [6], Sequential Organ Failure Assessment (SOFA) [7], 

and Logistic Organ Dysfunction Score (LODS) [8]. More recent studies applied advanced 

data mining approaches to develop risk prediction models that can handle more complicated 

clinical situations. For example, authors in [9] utilized fuzzy modeling and tree search 

feature selection to predict ICU readmissions; another study in [10] applied a combination of 

statistical models to predict prolonged mechanical ventilation. However, a majority of these 

risk prediction models share two common limitations—fixed attributes and fixed observation 

periods.

The development of the conventional risk prediction model started with a target clinical 

problem (e.g., mortality or prolonged ICU stay). Then researchers selected a set of attributes 

and applied feature selection methods to extract determinant ones. Finally, researchers 

applied machine-learning techniques to construct prediction models followed by appropriate 

validations. The goal of such process is to use as few attributes as possible to achieve a high 

prediction accuracy. However, a model with fixed variables may be applicable only to some 

“global” conditions (e.g., heart rate or blood pressure). It is challenging to adopt such 

models for describing individual characteristics that are outside the model’s conditions. 

Therefore, even though the model can provide evidence, the prediction still needs to be 

subjectively adjusted with many out-of-scope/extra conditions. Such a process highly relies 

on a clinician’s knowledge and experience, which introduces uncertainty and human biases 

in the final decision [11].

In addition to the issue of fixed attributes, conventional prediction models used values 

acquired in a fixed time period. For instance, Zygun and others have used data in the first 24 

hours after admission to predict ICU mortality [12–14]. However, models with fixed 

observation periods may ignore the progressive nature of patient’s conditions. For example, 

a patient’s glucose level on ICU day three is likely to be different from that on the admission 

day but potentially just as relevant. Even though several studies provide prediction models 

for days other than the day of admission, no clear discriminations were found in comparison 

to those only on the admission day [15]. In addition, many models consider only the most 

abnormal values, which means a patient with five times an abnormal level is treated the 

same as another patient with once mildly elevated level.

Based on the two aforementioned limitations, there is a need to investigate and develop risk 

prediction models that are able to incorporate all possible conditions from a patient without 

being constrained by a specific observation period. In this study, we present an ICU risk 

prediction system, called icuARM-II, based on our previous study in [16]. We propose a 

temporal association rule mining framework that allows clinicians to construct prediction 

models based on a patient’s personalized conditions in an arbitrary observation period. We 

structure the remainder of this paper as follows. In Section 2, we introduce the temporal 

association rule mining framework with a validation process. In Section 3, we provide a case 

study using lab testing for the prediction of short-term ICU mortality to demonstrate its 
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usability. In Section 4, we describe icuARM-II’s user interface. The conclusion and future 

directions are summarized in Section 5.

2. TEMPORAL ASSOCIATION RULES

2.1 Principle of association rule mining

Association rule mining (ARM) is one of main data mining areas other than classification 

and clustering [17]. ARM enables the discovery of all possible relationships among input 

variables. An association rule is in the form of A ⇒ C, implying that, if an antecedent A 
occurs, a consequent C may also likely occur. The A and C are itemsets that are composed 

of one or multiple items and are mutually exclusive. Agrawal et al. first proposed ARM for 

the purpose of market basket analysis [18] in which a rule A ⇒ C carries the implication 

that if a customer purchases items in A, he/she is also likely to purchase items in C.

The quality of an association rule is quantified by two important metrics—support and 

confidence. The support is defined as the fraction of data tuples in the dataset that contain all 

items in both A and C. For example, an association rule with support of 75% indicates that 

75% of the data contains both the antecedent A and the consequent C of the rule. A rule with 

high support indicates that the rule is frequent in the mining dataset. The second metric of an 

association rule is called confidence. It determines the possibility of the occurrence of C 
given A. For instance, a rule with 95% confidence implies that 95% of the tuples that contain 

A also contain C. A rule with high confidence suggests a strong association between A and 

C. In order to ensure the quality of mined rules, the mining process requires a minimum 

support (Suppmin) and a minimum confidence (Confmin) to prune infrequent and unconfident 

rules. Interested readers can refer to [19] for more detail regarding the generation of frequent 

itemsets and confident rules.

2.2 Applications of association rule mining

ARM has been widely used in data mining for the discovery of new and potentially 

important relationships among variables in biomedical and healthcare domains such as gene 

expression profiling [20, 21], cardiovascular disease prediction [22, 23], healthcare auditing 

[24, 25], neurological diagnosis [26, 27], and predictive health [28]. In our previous study, 

we developed an ICU clinical decision support system (named icuARM) using ARM and 

MIMIC-II, which is a well-known ICU research database [29]. The icuARM system not 

only demonstrated the possibility of personalized data mining in the ICU but also provided 

an interactive user interface for real-time clinical decision support. However, a majority of 

ARM applications only consider co-occurrence between antecedent and consequent without 

the ability to reveal their temporal relationships. For example, a rule {blocked urinary tract} 

⇒ {creatinine > 1.3 mg/dL} can only be used to find the coexistence between blocked 
urinary tract and creatinine > 1.3 mg/dL at the same time. It is not capable of revealing if a 

patient who has blocked urinary tract will develop abnormal creatinine level in the next 24 

hours, even though the patient’s creatinine level is currently normal. Although a few 

temporal ARM approaches have been proposed [30, 31], they were not designed for flexible 

time window in the antecedent and consequent, and they lacked applications in the 

healthcare data mining. Therefore, in this study we introduce a temporal association rule 
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mining framework that can flexibly capture the nature of temporal relationships between the 

antecedent and the consequent.

2.3 Temporal association rules

Similar to the items in non-temporal association rules, the basic element in temporal 

association rules is called an event. Given a temporal database with time-stamped entities, 

we use two types of mechanisms to generate event sequences:

– state events: which convert qualitative values into categorical (e.g., low, high, 

or normal) states in a time series, and

– trend events: which capture continuous trend courses (e.g., increasing, 

decreasing, or stationary) in a time series.

Assuming a set of events E = {E1, E2, …, EN} has already been defined, we can construct an 

episode P = {EP | TP} with a set of events EP ⊆ E within a time interval TP. TP is composed 

of TP,s and TP,e, TP,e > TP,s, indicating the start time and the end time of TP. TP,s and TP,e can 

be specified, for example, TP = {Tadmission, Tadmission + 24-hr} specifies a time interval 

between the time of admission and 24 hours after then. TP can also be an arbitrary interval; 

for instance, |TP| < 12-hr means all TP,s and TP,e that TP,e − TP,s < 12-hr. In this way, a 

temporal association rule (TAR) can be represented as A ⇒ C: {EA | TA} ⇒ {EC | TC}. All 

of the EA, EC, TA, and TC are the user inputs for the mining process. The rule indicates that 

when an antecedent episode A with events EA observed within the past TA, another 

consequent episode C with EC in the following TC will also be likely to occur in a certain 

possibility. We restrict the mining to the case where an antecedent episode is followed by a 

consequent episode, i.e., TA,e = TC,s. Several use cases can be derived based on different 

settings of TA and TC, as listed and illustrated in Table 1.

2.4 Mining temporal association rules

Given all available event sequences and target antecedent and consequent episodes, our 

framework counts a rule using a 2×2 contingency table that can be used to derive a variety of 

rule metrics, including the support and confidence. As shown in Figure 1, the contingency 

table of a rule A ⇒ C: {EA | TA} ⇒ {EC | TC} is presented by four cells, c11, c12, c21, and 

c22, which are the counts of (A, C), (A, ), ( , C), and ( , ), respectively.  (or ) 

indicates the situation that the antecedent A (or the consequent C) is not detected. If the start 

time and end time of TA (or TC) are specified (e.g., TA = {Tadmission, Tadmission + 12 hr}), 

the framework directly extracts all events within that time window and determines if the 

extracted events match EA (or EC). Based on the result, the framework updates the four cells 

accordingly. If the time window of TA (or TC) is arbitrary (e.g., |TA| < 12-hr), then the 

framework performs two types of scanning on event sequences to count these four cells.

2.4.1 Backward and forward scanning—If TA and TC are arbitrary, the framework 

performs a backward scanning followed by a forward scanning on each event sequence, as 

depicted in Figure 2. For an event sequence, the backward scanning starts from the last event 

and traces back towards the first event. Whenever an antecedent episode A is found (i.e., 

scanned events contain EA within a time window TA) with the last event occurring at time t, 
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the framework extracts potential consequent events between t and t + TC. If potential 

consequent events contain EC (i.e., C is scanned), then the framework adds c11 by one, and 

the scanning stops for this event sequence; otherwise, the backward scanning continues. If 

the backward scanning can only detect an antecedent episode but no consequent episode 

throughout the sequence (i.e., (A, )), the framework proceeds to the forward scanning.

The forward scanning starts from the first event towards the last event of a sequence. 

Whenever a consequent episode C is found (i.e., events contain EC within a time window 

TC) with the first event occurring at t, the process extracts all possible antecedent events 

occur between t − TA and t. If all extracted antecedent events contain EA, the process 

updates the contingency table depending on whether (A, ) has been detected in the 

backward scanning phase. If yes, the framework adds both c12 and c21 by half; otherwise, it 

adds only c21 by one. If the process finds no matched episodes for EC in forward scanning, 

again, the process updates the contingency table depending on whether (A,) has been 

detected in the backward scanning phase. If yes, the framework adds c12 by one; otherwise, 

it adds c22 by one.

Our scanning mechanism ensures that the sum of the four cells in the contingency table is 

added one by one for each event sequence. It is possible that both c21 and c21 are added by 

half since a sequence can have both antecedent episode and consequent episode occur 

separately, as the example b in Figure 2.

2.4.2 Classification-based rule generation—Our proposed framework assumes a 

classification-based rule generation from which all rules share one and only one pre-

determined consequent episode C (i.e., the class). Let E = {E1, E2, …, EN} are N possible 

antecedent events (i.e., observed patient conditions), the framework aims to discover a 

decision list in which are all confident temporal association rules with different 

combinations of these events in antecedents. The framework utilizes a two-step process to 

generate frequent and confident rules according to the specified Suppmin and Confmin, 

respectively. The first step is iterative, starting by generating contingency tables of candidate 

1-event rules that contain only one event in the antecedent episode. Assuming the total 

number of event sequences is NS, candidate 1-event rules that have c11/NS lower than 

Suppmin are pruned out and the remaining ones are called frequent 1-event rules. In the 

following iterations (i.e., k>1), the framework first uses frequent (k-1)-event rules to 

generate candidate k-event rules. Candidate k-event rules that have c11/NS lower than 

Suppmin are pruned out and the remaining ones are called frequent k-event rules. The 

iteration continues until no more frequent rules can be found. Given all frequent rules, in the 

second step, the framework prunes out rules that have c11/(c11+c12) lower than Confmin, and 

the remaining ones are called confident rules. In this way, N potential antecedent events can 

generate a decision list with up to (2N − 1) raw rules, and infrequent or unconfident rules can 

be pruned by applying the Suppmin and Confmin, respectively.

2.5 Reliability metric

2.5.1 Reliability assessment using the principle of leave-one-out cross 
validation—Given a set of observed patient conditions as antecedent events, the rule 

Cheng et al. Page 5

ACM BCB. Author manuscript; available in PMC 2016 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



generation phase can end up with a decision list with rules. Afterwards, we apply the 

principle of leave-one-out (LOO) to evaluate the overall reliability of these rules. As 

illustrated in Figure 3, given a dataset with event sequences from NS patients, the LOO 

process generates the decision list using the event sequences from NS − 1 patients and 

counts how many number of rules’ antecedents that the remaining patient sequence verifies. 

If the percentage of verified antecedents exceeds a specified class threshold (TH), the 

sequence satisfies the consequent class. After NS iterations of the LOO validation, we can 

obtain the sensitivity and specificity based on the current TH. Then a receiver operating 

characteristic (ROC) curve can be constructed by changing the TH from 0% to 100%. 

Finally, the reliability of all rules in the decision list is determined by the corresponding area 

under the ROC curve (AUC), which is more preferably than considering accuracy alone 

[32].

2.5.2 Creation, storage, and retrieval of performance—As illustrated in Figure 3, 

after the rule generation and validation phases, the framework constructs a performance data 

for the target antecedent and consequent episodes. A performance data consists of 

components including (1) target antecedent episode A, (2) targeted consequent episode C, 

(3) the decision list with all generated rules, (4) the ROC curve, and (5) the reliability (i.e., 

AUC). Because the rule generation and validation require a large amount of computation 

resources and time, it is necessary to store all generated performance data to avoid duplicate 

computation. As depicted in Figure 4, upon receiving a new antecedent episode and 

consequent episode, the framework searches the performance database for existing 

performance data that contains the input episodes. If found, the framework extracts the rule 

with the highest confidence and displays the ROC curve with the corresponding reliability. If 

not found, the framework performs rule generation and validation and updates the database 

with the new performance data.

2.5.3 Reliability metric vs. classification based on association—Instead of 

support and confidence that are metrics of individual rules, our reliability metric is proposed 

to evaluate the quality of a decision list with all generated rules. One of the associative 

classification algorithms is Classification Based on Association (CBA), which was 

empirically found to be more accurate than C4.5 on a variety number of datasets [33]. CBA 

uses a heuristic method to construct a classifier in which all rules in the decision list are 

ordered decreasingly according to their confidence and support. When classifying a new 

tuple, the first rule satisfying the tuple is used to classify it. For example, a set of antecedent 

events E = {E1, E2, E3, E4} can generate a decision list of rules in which the first rule R1 

with antecedent events {E1, E2} has a high confidence of 99%. The CBA classifies a new 

tuple according to this rule. However, the decision list may contain other two rules R2 and 

R3 with antecedent events {E1, E3, E4} and {E1, E4} with confidence values of 40% and 

38%, respectively. If all rules in the decision list are similar to R2 and R3 that tend to have 

low confidence values, it may imply that the decision list generated is not reliable because 

not all generated rules can guarantee not only high but also consistent confidence values. 

The high confidence of R1 might happen by chance. In this situation, classifying a new tuple 

using R1 in CBA becomes problematic. Therefore, after generating a decision list with a set 

of rule, the use of our classification approach was expected to improve the performance 
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since it classifies a tuple according to the “voting-based” percentage of verified antecedents 

in the rules of a decision list, instead of only the top rule with the highest confidence.

3. RESULTS AND DISCUSSION

3.1 CHOA ICU database

After being approved by the Institutional Review Board (IRB), we imported the data in 

icuARM-II from the Children’s Healthcare of Atlanta (CHOA) pediatric ICU database. The 

imported data contained information collected in 5,739 ICU stays from 4,975 patients aged 

from birth to 21 years old in the year of 2013. The data can be categorized into four major 

categories, including visit information, procedures, laboratory testing, and microbiology 

testing. Other than visit information, all data was collected with timestamps, which enabled 

the mining of temporal association rules. Examples and number of records in each category 

are tabularized in Table 2.

3.2 Effect of rule components

3.2.1 Lab testing vs. two-hour ICU mortality—The prediction of the ICU mortality 

has been widely studied using conventional scales such as the admission-based APACHE-II 

[3] or the daily-based Sequential Organ Failure Assessment (SOFA) [7]. However, risk 

prediction models using laboratory (lab) testing are relatively rare even though they also 

frequently occur in the ICU setting [34]. Developing risk prediction models by including lab 

testing allows us to utilize hundreds of clinical attributes instead of a fixed number of items 

as in conventional scales (e.g., 12 routine physiologic measures and six basic scores in 

SOFA). Large volume of clinical attributes are fundamental for personalized risk prediction 

since they can comprehensively cover individual characteristics. Therefore, in this case 

study, we employed icuARM-II to demonstrate its ability of short-term (i.e., 2-hr) ICU 

mortality prediction based on personalized lab testing results.

The lab testing dataset in CHOA ICU database consists of more than three million records 

from more than one thousand tests. We selected the top 12 most counted tests and converted 

the numerical values into either abnormal or normal levels based on the suggested ranges. 

The total number of records in each test and those in each level are listed in Table 3. To 

predict the 2-hr ICU mortality based on personalized lab testing results, the rule was in the 

form of A ⇒ C: {EA | TA} ⇒ {Death | <2-hr}. The antecedent episode A represents a set of 

abnormal lab testing results EA that have been observed in the last time period with a length 

of TA to predict the Death event in the following two hours. The prediction possibility was 

then determined by the maximum confidence value of the generated rules in the decision list. 

Since the abnormality of a lab test can occur multiple times within a observation period, we 

simplified EA with a chain of ExN in which E was a lab testing item and N indicated its 

repeat. For instance, if a patient has had abnormal glucose level twice and abnormal 

creatinine level once in the past day, the rule was represented as {GLUx2, CREx1| <1 day} 

⇒ {Death| <2-hr}. Throughout the mining process in this case study, we apply Suppmin = 

0.5% to detect rare episodes and Confmin = 5% to capture the death possibility as low as 5%.
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3.2.2 Quality assessment of lab tests—Before mining rules for patients, we can 

assess and rank the reliability of individual lab tests in the prediction of 2-hr ICU mortality. 

Since a lab test can occur multiple times within an observation period, we first generated 

reliabilities of rules that share the same lab test but with repeats from one to a number N. 

Then we calculated the average of reliability values from these N rules for the overall quality 

of this lab test. For example, we assessed the quality of the glucose test in one day by 

calculating the average reliability value of rules {GLUxN | <1 day} ⇒ {Death | <2-hr} 

where N ranged from one to a certain repeat. Then we could change the glucose test to a 

creatinine test with the same range of repeat and compare its result with the glucose test. In 

addition, for each decision list generated given one lab testing item and a repeat, we 

compared the performance from our voting-based classification approach with it from the 

single rule-based approach in the CBA approach. We applied this quality assessment on the 

12 selected lab tests with ranges from one to 10.

The results of the quality assessment are shown in Figure 5. Generally, the performance of 

our classification approach outperforms CBA by comparing the reliability to the CBA’s 

AUC values. In addition, a prediction model should have at least 80% of AUC to be 

considered reliable according to medical standard [35]. The quality assessment results 

generated by our association-based classifier show that only three lab tests (i.e., arterial pH 

(APH), PO2 (PO2), and glucose (GLU)) were qualified for the 2-hr ICU mortality prediction 

if they have been observed individually within one day. Meanwhile, among all other nine lab 

tests with reliabilities <80%, total CO2 (CO2), arterial base excess (ABE), and creatinine 

(CRE) are the worst three lab tests for the prediction of 2-hr ICU mortality.

3.2.3 Interactions of lab tests—The assessment task allowed us to evaluate the quality 

of individual lab tests. However, in the real ICU setting, it is very common that patients 

receive different lab tests over the course of one day. Therefore, it is worth investigating the 

interaction among lab tests even though they may perform worse individually. We assumed 

that the possibility (i.e., confidence) of ICU mortality could increase when more abnormal 

lab test results had been observed. Additionally, the prediction reliability could also be 

improved if more lab tests (i.e., more information) were available.

To investigate the effect of lab testing interaction, we randomly selected four lab tests (i.e., 

CA, SOD, CO2, and ABE). The investigation started from the CA test and added other tests 

one-by-one. Each test was abnormal twice. Thus the four rules were compared:

{CAx2 |<1-day}⇒{Death| <2-hr}

{SODx2 + CAx2 |<1-day}⇒{Death| <2-hr}

{CO2x2 + SODx2 + CAx2 |<1-day}{Death | <2-hr}

{ABEx2 + SO2x2 + SODx2 + CAx2|<1-day}⇒{Death | <2-hr}

According to the results shown in Figure 6, if a patient was observed with abnormal ionized 

calcium twice (i.e., CAx2) in the past one day, the possibility of death in the following two 

hours was 5.0% with the prediction reliability (i.e., AUC) of 73.9%. Both the confidence and 

reliability increased monotonically when more abnormal tests were observed. If a patient 
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had twice as many abnormalities in all CA, SOD, CO2, and ABE in one day, the possibility 

of death in the following two hours increased to 14.9% with reliability of 90.2%. Therefore, 

our results verified our assumptions that the possibility (i.e., confidence) of 2-hr mortality 

was increased with interactions among more abnormal lab testing results, which also 

improved the reliability of the prediction.

3.2.4 Additional lab tests—So far a clinician can predict a patient’s short-term ICU 

mortality using the observed abnormal lab testing results. However, given this set of 

observed abnormalities, the clinician usually wants to determine what other abnormalities 

can be used to confirm the prediction and to avoid the increase of the possibility of death by 

giving proper treatments. For example, if a patient is observed with abnormal ionized 

calcium twice (CAx2) in the past 24 hours, according to the results of Section 3.2.3, we 

know that the possibility of death in the following 2-hr is 5.0% with the prediction reliability 

of 73.9%. We would like to decide which test is additionally necessary to better predict the 

short-term mortality for this patient and what the proper treatments can be offered to 

decrease the possibility. Assuming the remaining 11 lab tests other than CA are considered, 

we can evaluate the confidence and reliability values from 11 rules and each of which has 

CAx2 plus once of an abnormal lab test. According to Table 4, adding abnormal creatinine 

once (CREx1) to CAx2 can increase the confidence the most from 5.0% to 8.5% with 

reliability improved from 73.9% to 88.9%. Therefore, the clinician should order a lab test for 

creatinine to confirm and to provide proper treatments for its abnormality to avoid the short-

term mortality. Offering such information can prevent unnecessary lab tests that are ordered 

by default following clinical guidelines, instead of being driven by patient characteristics, to 

prevent high healthcare costs and human-based errors [36, 37].

3.2.5 Length of the observation period—The same set of abnormal lab tests observed 

in different lengths of observation periods may also be associated with different risks of 

mortality and/or the corresponding prediction reliabilities. To investigate the effect of 

observation length, we continued using all of the four lab tests (i.e., CA, SOD, CO2, and 

ABE) that were selected in the Section 3.2.3. Assuming each lab test has been observed 

abnormal twice, we consider the following five rules with five different observation lengths 

ranging from half day to four days:

{ABEx2 + SO2x2 + SODx2 + CAx2| <½-day} ⇒{Death | <2-hr}

{ABEx2 + SO2x2 + SODx2 + CAx2| <1-day}⇒{Death | <2-hr}

{ABEx2 + SO2x2 + SODx2 + CAx2| <2-day}⇒{Death | <2-hr}

{ABEx2 + SO2x2 + SODx2 + CAx2| <3-day}⇒{Death | <2-hr}

{ABEx2 + SO2x2 + SODx2 + CAx2| <4-day}⇒{Death | <2-hr}

The results in Figure 7 suggest that the same set of abnormal conditions happened more 

recently may be associated with a higher possibility of short-term mortality. If a patient has 

been observed abnormal in CA, SOD, CO2, and ABE that each has two occurrences in the 

past half day, the patient’s possibility of death in the following two hours is 16.2%, and the 

reliability of this prediction is 90.8%. If another patient had been observed with the same set 

of abnormality but in the past four days, the possibility of 2-hr mortality is 9.5% with 
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reliability of 83.4%. Therefore, our results show that abnormal conditions observed more 

recently may be associated with a higher chance of short-term mortality. In addition, a 

shorter observation period slightly improves the prediction reliability.

3.3 Discussion

Based on the results in Section 3.2, we can conclude that factors of the increase of 

abnormality repeat, interaction of different abnormalities, and decrease of the observation 

length all have positive impacts on the possibility of short-term ICU mortality and the 

corresponding prediction reliability.

We should note that all of the rules generated in Section 3.2 are examples to understand the 

influences of changes in the three aforementioned factors. Clinicians do not need to adopt 

these rules as generalized or predefined evidence for the decision making. Instead, based on 

a patient’s instant conditions, clinicians can construct a personalized antecedent episode and 

a target consequent episode with flexible time windows. In addition, in this case study we 

only used 12 lab-testing items to demonstrate the rule mining framework. The framework is 

actually capable of more than 5,000 lab tests, 1,000 microbiology tests, 250 clinical 

procedures, and more than 40 basic information regarding ICU visits. To enable the usability 

of icuARM-II, we have developed a friendly user interface to enable the real-world clinical 

decision making, which is introduced in the following section.

4. User Interface

The icuARM-II features a user interface that allows real-time ICU mortality prediction. The 

interface was implemented in MATLAB (MathWorks, Natick, MA). As shown on the top of 

Figure 8, the operation starts from constructing new events by selecting a category, choosing 

a procedure and event (e.g., lab measures) under the category, assigning the number of 

repeat of the event, specifying a length of the observation window, and providing the target 

length of prediction period. The constructed events represent the current antecedent episode, 

which are shown in the Current Episode panel of Figure 8. Users can also manage the 

current antecedent episode by adding or removing events. The Run button triggers the 

prediction process. Based on the given patient episode and target mortality prediction period, 

the interface displays the final possibility with the performance information, including the 

ROC curve and the reliability value.

5. CONCLUSION AND FUTURE WORK

In this paper, we propose an ICU decision support system, called icuARM-II, to provide 

flexible clinical risk prediction based on personalized temporal conditions. This study is an 

extension of our previous work on ICU data mining, which was restricted to non-temporal 

clinical data, using a newly developed pediatric ICU database from Children’s Healthcare of 

Atlanta (CHOA). We first introduced a scanning strategy to count temporal association rules. 

We then applied classification-based rule generation to produce a decision list. Given a 

decision list, we proposed a classification approach, using the principle of leave-one-out 

cross validation, to calculate a new reliability metric. The proposed framework was tested 

using the lab testing dataset for the prediction of short-term (i.e., 2-hr) ICU mortality. Our 
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results not only outperform conventional Classification Based on Association (CBA), but 

also suggest important usability regarding lab testing, including (1) quality assessment of 

individual tests, (2) evaluation of interactions among tests, (3) suggestion of additional tests, 

and (4) investigating the change of observation length. Featuring with interactive user 

interface, icuARM-II has demonstrated a new solution for real-time and reliable risk 

prediction using personalized clinical data.

While the current results of this study are promising, we also plan to improve icuARM-II in 

the following five directions. Firstly, we plan to compare the prediction performance of our 

rule mining framework to other classification-based temporal and sequential mining 

approaches that were designed to discover hidden relations between sequences and sub-

sequences of events. The target approaches include hidden Markov model (HMM) [38] and 

one-nearest neighbor classifier with semi-supervised time series classification [39]. We will 

also consider other metrics, such as classification-based calibration [40, 41], to evaluate and 

ensure the usefulness of the model. Secondly, other than lab testing results, we would 

incorporate variables from other categories in the CHOA ICU database, such as more 

comprehensive ICU stay information, microbiology testing, and procedures. By including 

this breadth of data, we may be able to better emulate many factors that impact each 

decision made by clinicians. Thirdly, the current icuARM-II only leverages data collected 

from 5,739 ICU visits during a one-year (i.e., 2013) period for the purpose of methodology 

development and evaluation. We will import more ICU data that can expand to 10 years back 

from now. This future work will improve the generalizability of our findings. Fourthly, 

icuARM-II still has a bottleneck with a long latency from giving input to obtaining results. 

Therefore, we are investigating solutions to improve icuARM-II’s entire efficiency, from 

rule generation to reliability assessment, which will be important after we import more ICU 

clinical data. Finally, we will include the prediction of other clinical risks (e.g., prolonged 

ICU stays and ventilator days) with better-designed user interface to maximize the potential 

of clinical decision support using icuARM-II.
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Figure 1. 
Contingency table of a temporal association rule A ⇒ C.
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Figure 2. 
Flow of backward and forward scanning (top) with examples of five different situations 

(bottom).
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Figure 3. 
Steps of the generation of performance data.
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Figure 4. 
Flow of the creation, storage, and retrieval of rule performance data.
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Figure 5. 
Average reliabilities (light gray) and CBA performance (black) of 12 selected lab tests.
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Figure 6. 
Effects of interactions among four lab tests.
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Figure 7. 
Effects of different observation lengths.
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Figure 8. 
The user interface of icuARM-II for ICU mortality prediction. It demonstrates the setting 

and the result of a rule: {ABEx2 + SO2x2 + SODx2 + CAx2 |<l-day}⇒ {Death| <2-hr}
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Table 1

Use cases and examples with different settings of TA and TC in temporal association rules

Setting Illustration Prediction Example

TA ≠ 0, TC ≠ 0 After finishing two treatments E1 and E2 in a period of TA, 
what is the possibility of the development of high heart 
rate (E3) and low arterial pH (E4) in the following TC?

TA = 0, TC ≠ 0 After taking a drug E1, what is the possibility of the 
development of high blood pressure (E2) and high 
creatinine level (E3) in the following TC?

TA ≠ 0, TC = 0 Upon finishing of two treatments E1 and E2 in a period of 
TA, what’s is the possibility of development of low pulse 
oximetry (E3) at the end of TA?

TA = 0, TC = 0 What is the possibility that low white blood cell counts 
(E1) coexists with low urine output (E2)?
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Table 2

Categories and examples of CHOA ICU Database

Category Measure Examples # of records

Visit Info. Demographics, admission/discharge time, birth weight/length, discharge destination, APGAR 1, 5, 
10 minutes score, ventilator days, financial class, PICU, NICU, CICU flags

5,738

Procedures* Oxygen supply, aerosol treatment, oxygen per shift, PH probe, pulse ox assessment, gastric pressure, 
suction, reactive protein, tobramycin peak

416,520

Lab Testing* Glucose, arterial PCO2/pH/PO2, oxygen saturation, calcium ionized, HCO3, creatinine, platelet 
count, potassium, prolactin, salicylates,

3,348,924

Microbiology Testing* Culture, specimen description, specimen source 87,843

*
Temporal data
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Table 3

Top 12 counted lab testing items in CHOA ICU database

Lab Item ID
# of Records

Normal Abnormal Total

Glucose GLU 19,793 38,828 58,621

Arterial PCO2 PCO2 26,898 22,348 49,246

Arterial pH APH 21,772 27,474 49,246

Arterial PO2 PO2 5,733 43,513 49,246

Ox Saturation OX 22,035 27,211 49,246

Ionized Ca CA 28,690 14,484 43,174

Potassium POT 24,232 16,693 40,925

Sodium SOD 24,870 14,854 39,724

Total CO2 CO2 42,898 6,348 49,246

Art. Base Excess ABE 11,198 14,502 25,700

Art. Base Deficit ABD 8,533 15,062 23,595

Creatinine CRE 18,607 3,263 21,870

Total 499,839
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Table 4

Effects of additional lab tests

1st Test 2nd Test Confidence Reliability

CAx2

∅ 5.0% 73.9%

GLUxl 5.2% 85.2%

PCO2xl 6.1% 88.1%

APHxl 6.2% 90.0%

PO2xl 5.7% 90.5%

OXxl 8.1% 85.6%

CO2xl 8.1% 81.4%

POTxl 5.6% 80.4%

SODxl 5.6% 76.2%

ABExl 5.0% 74.0%

ABDxl 6.9% 85.3%

CRExl 8.5% 88.9%
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