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Abstract

Signaling pathways play an important role in the cell’s response to its environment. Signaling 

pathways are often represented as directed graphs, which are not adequate for modeling reactions 

such as complex assembly and dissociation, combinatorial regulation, and protein activation/

inactivation. More accurate representations such as directed hypergraphs remain underutilized. In 

this paper, we present an extension of a directed hypergraph that we call a signaling hypergraph. 

We formulate a problem that asks what proteins and interactions must be involved in order to 

stimulate a specific response downstream of a signaling pathway. We relate this problem to 

computing the shortest acyclic B-hyperpath in a signaling hypergraph — an NP-hard problem — 

and present a mixed integer linear program to solve it. We demonstrate that the shortest hyperpaths 

computed in signaling hypergraphs are far more informative than shortest paths, Steiner trees, and 

subnetworks containing many short paths found in corresponding graph representations. Our 

results illustrate the potential of signaling hypergraphs as an improved representation of signaling 

pathways and motivate the development of novel hypergraph algorithms.

Index Terms

Hypergraphs; Integer linear programming; Systems biology; Signaling pathways; Wnt signaling

1 Introduction

CELLS respond to signals from their environment through signaling pathways composed of 

molecular reactions that start at membrane-bound receptors and terminate at transcription 

factors (TFs) that regulate downstream gene expression. Many types of reactions occur in 

signaling pathways, e.g., complex assembly and disassembly, activation or deactivation of 

one protein or complex by another protein or complex, and regulation of reactions by 

proteins/complexes, etc. Computational methods for reasoning about signaling pathways 

must be faithful to the complexity of reactions within them. Directed and undirected graphs 
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are the most pervasive representations of the structure of signaling pathways. However, 

graphs can only model interactions between pairs of molecules; thus they cannot accurately 

represent the manifold aspects of signaling pathways that involve coordinated activity of 

assemblages of more than two molecules [1], [2]. Directed hypergraphs and their relatives 

(reviewed in Section 2) are emerging as attractive alternatives to graphs. Unfortunately, 

directed hypergraphs continue to remain an underutilized representation for signaling 

pathways, despite the fact that hypergraph theory has been a well-established area of 

mathematics since the 1960s [3].

We recently highlighted the potential and power of hypergraphs to address questions such as 

pathway reconstruction, enrichment, and crosstalk [4]. Until now, methods to solve these 

problems have represented pathways simply as sets of proteins or as directed or undirected 

graphs. In previous work, we formally defined the signaling hypergraph as a powerful 

representation of signaling pathway structure. We used signaling hypergraphs to address two 

general classes of questions that may be posed on pathways [5]:

1. Is there a set of reactions that begins at protein A and terminate at protein B?

2. If we are given a set of reactions annotated to a specific pathway P and a 

comprehensive signaling network , can we identify un-annotated reactions in 

 that are likely to be in P?

We reduce these problems to that of computing hyperpaths in a signaling hypergraph. We 

consider B-hyperpaths, which generalize paths in a directed graph by accounting for the fact 

that a reaction can occur only if all its reactants are present. A B-hyperpath from node s to 

node t has a natural interpretation in signaling pathways: the hyperpath contains all the 

intermediate reactants and products needed to “reach” t from s. Unlike shortest paths in 

graphs, shortest B-hyperpaths may contain cycles (see Section 3). We restrict our attention to 

acyclic B-hyperpaths in analogy to shortest path and related algorithms (e.g., Steiner trees, 

which connect a subset of specified nodes using the smallest number of edges) on graphs, 

which return acyclic networks.

We make four contributions in this paper. First, we describe signaling hypergraphs [5] and 

B-hyperpaths and provide examples of these concepts. Second, we prove that computing the 

acyclic B-hyperpath with the smallest number of hyperedges is NP-complete, even in a 

restricted setting where hypergraphs have a bounded number of possible reactants and 

products involved in each reaction. Third, we prove that the mixed integer linear program 

(MILP) [5] returns the shortest acyclic B-hyperpath in a signaling hypergraph. Finally, we 

find shortest B-hyperpaths in signaling hypergraphs constructed from a signaling pathway 

database (summarized below). We present results demonstrating that subnetworks from 

graph representations fail to capture information provided by the computed shortest B-

hyperpath. Although notions such as B-hyperpaths have been available since the early 

1980s, to the best of our knowledge, this work is the first to modify and apply these ideas to 

answer very natural questions on signaling pathways.

We compute B-hyperpaths in signaling hypergraphs of varying sizes from the National 

Cancer Institute’s Pathway Interaction Database (NCI-PID) [6]. We focus on the Wnt 

signaling pathway, a well-studied pathway involved in development and often perturbed in 
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cancer [7]. Starting with the canonical Wnt signaling pathway, we identify acyclic B-

hyperpaths that end in different forms of β-catenin that correspond to the absence and 

presence of Wnt signaling, answering Question 1 above. We then explore Question 1 on a 

more comprehensive Wnt signaling pathway by finding acyclic B-hyperpaths that connect 

membrane-bound complexes to downstream target genes (TCF1 and LEF1). We show that 

the resulting B-hyperpaths are much more informative than paths, Steiner trees, and 

subnetworks containing many short paths on corresponding graph representations of the Wnt 

signaling pathway. Finally, we consider the annotated Wnt signaling pathway in the context 

of the entire NCI-PID dataset. To answer Question 2, we identify reactions that are not 

annotated to the Wnt pathway that connect it to the Androgen Receptor pathway.

2 Related Research

We discuss generalizations of signaling pathway graph representations and emphasize their 

strengths and limitations.

Representing complexes

Compound graphs permit a compound node to contain a set of nodes [8], e.g., a set of 

proteins in a complex. Similarly, metagraphs support scalable network structure by allowing 

metanodes to have a nested structure [9]. Compound nodes and metanodes may themselves 

be connected by edges. Similarly, undirected hypergraphs allow interactions among two or 

more entities [10]. Software that computes paths, loops, and motifs on compound graphs 

[11] and visualizes metagraphs [9] have accelerated the adoption of these representations.

Representing pathway directionality

A factor graph [12], [13] is a bipartite graph with partitions corresponding to molecules and 

to factors, which represent (potentially directed) reactions in a pathway. Factors are 

connected to the molecules that participate in the reaction. The PARADIGM software [13] 

uses probabilistic inference on factor graphs to estimate a pathway’s activities from high-

throughput data on molecular changes in cancer tissues. A Petri net [14], [15] is a directed 

bipartite graph with two types of nodes – places and transitions – and tokens on the places. 

In Petri net models of signaling pathways, places represent proteins, transitions represent 

reactions among proteins, and the number of tokens in a place represent the concentration of 

proteins. “Firing” a transition corresponds to redistributing the tokens based on certain rules.

Representing regulation

Influence graphs [16] are graphs where each edge has a sign describing one molecule’s 

affect on the other. More generally, logic models [16] define logic functions on hyperedges 

with potentially multiple nodes in the tail but a single node in the head. Multi modal 

networks [1] are generalizations of hypergraphs that include a single regulator for each 

hyperedge. Finally, dynamic models (often based on ordinary differential equations) can 

describe the control mechanisms within signaling pathways faithfully [17].

Ritz et al. Page 3

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Limitations of related work

A major limiting factor of compound graphs and metagraphs is that they connect pairs of 

entities, making interactions consisting of more than two entities (such as complex assembly 

and disassembly) difficult to model. Factor graphs and Petri nets are not ideal for 

generalizations of common graph-theoretic operations such as connectivity and paths, which 

is the focus of this paper. Influence graphs and logic networks represent protein regulation, 

but they operate only on the “active” forms of proteins. Moreover, it is unclear how they 

represent complex assembly/disassembly. Finally, the large amounts of experimental data 

needed by dynamic models in order to fit and tune parameters limits their scalability.

3 Definitions

3.1 Signaling Hypergraphs

Let V be a finite set of nodes. A directed hyperedge e is a pair (T(e), H(e)) where both the 

tail T(e) and the head H(e) are non-empty subsets of V. A directed hypergraph 

consists of a finite set V of nodes and a finite set E of directed hyperedges.  is a directed 

graph in the case where |T(e)| = |H(e)| = 1.

At first glance, directed hypergraphs seem sufficient for representing signaling reactions: 

each hyperedge consists of a set of reactants in the head and a set of products in the tail. 

However, many signaling reactions involve protein complexes, where a set of proteins act as 

a single unit in a reaction. Further, directed hypergraphs do not represent molecules that 

regulate a reaction (e.g., a kinase that phosphorylates, and subsequently activates, a 

substrate).

To model complexes, we define a hypernode1 as a set of nodes u ⊆ V that act together as a 

single unit2. A hypernode u may contain a single node, e.g., to represent a protein that acts 

on its own. We use  to denote the set of hypernodes, assuming that each node in V appears 

in some hypernode in . We define a signaling hyperedge e to be a pair (T(e), H(e)) where 

both the tail T(e) and the head H(e) are non-empty subsets of , i.e., each member of the tail 

or the head is a hypernode.

To model positive regulation, we represent each positive regulator as a hypernode. If a 

hypernode u is a positive regulator for a reaction, we add u to the tail of the signaling 

hyperedge representing that reaction. Signaling hyperedges can represent the logic of 

multiple positive regulators, e.g., if all positive regulators must be present for the reaction to 

occur, we add all the regulators to the tail of the signaling hyperedge. Alternatively, if any of 

the positive regulators can trigger the reaction, we can make copies of the signaling 

hyperedge, one for each regulator.

We define a signaling hypergraph , where V is a finite set of nodes,  is 

a set of hypernodes and  is a finite set of signaling hyperedges (Figure 1(a)). When it is 

1Hypernodes may be referred to as undirected hyperedges, compound nodes [8], [11], or metanodes [9] in the literature.
2We depart from the standard (uppercase) notation of a set because we consider a hypernode to be a single entity.
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clear from the context, we will refer to signaling hyperedges and signaling hypergraphs 

simply as hyperedges and hypergraphs, respectively.

Scope of signaling hypergraph representations—Signaling hypergraphs generalize 

earlier research by simultaneously representing reactions among more than two molecules, 

complexes, and combinatorial positive regulation. They also model complex rearrangement 

and post-translational modifications. Signaling hypergraphs do not yet represent negative 

regulation or more complex regulatory logic.

3.2 B-Hyperpaths

There are numerous ways to define paths in directed hypergraphs [18], [19]. In this section, 

we describe how to extend these ideas to signaling hypergraphs. One intuitive notion is a 

straightforward generalization of a path in a directed graph. An s-t path P (s, t) is an 

alternating sequence of hypernodes and hyperedges starting at hypernode  and 

terminating a hypernode , i.e.,

where s = u1, t = uk, and for every 1 ≤ i ≤ k, ui ∈ T(ei) and ui + 1 ∈ H(ei) [18]. We say that a 

path P(s, t) is simple if it contains no repeated hypernodes or hyperedges and that P(s, t) is a 

simple cycle if u1 and uk are both in the tail of e1. We say that  is acyclic if it does not 

contain any simple cycles for any pair of hypernodes s, .

Since simple paths report an alternating sequence of hypernodes and hyperedges, they do not 

capture all the hypernodes associated with each hyperedge in the path. Thus, they are not 

useful for representing sequences of signaling reactions that involve multiple reactants 

and/or products. We use formalisms developed in the hypergraph literature [18], [19] to 

describe the notion that in order for all products of a signaling reaction to be present, all 
reactants must be present.

For a hypernode , the backward star BS(u) of u is the set of hyperedges e for which u 

∈ H(e). Given a hypergraph  and a hypernode  we say that hypernode 

 is B-connected to s in  if either (i) u = s or (ii) there exists a hyperedge e ∈ BS(u) 

such that, for all w ∈ T(e), w is B-connected to s. For example, in Figure 1(b), s is B-

connected to itself. The backwards star of u3 is {e2}; since the tail of e2 consists of s, then u3 

is B-connected to s. In Figure 1(c), u6 is B-connected to s because BS(u6) = {e4}, and each 

of the hypernodes in the tail of e4 are B-connected to s. We use the notation  to 

denote the set of hypernodes that are B-connected to s in  (Figure 1(d)). Note that the 

inclusion of positive regulators in the tail modifies the definition of B-connectedness as 

follows: in order for all products of a signaling reaction to be present, all the reactants and 

all the positive regulators in the tail of the reaction must be present.

A sub-hypergraph  of  consists of a subset of hypernodes  and 

a subset of hyperedges  of , with the property that for every hyperedge , 
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the hypernodes in T(e) and H(e) are members of . Given  and two hypernodes s, 

, an s-t B-hyperpath Π(s, t) is a sub-hypergraph of  such that  and Π(s, 
t) is minimal with respect to the deletion of hypernodes and hyperedges (Figure 1(e,f)). 

Observe that t must be B-connected to s using only the hypernodes and hyperedges in Π(s, 
t). Further, the set of hypernodes B-connected to s in Π(s, t) are precisely the hypernodes 

 in Π(s, t).

Lemma 1—All hypernodes  in B-hyperpath Π(s, t) are B-connected to s, i.e., 

.

Proof: By the definition of a B-hyperpath, hypernode t is in Π(s, t) and t is B-connected to s 

in Π(s, t). Suppose there is a hypernode  that is not B-connected to s. Hypernode u 
is not needed to establish that t is B-connected to s, and we can remove u from Π(s, t). 
However, removing u from Π(s, t) contradicts the fact that Π(s, t) is minimal with respect to 

the deletion of hypernodes. Thus, all hypernodes  are B-connected to s are necessary 

to establish that t is B-connected to s. □

From this lemma, we see that the hypernodes  of any B-hyperpath Π(s, t) must be a 

subset of all hypernodes B-connected to s.

Corollary 2—If Π(s, t) is a B-hyperpath in , then .

Identifying the set of hypernodes that are B-connected to s can be achieved with a particular 

hypergraph traversal (Algorithm “B-Visit” in [18]).

3.3 The Shortest Acyclic B-Hyperpath Problem

There may be many s-t B-hyperpaths in a hypergraph . We wish to find a B-hyperpath 

that represents a minimal set of reactions that lead from s to t (e.g., Figure 1(f)). In other 

words, we seek to compute a B-hyperpath Π*(s, t) of  with the smallest number of 

hyperedges:

(1)

In Equation (1), Π ranges over all sub-hypergraphs with the property that t is B-connected to 

s in Π. By definition, all s-t B-hyperpaths are considered in this set of sub-hypergraphs. Note 

that we can assign costs to the hyperedges and compute the B-hyperpath with the smallest 

cost. In this work, we simply count hyperedges since we construct hypergraphs from 

manually-curated datasets (Section 4.4).

Finding a B-hyperpath Π*(s, t) that minimizes Equation (1) is NP-hard [18], even when 

is a directed hypergraph (i.e., each hypernode contains exactly one node). However, since 

our hypergraphs represent signaling pathways, we can consider a special case of signaling 

hypergraphs. Reactions in signaling pathways are unlikely to involve a very large number of 
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proteins. Thus, we are interested in computing the shortest B-hyperpath in k-hypergraphs, 

where each hyperedge has at most k hypernodes in its tail at most k hypernodes in its head.

We say that a B-hyperpath Π(s, t) is acyclic if it contains no simple cycles. Note that B-

hyperpaths may be acyclic, even though they are minimal with respect to deletion of 

hypernodes and hyperedges (Figure 2). These simple cycles may also occur in the shortest 

B-hyperpath Π*(s, t) of a hypergraph. Thus, we restrict our attention to acyclic B-

hyperpaths, in an analogy to computing shortest paths on graphs (which are always acyclic).

We now show that computing the shortest acyclic B-hyperpath in a k-hypergraph is NP-hard. 

We first prove the NP-completeness of the corresponding decision problem.

Theorem 1—Given a k-hypergraph  with k ≥ 3 and s, , finding an 

acyclic B-hyperpath Π(s, t) with l or fewer hyperedges is NP-complete.

Proof: We prove the theorem by a reduction from Minimum k-Set Cover. Let A = {a1, …, 

an} be a set of n elements, and let Q = {Q1, …, Qm} be a set of m subsets of A (i.e., Qi ⊆ A) 

such that |Qi| ≤ k for all subsets Qi ∈ Q and . Given A, Q, and l, a solution to the 

Minimum k-Set Cover Problem consists of selecting a subset Q′ of Q with cardinality at 

most l that covers all elements in A (i.e., ).

We first define a k-hypergraph  given an instance of Minimum k-Set Cover 

(A, Q, l) (Figure 3). Let c = ⌈logk n⌉ be the smallest integer such that kc ≥ n. We will first 

define the hypernode set . Without loss of generality, all hypernodes in  are single 

nodes. consists of five different types of hypernodes (Figure 3):

• A source hypernode s and a target hypernode t

• n hypernodes denoting the elements A

• kc − n “dummy” hypernodes D

•
 “internal” hypernodes B

Taken together, {A ∪ D ∪ B ∪ {t}} comprise a perfect k-way tree with leaves {A ∪ D } 

rooted at t. We define three distinct classes of signaling hyperedges (Figure 3):

• Hyperedges from sets. For every set Qi ∈ Q, we connect the source hypernode s 
to the elements in A that are members of Qi: {({s}, Qi) ∀ Qi ∈ Q}.

• “Dummy” hyperedges. We connect s to each of the kc − n “dummy” leaves 

using a single hyperedge: {({s}, {di},∀ di ∈ D}.

• k-way tree hyperedges. We add signaling hyperedges to connect the leaves in 

the k-way tree to the root t through the internal hypernodes bi ∈ B. Each 

hyperedge contains exactly k hypernodes in the tail and one hypernode in the 

head. There are  such hyperedges, since the internal hypernodes B 
and t each have a single incoming hyperedge (Figure 3).
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This construction clearly takes polynomial time, producing a k-hypergraph with 

hypernodes and  hyperedges.

We now show that there exists a B-hyperpath Π(s, t) with no more than j hyperedges if and 

only if there exists a cover Q′ of A whose cardinality is less than or equal to l. First, suppose 

a cover Q′ of cardinality l exists. Define a sub-hypergraph  of  that includes all the 

hypernodes in , all “dummy” hyperedges, all hyperedges in the k-way tree, and the l 
hyperedges that correspond to the sets in Q′. Each hypernode ai is B-connected to s because, 

by definition, there is some set in Q′ that covers ai and the corresponding hyperedge in 

only contains s in the tail. Additionally, each “dummy” hypernode is B-connected to s by 

means of a “dummy” hyperedge in . Thus, all the leaves of the k-way tree are B-

connected to s. By construction, since all the k-way hyperedges are in , t is B-connected 

to s if all leaves in the k-way tree are B-connected to s. Thus, t is B-connected to s in . 

All hypernodes in  are required to establish B-connectivity; however, there may be some 

sets in Q′ that are not necessary. We remove the corresponding hyperedges from  until 

there is no hyperedge from the set Q′ that we can remove and still have t be B-connected to 

s in . Since and  is minimal w.r.t. the deletion of hypernodes and hyperedges, and t is 

B-connected to s in , then  must be a B-hyperpath Π(s, t) with at most 

 hyperedges.

For the opposite direction, suppose there exists a B-hyperpath Π(s, t) with j hyperedges from 

s to t. By the construction of , all n hypernodes representing the elements in A must be in 

the hyperpath. Thus, for each element ai, there must be a hyperedge in BS(ai) that is in Π(s, 
t). Define the heads of these hyperedges as the subsets Q′ of s; Q′ covers all elements in A. 

Since Π(s, t) is minimal, there is no subset in Q′ that could be removed and still cover all 

elements. Thus, Q′ is a cover of A with  hyperedges. □

Since the above decision problem is NP-complete, the corresponding optimization problem 

is NP-hard.

Corollary 3—Given a k-hypergraph  with k ≥ 3 and s, , finding the 

shortest acyclic B-hyperpath Π*(s, t) is NP-hard.

3.4 Properties of Acyclic B-Hyperpaths

In this section, we state several properties of acyclic B-hyperpaths which we will use in 

Section 4 to prove the correctness of our algorithm. Given a hypergraph, an ordering 
 of the hypernodes in  is function that maps each hypernode in  to a real 

number. We say that o is a valid ordering with respect to , if for every , and for 

every pair of hypernodes u ∈ T(e) and w ∈ H(e), o(u) < o(w) [20]. An ordering of the 

hypernodes in  is analogous to a topological ordering on a directed acyclic graph. Next, 

we relate a valid ordering and the acyclicity of a hypergraph .
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Lemma 4—Hypergraph  has a valid ordering of the hypernodes if and only if 

it is acyclic.

Proof: We first prove by contradiction that if  has a valid ordering of the hypernodes, then 

it is acyclic. Suppose there is a simple cycle P = (u1, e1, u2, …, uk−1, ek−1, uk) where uk ∈ 

T(e1). Let w be the hypernode in P with the smallest order value, i.e., . 

Consider the hyperedge e in P such that w ∈ H(e). Since P is a simple cycle, there must be 

some hypernode uj in P where uj ∈ T(e). By the definition of a valid ordering, o(uj) < o(w), 

which contradicts the fact that w minimizes the order function over the hypernodes in P. 

Therefore,  must be acyclic.

Now, we show that if  is acyclic, it has a valid ordering with a constructive proof. We 

build a directed graph , from  where  is exactly the set of hypernodes in 

and  consists of all pairs of hypernodes in T(e) and H(e) for each hyperedge in , i.e., 

 Since there are no simple cycles in , G is a directed acyclic 

graph with a topological ordering  such that a(u) < a(w) for all (u, w) in . We will 

prove that a is also a valid ordering of the hypergraph . Suppose there are two hypernodes 

u and w such that a(u) < a(w) in the topological ordering of G, but there exists a hyperedge 

 where w ∈ T(e) and u ∈ H(e). By construction, (w, u) must be an edge in G, which 

contradicts the fact that a defines a topological ordering of G. Therefore, a is a valid ordering 

for . □

The following lemma states that for an acyclic hypergraph , there must be at least one 

hypernode that does not appear in the head of any hyperedge.

Lemma 5—Given an acyclic hypergraph  there exists some hypernode 

such that BS(u) = ∅.

Proof: Suppose every hypernode  is in the head of some hyperedge in , i.e., BS(u) 

= ∅ for every hypernode . We will establish a contradiction by constructing a simple 

cycle in . Starting at any hypernode w, we construct a simple path P iteratively as follows. 

We set w to be a hypernode in P. Since BS(w) = ∅, there must be a hyperedge e such that w 
∈ H(e). We prepend e to P. Next, we choose any hypernode y ∈ T(e) and prepend y to P. 

Since BS(y) = ∅, we can repeat this process with y, thereby alternatively prepending 

hyperedges and hypernodes to P. Since  is finite, this process will result in the addition of 

a hyperedge f to P such that a hypernode in the tail of f is already in P. At this point, P 
contains a simple cycle, contradicting the fact that  is acyclic. Therefore, there is at least 

one hypernode in  that is not in the head of any hyperedge in . □

The above lemmas concern acyclic hypergraphs; we now turn our attention towards acyclic 

B-hyperpaths. Since there are no simple cycles in acyclic B-hyperpaths, we can characterize 

the “beginning” of the B-hyperpath as the set of hypernodes that have an empty backward 

star. The final claim states that for an acyclic B-hyperpath Π(s, t), s is the only hypernode in 

Π(s, t) that does not occur in the head of any hyperedge in Π(s, t).
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Lemma 6—Given an acyclic B-hyperpath Π(s, t), s is the only hypernode that has an empty 

backward star (i.e., BS(s) = ∅).

Proof: Since Π(s, t) is a B-hyperpath, all the hypernodes in Π(s, t) are B-connected to s. By 

definition of a B-connection, all nodes except for s in Π(s, t) must have a hyperedge in the 

backward star whose tails are B-connected to s, i.e, BS(v) = ∅ for every node v ∈ V except 

for s (the base case). Since there must be at least one node that has an empty backward star 

(by Lemma 5), then this node must be s. □

4 Algorithms

We first present the algorithm for computing shortest acyclic B-hyperpaths from previous 

work [5] and then prove the algorithm’s correctness using the lemmas in Section 3.4. We 

describe our approach to computing minimum s-t B-hyperpaths in two parts. First, we 

develop an MILP to compute an acyclic B-connected sub-hypergraph that contains s and t. 
Although we can compute such a sub-hypergraph in polynomial time [21], we present an 

MILP so that we can augment it with an objective function in the second part to solve the 

NP-complete problem of computing shortest B-hyperpaths.

4.1 Computing Acyclic B-Connected Sub-Hypergraphs

Given a hypergraph  and two hypernodes s and t in , we seek to compute an acyclic 

sub-hypergraph  that contains s and t such that , i.e. t is B-connected to s in 

. Note that  may not be an s-t B-hyperpath because it is not necessarily minimal.

We introduce binary (0-1) variables αu for every hypernode  and αe for every 

hyperedge  The output sub-hypergraph  is defined by the values of these variables: 

the hypernode u (resp., hyperedge e) is in  if and only if αu = 1 (resp., αe = 1). Given a 

setting of the variables in α, we will henceforth refer to the corresponding sub-hypergraph as 

 and to the hypernodes and hyperedges in this sub-hypergraph as  and , 

respectively. The α variables must satisfy the following linear constraints:

(2)

(3)

(4)
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(5)

These constraints have the following meaning. With the exception of hypernode s, every 

hypernode u such that αu = 1 has at least one incoming hyperedge e such that αe = 1 

(constraint (2). For every hyperedge e such that αe = 1, all hypernodes in the tail (constraint 

(3)) and the head (constraint (4)) must have α values of one. Finally, we require that t is in 

 (constraint (5)).

Together, constraints (2)–(5) seek to ensure that t is in  and that all the hypernodes in 

 are B-connected to s. However, a sub-hypergraph  that contains a simple cycle 

may satisfy these constraints without ensuring that t is not B-connected to s (Figure 4). To 

address this issue, we introduce a real-valued order variable ou for each . We ensure 

that o defines a valid ordering with respect to  through the following constraint, which 

ensures that for each edge in , every hypernode in the tail of the edge must have an 

order value smaller than the order value of every hypernode in the head of the edge:

These constraints apply only to those edges e where αe = 1. Furthermore, linear programs 

require weak inequalities to define boundary regions. To address both points, we introduce 

two constants: ε, which takes a very small value and C, which takes a very large value. The 

following linear constraint applies to all edges in :

(6)

Equation (6) is only enforced when αe = 1 for hyperedge e; when αe = 0, the large constant 

C dominates the right hand side, trivially satisfying the inequality. We relax the strict 

inequality by requiring that ow is at least ε larger than ou.3

Given a hypergraph  and two hypernodes s and t in , we say that an assignment of α 
and o variables is feasible if it simultaneously satisfies the constraints in Equations (2)-(6). 

Given a feasible assignment, we make a number of claims about the resulting sub-

hypergraph  using the lemmas presented in Section 3.4.

Lemma 7—A feasible assignment of the constraints in Equations (2)-(6) produces a sub-

hypergraph  with the following properties.

1.  is acyclic.

2. There exists a hypernode u  with an empty backward star, i.e., BS(u) = ∅.

3. The only hypernode with an empty backward star in  is s.

3To reduce the search space for the MILP, we bound the order variables so that ou ∈ [0, 1] for all hypernodes u ∈ .
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4. Hypernode s has the smallest value for the order variable in , i.e., 

.

Proof: We prove the claims in order.

1. Equation (6) ensures that there is a valid ordering of the hypernodes in ; 

thus  is acyclic by Lemma 4.

2. Since  is acyclic, then there must be some hypernode  where 

BS(u) = ∅ by Lemma 5.

3. Constraint (2) requires that every hypernode in  except for s has at least one 

hyperedge in its backward star. Thus, the only hypernode with an empty 

backward star must be s.

4. For every hypernode , we compute a simple path P by prepending 

alternate hyperedges in the backward star to the current hypernode and 

hypernodes in the tail of that hyperedge, starting at u. The path P will terminate 

at s because  is acyclic and s is the only hypernode with an empty 

backward star. Since every edge in  satisfies constraint (6), we see that ou > 

os for all hypernodes u. Thus, s has the smallest order variable value in . □

From these claims, we prove the following lemma:

Lemma 8—All hypernodes in  are B-connected to hypernode s in , i.e., 

.

Proof: We will use strong induction on the order variables. Without loss of generality, 

rename the hypernodes in  by increasing value of the order variables, so that , 

for all 1 ≤ i < n, where . Note that s = u1 by Lemma 7. By the definition of B-

connected, s is B-connected to itself, establishing the base case. Now consider hypernode u2. 

Equation (2) requires that u2 must have at least one hyperedge e in its backward star in 

. Constraint (6) requires that if ui is a hypernode in the tail of e, for some value of i, 
then . The only possible value of i is 1. Thus, there must exist a hyperedge e such 

that T(e) = {s} and u2 ∈ H(e), proving that u2 is B-connected to s in .

For the inductive hypothesis, we assume that hypernodes u1, u2, …, uk−2, uk−1 are B-

connected to s in . To prove that uk is also B-connected to s in , we must show 

that there exists a hyperedge  such that uk ∈ H(e) and every hypernode W ∈ T(e) is 

B-connected to s. Constraint (2) requires that there exists some hyperedge  that is in 

the backward star of uk. Now constraint (3) applies to e. Therefore, all hypernodes in T(e) 

are in . Finally, Equation (6) requires that for any hypernode ui in T(e), , i.e., i 
< k. Therefore, by the inductive hypothesis, each hypernode in T(e) is B-connected to s. 

Together, these statements establish that hypernode uk is B-connected to s. □
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Observe that t is in  because we fix αt to 1 in constraint (5); thus, we will consider t in 

the inductive proof, leading to the following corollary.

Corollary 9—Hypernode t is B-connected to hypernode s in , i.e., .

From the proof of Lemma 8, we also see that there must be a hyperedge in  connecting 

s to u2 (and possibly other nodes). Thus, there is at least one hyperedge e in  such that 

hypernode s ∈ T(e), which allows us to prove the following lemma.

Lemma 10—  contains an acyclic s-t B-hyperpath as a sub-hypergraph.

Proof: Hypernode t is B-connected to hypernode s in  by Corollary 9. However, 

 might not be an s-t B-hyperpath because it is not necessarily minimal with respect to 

the deletion of hypernodes and hyperedges. If this is the case, there must be some 

hyperedges that can be removed from  such that t is still B-connected to s. We can 

greedily remove such hyperedges from , ensuring after each removal that t is B-

connected to hypernode s in the resulting sub-hypergraph. We stop this process when no 

such hyperedge remains. We also delete any hypernodes that are incident only on the deleted 

hyperedges. Since  is acyclic (by Lemma 7), the resulting sub-hypergraph of  is 

also acyclic. Thus, the final sub-hypergraph produced by this process is an acyclic s-t B-

hyperpath. □

The previous lemmas establish that if the MILP has a feasible solution, then  is 

acyclic, contains both s and t, and that all hypernodes in  are B-connected to s in 

. Moreover,  contains an acyclic s-t B-hyperpath. The next lemma establishes 

the inverse property: if the hypergraph  contains an acyclic s-t B-hyperpath, then the 

MILP has a feasible assignment.

Lemma 11—If  contains an acyclic B-hyperpath ), then there is 

a feasible assignment where .

Proof: We construct an assignment that corresponds to Π(s, t). We first define an assignment 

A of the α variables as follows:

Note that the sub-hypergraph  induced by A is exactly Π(s, t). We show that A satisfies 

constraints (2)-(5). Equation (5) is satisfied because hypernode t is in Π(s, t); thus we have 

αt = 1. We now satisfy Equations (2)-(4).

The variables αu in assignment A that are 0 trivially satisfy Equation (2); we focus on the 

variables αu that equal 1 (e.g., ). Every hypernode  is B-connected to s 
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in Π(s, t); thus, there is at least one hyperedge in BS(u) that is also in Π(s, t). As a result, if 

αu = 1 for a hypernode u, then Σe∈BS(u) αe must be at least 1 and Equation (2) is satisfied.

The variables αe in assignment A that are 0 trivially satisfy Equations (3) and (4); we focus 

on the variables αe that equal 1 (e.g., ). Suppose Equation (3) or (4) is not satisfied for 

some hyperedge e in Π(s, t). That is, at least one hypernode in the tail or the head of e is not 

in Π(s, t). The definition of a sub-hypergraph  of  states that for every hyperedge 

, all hypernodes in T(e) and H(e) must be in . Since Π(s, t) is a sub-hypergraph 

of , we have a contradiction, so Equations (3) and (4) must be satisfied.

Finally, we must ensure that there is an assignment of order variables that satisfies Equation 

(6). We use the fact that a valid ordering  of the hypernodes in Π(s, t) exists 

because it is acyclic (by Lemma 4). Assign the order variables the valid ordering function 

for ; ou = o(u) for all hypernodes . The values for the other order variables 

may be arbitrarily set. Equation (6) is trivially satisfied when αe = 0; for the case when αe = 

1, the valid ordering ensures that o(u) < o(w) for all (u, w) ∈ {T (e) × H(e)}. Thus, the order 

variables ou and ow will satisfy Equation (6) for all u ∈ T (e) and w ∈ H (e) for all 

. □

Lemmas 10 and 11 collectively establish that a feasible assignment of the constraints in 

Equations (2)-(6) exists if and only if  contains an acyclic B-hyperpath Π(s, t).

4.2 Computing Shortest Acyclic B-Hyperpaths

We now augment the MILP developed so far with an objective function in order to compute 

a shortest acyclic s-t B-hyperpath Π*(s, t), i.e., one that minimizes Equation (1). We 

compute an assignment of variables that solves the following optimization problem:

(7)

The following theorem captures our main result.

Theorem 2—Given a hypergraph  and two hypernodes s, , let  be 

the sub-hypergraph of  that minimizes the objective function in Equation (7)  is a 

shortest acyclic s-t B-hyperpath Π*(s, t) in .

Proof: It suffices to prove that  is acyclic, that , and that  is 

minimal with respect to the deletion of hypernodes and hyperedges. Lemma 7 shows that 

 is acyclic. Hypernode t is B-connected to s in  by Corollary 9; thus 

.

To prove minimality, we begin with hyperedges. Suppose there exists a hyperedge 

that, when removed, produces a sub-hypergraph  of  where t remains B-connected 

to s. The cost of  is less than the cost of , which contradicts the fact that  is 
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the sub-hypergraph of  that minimizes the objective function in (7). Thus,  is 

minimal with respect to the deletion of hyperedges.

We now prove minimality with respect to hypernodes. Hypernodes incident on a hyperedge 

in  cannot be removed due to the definition of a sub-hypergraph. Thus, a hypernode in 

 can only be removed from  only if it is not incident on any hyperedges in . 

Every hypernode other than s in  is in the head of at least one edge in ; hence, such 

a hypernode cannot be present in . Since  is acyclic, there must be a hypernode 

with an empty backward star and it must be s (by Lemma 7), so s cannot be deleted from 

 either. Thus,  is minimal with respect to the deletion of hypernodes.

Thus, the sub-hypergraph  that minimizes the objective function (7) is indeed an 

acyclic s-t B-hyperpath Π(s, t). The value of the objective function for Π(s, t) is | Π(s,t)| 
because αe = 1 for all e ϵ EΠ(s,t). Therefore, Π(s, t) = Π*(s, t) has the smallest number of 

hyperedges over all acyclic s-t B-hyperpaths in . □

4.3 Conversion to Graph Representations

For the purpose of comparing signaling hypergraphs to graphs, we convert each signaling 

hypergraph  to two different graph representations (Figure 5). First, we build a 

directed graph with complexes  whose nodes are the hypernodes in  and 

where  consists of all pairs of hypernodes in the tail and head of each hyperedge in , 

i.e., . Note each edge in connects exactly two hypernodes 

(Figure 5B). The graph with complexes is akin to a compound graph, except that it does not 

explicitly represent the nested structure of complexes. However, it is not difficult to compute 

this structure from the hypernodes.

Second, we convert the graph with complexes GC into a graph G = (V, EG) (Figure 5C). The 

nodes of GC are identical to the set of hypernodes of . The edges in EG are the union of 

two sets of edges: (a) For each hypernode u in , we connect all pairs of nodes in u by an 

undirected edge, corresponding to the common practice of representing a complex by a 

clique in a graph. (b) For each edge (u, v) in GC, we connect every node in the hypernode u 
to every node in the hypernode v by a directed edge. Finally, we replace every undirected 

edge by two directed edges.

4.4 NCI-PID Pathways

NCI-PID [6] contains curated human pathways that include biochemical reactions, complex 

assembly, cellular compartment transport, transcriptional regulation, and regulation of 

biological processes. We focused on the Wnt signaling pathway, in part due to its central role 

in development and a number of cancers.

We automatically constructed three signaling hypergraphs by combining different sets of 

signaling pathways annotated in NCI-PID: a small Wnt signaling pathway, a large Wnt 

signaling pathway, and the entire set of all NCI-PID pathways. The small Wnt signaling 

pathway consisted of the union of two NCI-PID pathways: “degradation of β-catenin” and 
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“canonical Wnt signaling”. The large Wnt signaling pathway included four additional NCI-

PID pathways: “noncanonical Wnt signaling,” “Wnt signaling network,” “regulation of 

nuclear β-catenin” and “presenilin action in Notch and Wnt signaling”, which corresponded 

to non-canonical branches of Wnt signaling. The NCI-PID pathways are freely available in 

BioPAX format [22], and we processed them using an in-house parser built upon PaxTools 

[23]. Signaling hypergraphs do not currently support negative regulation; thus negative 

regulators were ignored (Table 1). NCI-PID represents complexes as sets of unique NCI-PID 

protein IDs; thus we were able to extract complexes and parse them as hypernodes. Multiple 

forms of the same protein may be present with attributes such as compartmentalization, 

activation, and post-translational modifications (PTMs) such as phosphorylation and 

ubiquitination. We treated each variant as a distinct entity. We used this information to 

analyze and visualize our results, as the reader can see in the figures in Section 5.

Table 1 displays statistics on these three sets of pathways when represented as signaling 

hypergraphs  and upon conversion to graphs with complexes GC and graphs G. There are 

at most ten hypernodes in the tail or head of any hyperedge (“Largest k” row in Table 1), 

demonstrating that our assumption of k-hypergraphs with a small constant k is reasonable in 

Theorem 1 and Corollary 3. Note that the nodes in GC are exactly the hypernodes in , and 

the nodes in G are exactly the nodes in ; however the number of edges vary considerably 

between representations. For the full NCI-PID database, the number of edges in Gc is twice 

the number of signaling hyperedges in ; the number of edges in G is about five times as 

many. These statistics suggest that the information loss incurred upon making these 

conversions of signaling hypergraphs is accompanied by a significant inflation in the number 

of edges.

5 Results

Given a signaling hypergraph  and two hypernodes s, t ∈ , we wished to 

compute s-t B-hyperpaths with the smallest number of hyperedges in . We outline the 

general procedure for computing B-hyperpaths in  in Algorithm 1. Corollary 2 states that 

any B-hyperpath must contain hypernodes that are B-connected to s. Thus, we first 

computed all hypernodes that were B-connected to s in  [18] and the sub-hypergraph 

of  induced by these hypernodes, returning an infeasible solution if t was not B-connected 

to s (lines 1-5).  may be considerably smaller than  after this step. We then solved for 

variables α and o variables in  using the MILP that optimizes Equation (7) (Section 4), 

and stored the optimal objective (lines 6-7). Since there may be many B-hyperpaths with the 

same number of hyperedges, we iteratively solved the MILP after adding a constraint that 

forced a new B-hyperpath (line 11). We returned all the B-hyperpaths with the smallest 

number of hyperedges.

We applied this procedure to signaling hypergraphs as well as their graph-with-complexes 

and graph counterparts. We acknowledge that the minimal acyclic B-hyperpath path problem 

can be solved in polynomial time using Dijkstra’s algorithm. However, we continued to use 

the MILP approach to ensure uniformity of analysis across all inputs.
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5.1 Small Wnt Signaling Pathway

The NCI-PID pathway describing the degradation of β-catenin terminates at ubiquitinated β-

catenin. The NCI-PID canonical Wnt signaling pathway terminates at nuclear β-catenin, 

which is a transcriptional co-regulator. To answer Question 1 from the introduction, we 

asked what reactions terminate at the (a) ubiquitinated form of β-catenin and (b) the nuclear 

form of β-catenin.

Algorithm 1

RunMILP(ℋ,s,t)

Require: ; 

1: ℬℋ(s) := Set of hypernodes in s that are B-connected to s

2: ℋ′ := sub-hypergraph of ℋ induced on ℬℋ(s)

3: if t is not in ℬℋ(s) then

4:  return Infeasible Assignment

5: end if

6: α, o := Solve Equation (7) on ℋ′, s, and t

7: opt := |ℰ(α)|

8: R := Ø

9: while |ℰ(α)| = opt do

10:  R := R ∪ ℋ(α)

11:

 Add constraint such that .

12:  α, o := Re-solve the MILP on ℋ′, s, and t

13: end while

14: return R

We made the following modifications to the small Wnt signaling pathway before applying 

the MILP. We introduced a source hypernode s and connected s to 21 hypernodes with an 

empty backward star. We also connected s to a hypernode representing a complex of APC, 

Axin1, and β-catenin; this complex is part of a cycle involving cytoplasmic β-catenin, and 

including the hypernode in the set of sources “breaks” this loop. Finally, we removed one 

self-loop that contained the same form of β-catenin in the head and the tail. The modified 

signaling hypergraph consisted of 58 hypernodes, 48 nodes, and 56 hyperedges. All 

hypernodes and hyperedges were B-connected to s.4 We computed the shortest B-hyperpaths 

from the source hypernode s (i) to the ubiquitinated form of β-catenin and (ii) to the nuclear 

form of β-catenin.

5.1.1 Reactions Involved in Ubiquitinated β-catenin—The MILP returned one 

shortest B-hyperpath with four hyperedges (Figure 6(a)). Since β-catenin is marked for 

degradation in the absence of Wnt signaling, the absence of Wnt proteins from this B-

hyperpath was not surprising. The APC/GSK3/Axin2/β-catenin complex splits to produce 

4We say that a hyperedge is B-connected to s if all hypernodes in its tail are B-connected to s.

Ritz et al. Page 17

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



two smaller complexes: APC/β-catenin and Axin2/GSK3. The SCF ubitiquitin ligase 

complex composed of CUL1, SKP1, and an F-box protein then splits the APC/β-catenin 

complex and ubiquitinates β-catenin, marking it for degradation.

Comparison to Graphs: In the graph-with-complexes representation, there was a single 

path of length two from s to ubiquitinated β-catenin through the SCF complex (Figure 6(b)). 

This path corresponded to a simple path in the signaling hypergraph. In the graph 

representation, there were five paths of length two. Each of the first three paths was a simple 

path in the signaling hypergraph and contained one of the members of the SCF complex 

(e.g., the path (s,CUL1,ubiquitinated β-catenin)). However, the other two paths, through 

APC and through phosphorylated β-catenin, were not simple paths in the signaling 

hypergraph. The graph representation collapsed the two complexes in the solution for 

signaling hypergraphs, yielding the path from s to ubiquitinated β-catenin through 

phosphorylated β-catenin (Figure 6(c)).

5.1.2 Reactions Involved in Nuclear Import of β-catenin—The MILP returns a 

single shortest B-hyperpath consisting of 11 hyperedges (Figure 7(a)). Here, Wnt signaling 

is necessary for the formation of the WNT3A/FZD5/LRP6 complex at the cell membrane, 

which activates a regulator (PP2A-B56α) that dissociates β-catenin from its complex with 

the destruction box APC/Axin1/GSK35 and dephosphorylates β-catenin, which in turn 

translocates to the nucleus. The shortest B-hyperpath also contains details about the 

formation of the APC/GSK3/Axin1/β-catenin complex: first, CK1 family proteins 

phosphorylate β-catenin in the APC/Axin1/β-catenin complex, and GSK3 then joins the 

complex and becomes activated.

Comparison to Graphs: In the graph-with-complexes representation, there is a single path 

of length three from s to nuclear β-catenin that contains RanBP3 (Figure 7(b)). RanBP3 is in 

the Wnt signaling pathway because it aids in the nuclear export of β-catenin back to the 

cytoplasm [24]; thus, this path is misleading in this context. There are seven paths of length 

three from s to nuclear β-catenin in the graph representation; the path through RanBP3 is the 

only one that corresponds to a simple path in the signaling hypergraph. The other paths 

(through WNT3A, Axin1, GSK3, APC, FZD5, and phosphorylated β-catenin) are all present 

in multiple complexes that are collapsed in the graph representation. The path through Axin1 

is shown in Figure 7(d).

5.2 Large Wnt Signaling Pathway

TCF1 and LEF1, transcription factors involved in Wnt signaling, are also downstream 

targets of Wnt. To answer Question 1 for the large Wnt signaling pathway, we computed 

shortest acyclic B-hyperpaths to identify reactions that regulate the transcription of genes 

tcf1 and lef1.

We introduced a source hypernode s and connected it to 149 hypernodes with an empty 

backward star. We also connected s to the same hypernode in the cycle involving 

5This reaction in NCI-PID does have one copy of β-catenin among the reactants and two copies of β-catenin among the products.
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cytoplasmic β-catenin as for the small Wnt signaling pathway, and removed eight self-loops. 

The modified signaling hypergraph consisted of 356 hypernodes, 306 nodes, and 374 

hyperedges, of which 354 hypernodes and 372 hyperedges were B-connected to s. To 

identify a series of reactions that regulate both tcf1 and lef1 gene transcription, we added a 

target hypernode t and a single hyperedge ({TCF1, LEF1},t) to the signaling hypergraph. 

For t to be B-connected to s, both TCF1 and LEF1 must be B-connected to s.

There were four shortest acyclic B-hyperpaths with 21 hyperedges in the signaling 

hypergraph (Table 2); one is displayed in Figure 8(a). The four B-hyperpaths shared a 

majority of the hyperedges, with at most four different hyperedges. A subset of these 

hyperedges established that nuclear β-catenin is B-connected to s. These hyperedges, 

denoted in gray in Figure 8(a), were identical to those used to connect nuclear β-catenin to s 
in the small Wnt pathway in Figure 7(a) with one exception: they included the formation of 

the WNT3A/FZD5/LRP6 complex. The four B-hyperpaths differed in the complexes 

containing TLE and TCF family proteins that bind to the promoter regions of LEF1 and TCF 

genes (Table 2). For example, the transcription factor TCF1E can be replaced by TCF4E in 

Figure 8 to regulate LEF1 transcription.

Figure 8(b) shows an alternative layout of the shortest acyclic B-hyperpath according to the 

hypernodes’ cellular compartment (green boxes in Figure 8(a)). For ease of visualization, we 

do not show hyperedges from the source s. The shortest acyclic B-hyperpath describes three 

distinct series of events. First, the destruction complex forms, with a multi-phosphorylated 

β-catenin bound to the complex (Figure 8(b) Step I). β-catenin is released from the 

destruction complex by a series of reactions that begin with WNT3A binding to FZD5 and 

LRP6, which in turn activates phosphatase PP2AB56α. PP2A-B56α subsequently 

dephosphorylates β-catenin and releases it from the destruction complex (Figure 8(b) Step 

II). Finally, once β-catenin is in the nucleus, it displaces TLE family proteins which act as 

transcriptional repressors by binding to TCF family transcription factors. (Figure 8(b) Step 

III). The other three B-hyperpaths with 21 hyperedges differ from the B-hyperpath shown in 

Figure 8(b) by replacing the TLE family repressors and TCF family transcription factors in 

Step III. Thus, in this single shortest acyclic B-hyperpath, we have described a scenario in 

which both TCF1 and LEF1 may be regulated by Wnt signaling.

5.2.1 Comparison to Graphs—We computed the shortest paths in the graph with 

complexes GC and the graph G representations of the large Wnt signaling pathway. There 

were five shortest loopless paths from s to t in GC each containing four edges (Table 2). 

These paths differed by the TLE repressors and the TCF transcription factors, similar to the 

different shortest B-hyperpaths. The shortest loopless paths in G connected s to t directly 

through LEF1 and TCF1, since LEF1 and TCF1 also happen to be members of complexes 

with empty backward stars (Table 2).

Simply computing the shortest path in these graph representations cannot capture the full 

complexity of B-hyperpaths. We explored two additional graph-based algorithms – Steiner 

trees and k shortest paths – to further evaluate the graph decompositions. Steiner trees find a 

subgraph with the smallest number of edges that span a set of terminal hypernodes in a 

graph, which are s, LEF1, and TCF1 in our case. We computed the Steiner tree connecting s 
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to TCF1 and to LEF1 in the graph-with-complexes representation.6 The Steiner tree, like all 

of the shortest paths in the graph-with-complexes representation, did not include the 

transport of cytoplasmic β-catenin to the nucleus, a crucial component of TCF1 and LEF1 

transcriptional activation.

The k shortest paths approach computes a user-defined number of paths in a graph. We used 

Yen’s algorithm to compute the k = 20,000 shortest paths from source to sink in GC as well 

as G [26]. Each edge in GC and G was ranked by the length of the first path in which it 

appeared.

We assessed how well the ranked edges in GC and G corresponded to the shortest acyclic B-

hyperpath  from the large Wnt pathway. Using the method outlined in Section 4.3, we 

converted  to its corresponding graph representations  and G* = (V′, E′) 

(Table 3). To evaluate the ranked lists, we used  and E′ as the “positive” edge sets. All 

other edges in GC and G were considered “negatives.”

We computed precision and recall for the edges ranked with Yen’s algorithm using the 

positive and negative edge sets for GC and G (Figure 9). As expected, GC recovers the edges 

that appear in  better than G because GC and  contain the same set of hypernodes; 

thus edges in GC will connect hypernodes in . However, neither ranking has precision 

above 0.4 beyond a recall of 0.25 (Figure 9). Interestingly, neither curve achieves a recall of 

1, even though all paths (521 total) from source to sink in GC were generated by the k-

shortest paths algorithm. This result implies that there are edges in the solution graph 

that are not on any path from the source to the sink in GC. This is precisely the case, since a 

B-hyperpath may include “dangling” hypernodes that become heads of directed edges in 

(e.g., both TLE2 and TLE4 in Figure 8(a)). This property applies to the edges in the k 
shortest paths of G as well, even though not all paths from source to sink in G were 

generated in Figure 9.

5.3 Full NCI-PID Signaling Pathway

Finally, we analyzed the full NCI-PID signaling pathway to address Question 2 from the 

introduction. We asked the following complementary two questions:

• New Sources to Known Targets: are there reactions currently not annotated to 

the Wnt pathway that are connected to transcriptional regulators in the Wnt 

signaling pathway?

• Known Sources to New Targets: do reactions in the Wnt pathway connect to 

transcriptional regulators or factors that are not currently annotated to the Wnt 

signaling pathway?

These types of questions will not only help improve the manual curation of signaling 

pathway databases, but will also provide insight into potential means of pathway crosstalk 

6We used MSGSteiner [25] to find a prize-collecting Steiner tree that includes all terminals. The resulting Steiner trees contained six 
edges of edge-disjoint simple paths from s to LEF1 and to TCF1. Figure 8(c) illustrates one of these Steiner trees.
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(where the stimulation of one pathway affects the downstream targets of another). To initiate 

this analysis, we removed self-loops from hypernodes that appeared in the head and the tail 

of 43 hyperedges.

For the “New Sources to Known Targets” problem, we connected a source hypernode s to 

3,065 elements that did not appear in the large Wnt signaling pathway and had an empty 

backward star. We connected 84 hypernodes from the large Wnt signaling pathway that were 

located in the nucleus t. The modified signaling hypergraph contained 8,781 hypernodes and 

10,876 hyperedges, which reduced to 7,341 hypernodes and 8,569 hyperedges after finding 

the hypernodes that were B-connected to s.

The shortest B-hyperpath consisted of six hyperedges (s1 to t1 in Figure 10). The nuclear 

complex containing the Androgen receptor (AR) and the hormone dihydrotestosterone (T-

DHT) is present in the Wnt signaling pathway due to a reaction with a complex involving β-

catenin [27] (this reaction does not appear in our solution). The shortest B-hyperpath 

included two upstream biological events: the formation of this complex in the cytosol 

followed by its translocation of the complex to the nucleus. These upstream events are 

included in the “Regulation of Androgen receptor activity” NCI-PID pathway.

For the “Known Sources to New Targets” problem, we connected s to 143 hypernodes in the 

large Wnt signaling pathway that had an empty backward star. We connected 939 

hypernodes that did not appear in the large Wnt signaling pathway and were located in the 

nucleus to t. The modified signaling hypergraph contained 8,781 hypernodes and 8,809 

hyperedges; this number reduced to 260 hypernodes and 268 hyperedges after finding the 

hypernodes that are B-connected to s. There were three shortest B-hyperpaths containing 

three hyperedges; all involve simple paths leading to post-translational modifications of JUN 

that are not in the Wnt signaling pathway. This result was not surprising, since Jun has many 

regulators and over 15 different post-translational forms. To find the “next” best B-

hyperpath, we removed the hyperedge connecting the Jun proteins to t. In this modified 

hypergraph, the shortest B-hyperpath contained 12 hyperedges (s2 to t2 in Figure 10). The 

transcription of Cyclin-D1 (and the events leading up to it) are members of the Wnt 

signaling pathway; the AR/T-HDT complex is in the pathway as well. Surprisingly, the 

formation of the AR/T-HDT/Cyclin-D1 complex is not in the Wnt signaling pathway. 

Cyclin-D1 is a co-repressor of AR [28], and the formation of the AR/T-DHT/Cyclin-D1 

complex appears in NCI-PID’s “Coregulation of Androgen receptor activity” pathway. 

Further, the complex formation is a spontaneous reaction.

On hindsight, the results appear to be unsurprising. One shortest B-hyperpath describes the 

formation of the AR/T-DHT complex and its transport to the nucleus. The other shortest B-

hyperpath culminates in the spontaneous complexing of AR/T-DHT with Cyclin-D1. 

However, the NCI-PID curators selected to include these complexes and reactions in three 

different pathways. Manual discovery of these connections is likely to be very difficult. 

Signaling hypergraph theory offers a facile way to make such discoveries.
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5.4 Performance Evaluation

The MILP was implemented in Python version 2.7.3 and CPLEX version 12.6.0.0, and in 

practice ran in a manner of seconds for all experimental scenarios. For the Wnt signaling 

pathways, the runtime of the signaling hypergraph representations ranged from 0.1s to 1.29s; 

comparable to that of graphs with complexes (0.11s to 0.49s) and graphs (0.79s to 1.49s) 

The runtime of the signaling hypergraph MILP for the full NCI-PID pathway took 

considerably longer in the “New Sources to Known Targets” scenario (36.57s) compared to 

the “Known Sources to New Targets” scenario (0.52s), reflecting the large difference in the 

relative size of the signaling hypergraphs.

6 Conclusions

The limitations of graph-based approaches for signaling pathways analysis have been 

recognized for years. A number of representations have been developed that involve directed 

hypergraphs and hypergraph-like notions. We have proposed a related representation called 

signaling hypergraphs that allow better characterization of reactions that involve multiple 

complexes and proteins. Signaling hypergraphs produce more informative hyperpaths than 

corresponding graph representations on NCI-PID curated pathways.

We have described an MILP to compute shortest acyclic B-hyperpaths in signaling 

hypergraphs. Signaling hypergraphs, as they are defined here, do not yet represent negative 

regulation or more complex regulatory logic (e.g., allowing B-connectedness with at least 

one positive regulator, rather than requiring all positive regulators). Further, since the B-

hyperpaths we compute are acyclic, we cannot recover feedback loops. Characterizing 

signaling hypergraphs that handle all forms of regulation and developing algorithms to 

compute cyclic B-hyperpaths are points of future work. These aspects may require 

generalizing B-connectedness. Further, other notions of connectedness (including F -

connection, which defines connectedness among hypernodes according to the forward star 

rather than the backward star) are worth considering for signaling pathway analysis [18]. We 

also note that finding B-hyperpaths that optimize other hyperpath measures, such as 

hyperpath traversal cost and hyperpath rank, admit polynomial-time solutions [18], [19] and 

may be useful in the context of signaling pathways. Logic models that contain information 

about the “state” of a protein or complex are a special case of directed hypergraphs [16]. 

Incorporating this type of information in signaling hypergraphs may provide a scalable 

alternative to dynamic models.

We initially chose NCI-PID to interrogate because it contains a balance of manually-curated 

reactions and annotated signaling pathways that are relatively well-connected. We note that 

NCI-PID is not longer actively maintained, and we have found minor inconsistencies and 

ambiguities upon closer inspection of the Wnt signaling pathway. We plan to convert other 

signaling pathway databases such as Reactome [29] and KEGG [30] to signaling 

hypergraphs and apply the MILP to these pathways.

We have reported shortest B-hyperpaths in Wnt signaling, both within the annotated 

pathway as well as in the context of the larger NCI-PID dataset. The corresponding shortest 

paths found in graph representations miss crucial components of the underlying reactions. 
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Additionally, some of the shortest paths are misleading, as in the case with RanBP3 in the 

Figure 7(b). We also investigated subnetworks in the graph representations returned by 

Steiner trees and k-shortest paths approaches, and found that while the subnetworks were 

much larger than the shortest paths, they failed to fully capture the reactions described by the 

shortest acyclic B-hyperpath. Through the development of new hypergraph-based 

algorithms, signaling hypergraphs have the potential to more accurately reflect the 

complexity of reactions in signaling pathway analysis.
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Fig. 1. 
Signaling hypergraph concepts and notation. Dark gray circles represent nodes, and light 

gray circles represent hypernodes (subsets of nodes). Regulators are denoted by a dashed 

line for visualization purposes. (a) A signaling hypergraph . (b) Hyperedge e2 

establishes that hypernodes u3 and u4 are B-connected to s while hyperedge e3 performs this 

role for hypernodes u5, and u6. Hypernodes u1 and u2 are not B-connected to s. (c) 

Hypernode u6 is also B-connected to s because of hyperedge e4. (d) The set  of 

hypernodes that are B-connected to s and the hyperedges that establish these B-connections. 

(e) An s-t B-hyperpath ∏ (s, t) containing six hyperedges. Note that no hyperedge may be 

removed from ∏(s, t) and still maintain that t is B-connected to s using only the hyperedges 

in ∏(s, t). (f) An s-t B-hyperpath ∏(s, t) containing three hyperedges.
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Fig. 2. 
An s-t B-hyperpath with a simple cycle (u6, e5, u7, e6, u6).
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Fig. 3. 
k-hypergraph construction from an instance of Minimum k-Set Cover with seven elements A 
= {a1, a2, …, a7}, four subsets Q = {{a1, a2}, {a3}, {a3, a4, a5}, {a5, a6, a7}}, and k = 3.
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Fig. 4. 

A sub-hypergraph  that satisfies constraints (2)–(5) where t is not B-connected to s. 

Hypernode t is in the solution, and each hypernode in the solution (u8, u9, u10, t) has a 

hyperedge in its backwards star that is also in the solution (e8, e7, e9, e9).
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Fig. 5. 
Hypergraph Conversions to Graph Representations. A single hyperedge (a) is converted into 

a graph with complexes (b) and a graph (c) representations. Note that if the same node 

appears on in the tail and the head, some edges will be collapsed.
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Fig. 6. 
Small Wnt Pathway Solutions to ubiquitinated β-catenin, denoted by a post-translational 

modification with a ‘U’.

Ritz et al. Page 31

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Small Wnt Pathway Solutions to nuclear β-catenin, denoted by a compartment marked ‘n’ 

for nucleus.

Ritz et al. Page 32

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8. 
Large Wnt Pathway solutions. (a) The shortest acyclic B-hyperpath in the signaling 

hypergraph, and (b) the same B-hypergraph organized by cellular compartment (hyperedges 

from s not shown). (c) The Steiner tree in the graph with complexes connecting s to TCF1 

and LEF1 terminals. The Steiner tree was comprised of two of the five shortest paths in the 

graph with complexes representation (Table 2).
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Fig. 9. 
Precision-recall plots for edge recovery of the shortest acyclic B-hyperpath using the k-

shortest paths from GC and G from the large Wnt signaling pathway. Labels on the lines 

represent k, the number of shortest paths used to achieve that exact precision-recall value.
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Fig. 10. 
Two B-hyperpaths computed in the full NCI-PID signaling pathway. The B-hyperpath from 

s1 to t1 is the optimal result for “New Sources to Known Targets”, and the B-hyperpath from 

s2 to t2 is the optimal result for “Known Sources to New Targets.”
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TABLE 2

Shortest B-hyperpaths and paths for the large Wnt signaling pathway.

Shortest B-Hyperpath/Path from s #1

(see Figure 8) 21

{TLE4,TCF4} replaced by {TLE2,TCF4}2 21

{TLE2,TCF1E} replaced by {TLE4,TCF4E}2 21

{TLE2,TCF1E} replaced by {TLE2,TCF4E}, and {CTNNB1,TCF1E} replaced by {CTNNB1,TCF4E}2 21

Gc (s, {TLE2,TCF1E }, {CTNNB1,TCF1E },LEF1,t) 4

(s,{TLE4,TCF4},{CTNNB1,TCF4},TCF1, t) 4

(s, {TLE4,TCF4E }, {CTNNB1,TCF4E },LEF1, t) 4

(s,PITX2,{CTNNB1,LEF1,PITX2},LEF1, t) 4

(s,{TLE2,TCF4},{CTNNB1,TCF4},TCF1, t) 4

G (s,LEF1, t) 2

(s,TCF1, t) 2

1
Number of hyperedges in optimal solution.

2
Major differences compared to solution in Figure 8.
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TABLE 3

Attributes of large Wnt’s shortest B-hyperpath solution  and its associated graph decompositions: the 

graph with complexes solution  and the graph solution G*.

G*

# Nodes 29 – 29

# Hypernodes 25 25 –

# Edges – 36 107

# Hyperedges 21 – –
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