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Accurate and efficient computation of delays is a central problem in computer-aided design of
complex VLSI circuits. Delays are determined by events (signal transitions) propagated from
the inputs of a circuit to its outputs, so precise characterization of event propagation is
required for accurate delay computation. Although many different propagation conditions
(PCs) have been proposed for delay computation, their properties and relationships have been
far from clear. We present a systematic analysis of delay computation based on a series of
waveform models that capture signal behavior rigorously at different levels of detail. The most
general model, called the exact or W0 model, specifies each event occurring in a circuit signal.
A novel method is presented that generates approximate waveforms by progressively eliminat-
ing signal values from the exact model. For each waveform model, we derive the PCs that
correctly capture the requirements under which an event propagates along a path. The
waveform models and their PCs are shown to form a well-defined hierarchy, which provides a
means to trade accuracy for computational effort. The relationships among the derived PCs
and existing ones are analyzed in depth. It is proven that though many PCs, such as the
popular floating mode condition, produce a correct upper bound on the circuit delay, they can
fail to recognize event propagation in some instances. This analysis further enables us to
derive new and useful PCs. We describe such a PC, called safe static. Experimental results
demonstrate that safe static provides an excellent accuracy/efficiency tradeoff.

Categories and Subject Descriptors: B.7.2 [Integrated Circuits]: Design Aids—verification;
B.6.3 [Logic Design]: Design Aids—verification

General Terms: Performance, Theory, Verification

Additional Key Words and Phrases: Delay computation, event propagation, false path, path
sensitization, propagation condition, timing analysis, waveform modeling

1. INTRODUCTION
Accurate computation of delay is a key issue in the design of high-
performance VLSI circuits. The complexity of this problem is highly depen-
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dent on the assumed waveform model; that is, on the level of detail at
which signal behavior is modeled. More detailed waveform models capture
the actual signal behavior more accurately, but analysis using such models
can be prohibitively slow, so in practice, simplified models are often used. A
popular model is floating mode [Chen and Du 1993], where only the latest
event (signal transition) on every circuit node, namely the node becoming
stable, is considered.
Many kinds of sensitization criteria or propagation conditions (PCs) have

been developed for delay computation, often in an ad hoc manner. Exam-
ples are static sensitization [Benkoski et al. 1987], the Brand-Iyengar
condition [Brand and Iyengar 1986] and the floating mode condition [Chen
and Du 1993]. In most cases, the analysis is algorithm-driven, and does not
reflect how signal events actually propagate. When improperly used these
models can lead to serious errors; for example, it is well known that static
sensitization can underestimate the circuit delay [Chen and Du 1993;
McGeer and Brayton 1989]. Furthermore, as we prove here, more accurate
PCs such as floating mode sometimes fail to recognize whether an event
can propagate along a given path. Despite several attempts [Chen and Du
1993; McGeer and Brayton 1991; Silva and Sakallah 1993], a unified theory
of PCs has remained elusive, and the relationships among even the most
widely studied PCs are far from clear.
In this paper we derive propagation conditions in a systematic way,

starting from a general waveform model. As explained in Section 2, we
distinguish the conditions intended for delay computation from those that
deal with actual event propagation. With this distinction in mind, we
develop a series of waveform models in Sections 3–5, based on how closely
they match actual signal behavior, and show that they form a well-defined
hierarchy. For each waveform model, we derive the PCs based on funda-
mental cause-and-effect behavior using a 2-input AND gate as a represen-
tative example. Extensions to other basic gates and non-zero delays are
described in Section 5. This analysis reveals the fundamental relationships
among all known PCs, as discussed in Section 6. It further enables us to
derive new and potentially useful PCs, examples of which are presented in
Section 7. Finally, we give experimental results to evaluate the accuracy of
the proposed PCs.

2. BASIC CONCEPTS

A combinational logic circuit is composed of modules (gates, multiplexers,
decoders, etc.) which are assumed to have known internal delays. The
modules are linked by interconnections which, along with the circuit’s
primary input-output terminals, define the circuit’s signal nodes. We
assume that modules are limited to basic gates. To simplify the analysis,
we also ignore interconnect delays; however, they can be easily handled
using the techniques described here for gates.

Definition 1. Given an input stimulus to the circuit, a change or
transition in the value of a circuit node is called an event. In addition to
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transitions between logic 0 and 1, we consider transitions between an
unknown value (U ) and 0 or 1 as events. The time at which an event occurs
is called the event time.

Events at the primary inputs propagate through the circuit, are delayed
by the gates, and eventually reach the primary outputs. Events can
interact in complex ways. Depending on circuit structure, they can take
different paths, and hence can experience different delays. Some events are
filtered out because they are blocked by other events.

Definition 2. The entire sequence of events occurring at a circuit node
x over the time period of interest is called the waveform of x and is
represented by vx

Figure 1 illustrates several waveforms and events in a small circuit. The
first event time of a node is when the node starts to change, referred to as
destabilization. Likewise, the last event time is when the value of the node
settles to its final value, referred to as stabilization.
Consider a set of input waveforms Wk applied to a circuit such that the

earliest and latest event times at primary inputs are tPI
m ~k! and tPI

M ~k!,
respectively. Let tPO

m ~k! be the earliest (destabilizing), and tPO
M ~k! be the

latest (stabilizing) event time over all primary output events occurring as a
result of Wk. Let V represent the set of all input waveforms under
consideration.

Definition 3. The longest delay of the circuit corresponding to Wk is
tM~k! 5 tPO

M ~k! 2 tPI
M ~k!,1 and the shortest delay is tm~k! 5 tPO

m ~k!
2 tPI

m ~k!. The longest delay tmax of the circuit over all input waveforms is
tmax 5 max

WkeV
tM~k!, and the shortest delay tmin is

tmin 5min
WkeV

tm~k!.

1Implicit here is the assumption that the events tPI
M ~k! and tPO

M ~k! are causally related, that is,
the input event at tPI

M ~k! triggers the output event at tPO
M ~k!, and are chosen such that

tPO
M ~k!2 tPI

M ~k! is the maximum over all such input and output events. The case of shortest
delay is similar.

Fig. 1. Event and waveform examples.
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For the circuit of Figure 1, assuming V consists of input waveforms that
can have an arbitrary number of events, the longest and shortest delays
are, respectively, tmax 5 6 and tmin 5 3. The case of the shortest delay is
symmetrical to that of the longest delay, so we only consider the latter and
its computation in this paper. Unless otherwise noted, we assume that the
latest input event time tPI

M ~k! is 0 for every Wk.Thus, tM~k! 5 tPO
M ~k!. In

the rest of the paper, the terms “last event time” and “delay” are used
interchangeably. In addition, the term “circuit delay” is used to mean the
longest delay, and is denoted by t.
Because the circuit delays are determined by events that propagate to

the outputs, it is important that event propagation be accurately character-
ized.

Definition 4. If an event appears on output line z of a gate in response
to an event j on input line x, then event j is said to propagate to z. The
logical condition under which this occurs is called the propagation condi-
tion (PC) for event j and is represented by Cxz-j.

Definition 4 can be applied to paths, in which case the condition under
which a specific event j travels down a path P is the conjunction of the
conditions for the event to propagate through every gate in path P, and is
represented by CP2j. For example, if P is the path a-c-e-g-x in the circuit of
Figure 1, then CP2j 5 Cce2jCeg2jCgz2j, where Cxz2j is the PC for an event
j going from input x of a gate to output z. The longest delay tmax through
the circuit can be rewritten in terms of the PCs, as follows.

tmax 5 max
Wke V

$~tPI
j ~k! 1 d~P!! z CP2j~k!% (1)

The max operator is applied over all input events jeWk occurring at time
tPI
j ~k!, and all paths P along which event j can possibly propagate. In this
expression, d(P) is the length of path P, and the AND-like blocking
operator “ z ” is defined as

t z C 5 H 2 ` if C 5 0
t if C 5 1

Equation (1) captures the fact that the circuit delay is determined by the
input event that is the latest to arrive at any output. If no event propa-
gates, the computed delay is 2`, indicating that no event occurs on the
output. Let Dmax and dmin represent, respectively, the longest and shortest
topological delays of the circuit, so dmin # d~P! # Dmax. Since tPI

j ~k!
# 0, it follows that tmax # Dmax. Similarly, it can be shown that tmin $

dmin.
The set V of all input waveforms has a strong impact on determining

whether an event can propagate along a path. For the circuit of Figure 1,
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when the input waveforms in V are allowed to have any number of events,
an event can propagate along the topologically longest path a-c-e-i-l-o-p-
z, as revealed by the waveforms in the figure. If V is restricted to those
input waveforms with a maximum of one transition, called the transition
mode of operation [Devadas et al. 1992], this is no longer the case.
Furthermore, the longest circuit delay tmax reduces to 4. Clearly, propaga-
tion as well as circuit delays are defined with respect to V.
A common concept found in the research literature is path sensitization,

where a path along which an event can propagate is referred to as
sensitized. A path that cannot be sensitized under any input waveform is
called unsensitizable or false. However, we note that this definition of
sensitization is not precise in that it does not explicitly specify the event(s)
whose propagation is of concern. Most approaches implicitly consider only
the last event on each circuit node. This, for example, is the case for
floating mode [Chen and Du 1993] and viability [McGeer and Brayton
1989]. These PCs assume that circuit nodes have unknown values until
they stabilize. Thus, even though some events previous to the last one may
propagate along a path, the path can still be declared to be unsensitizable
(false). This phenomenon is illustrated in Figure 2. As shown in the timing
diagram on the left, an event on a propagates along the highlighted path
a-d-g-z, and reaches the output z as the latest event. According to both the
floating mode and viability conditions, however, the path is false because
the last event on node g does not propagate. One might also interpret path
sensitization as follows: If there exists an event that propagates along a
path, then the path is sensitized. By this definition, the highlighted path in
Figure 2 is sensitized, but the computational effort to identify such paths is
questionable.
As we show in this paper, it is not necessary to identify paths as

sensitizable or false to perform delay computation. Instead we focus on the
more precise notion of event propagation, and derive the conditions under

Fig. 2. Example circuit where an event propagates along a path identified as false by the
floating mode and viability conditions.
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which an event can propagate. Our analysis of event propagation in the
following sections reveals that most existing PCs defined for path sensiti-
zation are too restrictive in that they can decide that an event does not
propagate even when it actually does. The circuit shown in Figure 3, which
is similar to that of Figure 2, illustrates this point for the floating mode PC.
Even though the last event on node g propagates to the output z, the
floating mode condition decides otherwise. The reason is that the event in
question on g does not determine the last event at the output z. On the
other hand, the floating mode condition does calculate a correct upper
bound on the circuit delay.
A number of conditions have been proposed in the literature which, like

floating mode, calculate a correct upper bound on the circuit delay, but are
not necessarily correct for event propagation. As will be shown later, they
include the loose condition [Chen and Du 1993] and static cosensitization
[Devadas et al. 1993]. These conditions typically assume that an event
propagates from an input of a gate to its output only if it is guaranteed to
be the last event at the output. We refer to all such conditions as delay
propagation conditions (DPCs), while those that reflect actual event propa-
gation are called event propagation conditions (EPCs). We denote an EPC
by the symbol C, and a DPC by w. When referring either to EPCs or DPCs,
we use the term PC and denote it by l.

3. WAVEFORM MODELING

We call a logic-level behavior that for each signal x in a circuit specifies
every event in a given time interval ~tx

0, tx
m11! the W0 waveform model or

the exact mode. As depicted in Figure 4, a W0 waveform vx contains m
$ 0 events, each occurring at time tx

i , 1 # i # m. Without loss of
generality, we assume that tx

0 5 2` and tx
m11 5 `. For notational

convenience, the first and last event times of x are also referred to as ax

and Ax, respectively [Shriver and Sakallah 1992; Silva and Sakallah 1993].
The value assumed by x in the interval ~tx

i , tx
i11! is represented by vx

i , 0

Fig. 3. Example of failure by floating mode to recognize the propagation of an event.
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# i # m, with the initial and final values also referred to as x and X,
respectively. We require that vx

i{$0,1, U%. At each transition point tx
i , we

assume that the value of the signal is U. The waveform vx is thus fully
characterized by a sequence of time-value pairs, as follows.

vx
W0 5 ~~tx

0, vx
0!, ~tx

1, vx
1!, . . . , ~tx

m, vx
m!! (2)

Consider a 2-input AND gate with inputs x, y, output z, and zero delay.
Let the input waveforms of x and y be, respectively, vx

W0 5 ~~tx
0, vx

0!,
. . . , ~tx

m, vx
m!! and vx

W0 5 ~~ty
0, vy

0!, . . . , ~ty
n, vy

n!!; thus there are m
events on input x, and n on input y. The EPC C for event propagation and
the DPC w for delay computation are derived below. Let lx

j be the PC
(either EPC or DPC) for an event occurring at time tx

j on input x. Similarly,
let gy

k be the PC for an event occurring at tx
k on input y. With the input

waveforms represented symbolically, Equation (1) can be rewritten to
obtain the last event time Az at the output z, as follows:

Az 5 max~tx
1 z lx

1, . . . , tx
m z lx

m, ty
1 z ly

1, . . . , t y
n z ly

n! (3)

This formula is proven below for the W0 model and will be used later for
all waveform models.
Let Cxz2j

W0 denote the EPC that the event j on input x occurring at time
tx
j propagates to the output z of a 2-input AND gate. In order for this event
to propagate, the side input y must have a non-controlling value (1 in the
AND case) or unknown value U at the time j appears on input x. The U
value is required for correctness or “safeness,” which will be discussed
later.

Cxz2j
W0 5 O

i50

n

~t y
i # t x

j # t y
i11!~vy

i Þ 0! (4)

where juxtaposition denotes logical AND, S denotes logical OR, and ty
n11

5 `. The summed expression in (4) states that the value vy
i assumed by

Fig. 4. Waveform for a node x under the W0 model.
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input y in the interval ~ty
i , ty

i11! coinciding with tx
j should be non-zero, i.e.,

non-controlling or U. For the example in Figure 5, the EPC Cxz22
W0 for the

event occurring at time is tx
2 is ~tx

2 $ ty
2! 1 ~tx

2 # ty
1!. We note that the

EPC of (4) allows the propagation of pulses of any width, which is a
worst-case assumption. However, by adding a condition of the form ~tx

j2

tx
j21 . «!, pulses of width less than e can be filtered out.

THEOREM 1. Consider a 2-input AND gate with inputs x, y, output z, and
zero delay. Let Cxz2j

W0 and Cyz2k
W0 represent, respectively, the EPCs for an event

j on x and event k on y to propagate to the output z, where 1 # j # m
and 1 # k # n. The last event time Az

W0 at output z is given by

Az
W0 5 max~tx

1 z Cxz21
W0 , . . . , t x

m z Cxz2m
W0 , ty

1 z Cyz21
W0 , . . . , t y

n z Cyz2n
W0 ! (5)

(A proof is given in the Appendix.) As stated in Section 2, DPCs, which
are used for delay calculation only, assume that an event is blocked unless
it is the latest propagating one. Consider an event j on input x occurring at
time tx

j . Strictly speaking, the DPC wxz2j
W0 for this event must ensure that the

event reaches the output no later than any event on both inputs x and y.
However, it is sufficient to require that event j propagate no later than any
event on input y only, since the application of the max operator in (3) will
correctly identify the last propagating event. Let B ~j, k! be the blocking
condition for event k and all subsequent events on y that occur after tx

j .

B~ j, k! 5 P
r5k

n

C yz2r
W0 5 P

r5k

n O
s5j

m

~t x
s , t y

r , t x
s11!~vx

s 5 0!

Fig. 5. Event propagation through a 2–input AND gate.
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where P denotes logical AND. The two limiting cases are B~ j, n 1 1!
5 1 and B~m, k! 5 ~vx

m 5 0!, k # n. Thus, the DPC wxz21
W0 can be

expressed as

wxz2j
W0 5 Cxz2j

W0 B~ j, k! (6)

which can be rewritten as

wxz2j
W0 5 O

i50

n

B~ j, i 1 1!~t j
i # t x

j # t y
i11!~vy

i Þ 0! (7)

As an example, the DPC wxz22
W0 for the event occurring at tx

2 in Figure 5 is
~tx

2 $ ty
2! 1 ~tx

2 # ty
1!~tx

1 . tx
3!. In this case the condition B~2,1! for

the two events on y to be blocked after tx
2 is ~ty

1 . tx
3!.

THEOREM 2. Consider again a 2-input AND gate with inputs x, y output
z, and zero delay. Let wxz2j

W0 and wyz2k
W0 represent, respectively, the DPCs for

an event j on x and event k on y to propagate to the output z, where 1 #

j # m and 1 # k # n. The last event time Az
W0 at output z can be

calculated by

Az
W0 5 max~tx

1 z wxz21
W0 , . . . , t x

m z wxz2m
W0 , ty

1 z wyz21
W0 , . . . , t y

n z wyz2n
W0 ! (8)

(The proof is similar to that of Theorem 1.) Thus, since (5) and (8)
produce the same last event time, either EPC Cxz

W0 or DPC wxz
W0 can be used

for delay computation. From (6), we have

wxz
W0 # Cxz

W0 (9)

So the DPC wxz
W0 cannot be used to determine which events propagate.

As the above analysis illustrates, timing analysis using the W0 waveform
model is potentially complex. First, since an arbitrary number of events can
occur on circuit nodes, the storage of these events is a problem. Devadas et
al. [1994] give an example where the number of events in a circuit is
exponential in circuit size. Second, PC calculation becomes difficult due to
the potentially high number of conditions relating event times, as revealed
by Equations (4) and (7). Thus, simulation-like methods such as that of
Devadas et al. [1992; 1994] must often be employed in practice. Complex
delay models such as the min-max delay model further complicate the
analysis.
Several approximation methods can be used to simplify timing analysis:

—Restrict the waveform model so that a subset of all possible events is
considered. For example, floating mode considers only the last event on
every circuit node.
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—Restrict the delay model. For example, if a gate has many input-output
path delays, one can consider only the maximum delay.

—Simplify the PC calculation. An example is the “conditionless” case where
all events are assumed to propagate; this is classical topological delay
analysis.

The above approximation methods are not independent, however. For
instance, if the waveform model is restricted, PC calculation will be
restricted as well.
Any approximate method M essentially replaces CW0 by some condition

CM in order to calculate circuit delays more efficiently. The following
definitions are central to our analysis.

Definition 5. The approximate method M is correct for event propaga-
tion if and only if CM $ CW0.

Definition 6. Let the last event time (or delay) under the W0 waveform
model (actual last event time) be tW0, and the estimate of the approximate
method be t M. The approximate method is safe or correct for delay compu-
tation if and only if t M $ tW0.

THEOREM 3. If the approximate method M is correct for event propaga-
tion, it is correct for delay computation also; that is, it is safe.

PROOF. If the condition CM $ CW0 in Definition 5 is met, and if an
event propagates along a path under the W0 waveform model, then it
propagates under M as well. Since this is also true of the latest event that
determines the circuit delay, the estimate t M of M is at least as great as
tW0. Additionally, there can exist events that do not propagate under W0
but do so under M, which only leads to delay overestimation. e

Our approach to simplifying PCs (including both EPCs and DPCs) is to
restrict the waveform model; that is, we aim to obtain simpler PCs by
approximating the W0 waveform model in a systematic fashion. This will
be done so that the resulting PCs never violate the condition t M $ tW0 in
Definition 6; we refer to this as the safeness requirement. In the process of
deriving approximate waveform models and their associated PCs, we make
use of a “smoothing” operator [McGeer and Brayton 1989], which is a
special case of existential quantification.

Definition 7. Let f be a function of variables x1, x2, . . . , xn. The
smoothing operator Sxi f is defined as

Sxi f 5 fxi 1 fxi

where fxi 5 f~xi 5 1! and fxi 5 f~xi 5 0! are the cofactors of f. The
smoothing operator can be directly extended to multiple variables. Let T
5 $xi1, xi2, . . . , xik% be a subset of x1, x2, . . . , xn. Then Sxi1Sxi2 . . . Sxik f
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5 Sxii . . . xik f 5 STf. The order in which the operator is applied to the
variables of T is not important, since Sxi Sxj f 5 Sxj Sxi f.

In the context of delay calculation, the smoothing operator captures
pessimism in the following way: An event will be assumed to propagate if
the corresponding PC evaluates true for at least one combination of the
variables in T. We make use of the following property from McGeer and
Brayton [1991] to relate different PCs:

STf $ f (10)

We also generalize the smoothing operator so that the dependence of a
function on event times, in addition to Boolean variables, can be smoothed
out as well. Consider the Boolean function (predicate) f 5 ~tx 2 ty $

0!. Suppose we want to eliminate the dependence of f on tx 2 ty, which
can be positive or negative. When it is positive, f will evaluate to 1. So, by
the definition of smoothing, S ~tx2ty!f 5 1. In general, consider a (Boolean)
function f~X, t!, where X is a Boolean input vector and t is an event time,
or a function of event times. Suppose that t takes on values from a (closed)
interval @tl, tu#, where tu is the upper bound and tl is the lower bound. The
smoothing of f with respect to t is defined by

St f 5 O
t e @tptu#

f ~X, t! (11)

4. APPROXIMATE WAVEFORM MODELS

We obtain the approximate waveform models by smoothing the values of
some intervals from the W0 waveform model characterized by (2). The
value vx

i in an interval ~tx
i , tx

i11! is smoothed out and replaced by U. This
operation reduces the number of variables making up vx by one. In this
fashion, we simplify the W0 waveform model progressively, each time
eliminating a number of interval values. The effect on event propagation is
to increase the degree of pessimism because in order to comply with
Definition 5, we assume that any event whose propagation depends on an
interval with value U propagates. This assumption can lead to an overesti-
mation of the circuit delay since some events may actually be blocked by
certain signal values; but this is the price paid for simplification.
We examine three approximate waveform models, W1, W2, and W3 in

depth. Those cases make the most basic simplifications possible, and as we
demonstrate, correspond to, and illuminate, a variety of PCs discussed in
the literature. For each model Wi, we derive the EPC CWi for event
propagation, and DPC wWi for delay computation. The last event time,
which is identical for both cases, is represented by AWi. We use Karnaugh
maps to represent PCs because, as noted by Brown [1990], they are an
efficient way to display the cofactors of a Boolean function, and are
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convenient here for comparing different PCs and last event times. Again,
without loss of generality, we consider a 2-input AND gate computing
z 5 xy.
W1 waveform model. Our first approximation to the W0 model of timing

is to restrict signal waveforms to their first and last events. The remaining
events occurring between these two are ignored, and the values vx

1, . . . ,
vx
m21 are smoothed out. We call this waveform model W1 or the first-and-

last-event (FALE) model. This model, which is depicted in Figure 6, is also
adopted in Cerny and Zejda [1994] and Shriver and Sakallah [1992]. A
waveform vx is characterized as

vx
W1 5 S$vx

1, . . . , vx
m21%vx

W0 5 ~~tx
0, x!, ~ax, U!, ~Ax, X!! (12)

If vx contains no events, i.e., it is constant, we assume that ax 5 ` and
Ax 5 2`. We define a change predicate Cx 5 ~ax # Ax! to indicate
the stability of signal x : Cx 5 0 if x is constant, Cx 5 1 otherwise.
Calculating PCs for the W1 model is far simpler than for the W0 model,

as there are only two events in each waveform. For the W1 model,
assuming the output is not constant, the last output event is either the last
event on input x or the one on y, whichever propagates—this is, in general,
not true for the W0 model. Hence, it is sufficient to consider the propaga-
tion of the last event.
Let Cxz

WI be the EPC for the last event on input x to reach the output z
under the W1 waveform model. To derive Cxz

WI, we first substitute m 5 j
in (4), then apply the appropriate smoothing operator:

Cxz
W1 5 CxS$vx

1, . . . , vx
m21, vy

1, . . . , vy
m21%Cxz

W0 5 Cx@y~Ax # ay! 1 Y~Ax $ Ay! 1 ~Ax

$ ay!~Ax # Ay!# (13)

The predicate Cx is included to exclude constant signals, as Equation (4)
applies to the jth event assuming it is present in vx. To simplify (13), we
introduce three predicates to relate the event times of x and y:

Fig. 6. Waveform for a node x under the W1 model.
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(1) Exy 5 ~Ax # Ay!; that is, x stabilizes earlier than y. This is the early
predicate.

(2) Lxy 5 ~Ax $ Ay!; that is, x stabilizes later than y. This is the late
predicate.

(3) Vxy 5 ~Ax $ Ay!; that is, x stabilizes after y starts to destabilize.

Figure 7 shows Cxz
W1 in the form of a K-map for all combinations of x, X,

y, and Y. Notice that when x and X differ, Cx is necessarily 1. The entries
in Figure 7 can be inspected to verify the correctness of Cxz

W1. Input
waveforms corresponding to two entries are shown in the figure. For the
input combination ~x, X, y, Y! 5 ~0,0, 0,0!, Cxz

WI 5 ExyVxyCxy; that is,
the two intervals must overlap, input x must not be a constant 0, and x
must stabilize earlier than y. For the input combination ~x, X, y, Y! 5
~0,1, 1,1!, Cxz

W1 is 1; that is, the last event on input x always propagates,
since the value of the side input y is either non-controlling (1) or U.
The EPC Cyz

W1 for the last event on input y is exactly symmetrical with
Cxz

W1. The last event time Az
W1 for the output z can be obtained via Equation

(3) or via Az
W1 5 S $vx

1, . . . , vx
m21, vy

1, . . . , vy
m21% Az

W0, as in (13). Figure 8 shows
Az

W1 in the form of a K-map.
To derive the DPC wxz

W1, we first substitute m 5 j in (7), then apply the
smoothing operation:

wxz
W1 5 CxS$vx

1, . . . , vx
m21, vy

1, . . . , vy
m21%wxz

W0 5 Cx@yX~Ax # ay! 1 Y~Ax $ Ay! 1 X~Ax

$ ay!~Ax # Ay!# (14)

Again, the predicate Cx is included to handle constant signals. The DPC
wxz
W1 is shown in Figure 9. As in (9), wxz

W1 # Cxz
W1 since Lxy # Vxy. Note that

Cxz
W0 # wxz

W1 does not hold. For example, consider the input combination
~x, X, y, Y! 5 ~0,1, 0,0!. Although the last event on x can propagate
when Ax # Ay, the DPC equals the constant 0. Therefore, by Definition 6,
the DPC wxz

W1 is incorrect for event propagation. However, it is correct for

Fig. 7. The EPC Cxz
W1 of a 2–input AND gate.
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delay computation; i.e., the resulting last event time max~wxz
w1 z Ax, wyz

w1, z

Ay! is indeed the same as Az
W1, as can easily be verified.

W2 waveform model. Although the W1 model is significantly simpler than
the W0 model, it still may not be practical for delay calculations in large
circuits. We next ignore initial values, resulting in the W2 waveform model
depicted in Figure 10. This is known in the literature as floating mode, and
was introduced by Chen and Du [1993]. In this model, a waveform vx is
characterized as

vx
W2 5 Sxvx

W1 5 ~~tx
0, U!, ~Ax, X !! (15)

We again consider the propagation of last input events and derive the PCs
accordingly.
The EPC Cxz

W2 for the W2 model is obtained from Cxz
W1 by smoothing out

the initial values x and y, as shown in Figure 11(a). The EPC Cxz
W2 exactly

matches the conditions for viability given in McGeer and Brayton [1989].
Under viability an event propagates if the stable value Y of input y is
non-controlling, or the stable value Y is controlling, but the event on input
x is earlier than that on input y. It can be easily seen that these conditions
are equivalent to Cxz

W2. Thus viability is the correct EPC for event propaga-
tion (as well as delay calculation) under the W2 model. The last event time
Az

W2 can be obtained either by using Equation (3)—note that max~Exy zAx,
Eyx z Ay! 5 min~Ax, Ay!—or by Az

W2 5 SxyAz
W1, as shown in Figure

11(b).
We can derive the DPC wxz

W2 similarly. The resulting function wxz
W2 5

Sx, ywxz
W1 is shown in Figure 12. This DPC is identical to the floating mode

condition.

THEOREM 4. The floating mode condition is incorrect for event propaga-
tion.

Fig. 8. The last event time Az
W1 for a 2–input AND gate under the W1 waveform model.
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PROOF. When discussing the W1 model, we saw that the DPC wxz
W1 is

incorrect, as it propagates only those input events that are guaranteed to
be the latest at the output. Since wxz

W2 # Cxz
W2, the same holds true for wxz

W2,
which is also evident from Figure 12.
In Section 2, we saw an example where the floating mode condition fails

to recognize a propagating event. Looking at Cxz
W2 and wxz

W2, we see that they
are different for two input combinations. An example is given in Chen and
Du [1993], where it is stated that viability incorrectly identifies a path as
true. This example is reproduced in Figure 13 with the path in question

Fig. 9. the DPC wxz
W1 of a 2–input AND gate.

Fig. 10. Waveform for a node x under the W2 model.

Fig. 11. (a) The EPC Cxz
W2; (b) the last event time Az

W2 under the W2 model.
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highlighted. From the perspective of event propagation, we find that an
event does, in fact, propagate along this path, as indicated in the timing
diagram. An 0-width glitch, a special case of a pulse, occurs on node f and
propagates to the output z. It should be emphasized that glitches cannot be
distinguished from proper transitions in the W2 model because they
introduce instability. Hence, due to the safeness requirement, they must be
assumed to propagate. The floating mode condition, however, fails to
identify this fact. On the other hand, it computes the same last event time,
since we have the following from (3), which confirms previous results [Chen
and Du 1993].

max~wxz
W2 z Ax, wyz

W2 z Ay! 5 Az
W2

e

An interesting case occurs when we further ignore the difference Ax 2
Ay between two input events. For wxz

W2, this means calculating S ~A12Ay!wz
W2,

which we denote by wxz
SC. From (11), we have S ~Ax2Ay!Exy 5 S ~Ax2Ay!Lxy5

1. Thus

wxz
SC 5 S~Ax2Ay!wz

W2 5 X 1 Y

This DPC is not the static sensitization condition, as one might expect; it is
actually the static cosensitization condition introduced by Devadas et al.
[1994], and is shown in Figure 14 along with the last event time calculated
using (3). Since Cxz

W2 # wxz
SC is not always satisfied, the following result

holds.

THEOREM 5. The static cosensitization condition is incorrect for event
propagation.

The example given in Figure 2 for the floating mode condition applies to
static cosensitization as well. It is correct with respect to delay computation
because the last event time Az

SC shown in Figure 14(b) satisfies Az
SC $

Az
W2 $ Az

W0.

Fig. 12. The DPC wxz
W2 under the W2 model is identical to the floating mode condition. .
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As for Cxz
W2, the above approximation yields S ~Ax2Ay!Cz

W2 5 1, that is, the
EPC used for topological analysis, which is discussed next. So for event
propagation, ignoring dependence on input event times produces results as
safe (or pessimistic) as those obtained by ignoring all values of the
waveforms.

W3 waveform model. There is only one variable left in the W2 model that
we can smooth out, namely, the final value X. The resulting waveform
model is called W3.

vx
W3 5 SX vx

W2 5 ~~tx
0, U!, ~Ax, U !! (16)

In this case, no functional information is retained in the PCs. We are
therefore left with topological (structural) information only. As a result,
delay computation under this model is equivalent to topological delay
analysis.
The EPC Cxz

W3 for the W3 model is derived by smoothing X and Y from
Cxz

W2:

Cxz
W3 5 SX, YCxz

W2 5 1

Fig. 13. Example circuit of Chen and Du [1993] where viability correctly identifies the
propagation of an event.

Fig. 14. (a) The static cosensitization condition wxz
SC; (b) the last event time Az

SC.
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which means that all events propagate unconditionally. Computing the last
event time Az

W3 either via Equation (3) or Az
W3 5 SX, YAz

W2 yields
max~Ax, Ay!, that is, the longest topological path delay to the output of the
AND gate. Thus, delay calculation under this model is indeed equivalent to
topological delay analysis. For comparison, both the EPC and the last event
time are shown in Figure 15 as functions of the final values X and Y.
To derive the DPC wxz

W3, we apply the smoothing SX, Y operator to wxz
W2,

which produces wxz
W3 5 SX, Ywz

W2 5 1; this is identical to Cxz
W3. Therefore,

under the W3 waveform model, event propagation and (topological) delay
computation become equivalent.

Summary of waveform models. The waveform models and propagation
conditions (EPCs and DPCs) introduced so far are summarized in Figure
16. Model complexity decreases as one moves from the W0 model up to W3.
The safeness or pessimism of the PCs increases in the same direction, since
approximation implies pessimism. The smoothing relation between these
PCs is denoted by a thick arrow. For example, if a thick arrow goes from
lQ to lR, then lR is obtained by smoothing out from lQ some of its
variables. A thin arrow, on the other hand, is simply a covering relation,
that is, if a thin arrow goes from lQ to lR, then lQ # lR, which is a weaker
relation than smoothing.
Like the PCs, the circuit delays vary from the exact value calculated

under the W0 model to the topological longest delay calculated under the
W3 model. A related result by Lam et al. [1993] is worth mentioning here:
Under the condition that every gate in a circuit has variable delay and no
distinct paths have the same set of gates, floating delay, which is tW2 in our
notation, is the same as the exact delay tW0, referred to as delay by
sequences of vectors in Lam et al. [1993].

5. EXTENSIONS

The derivation of PCs and last event times presented in the previous
sections for an AND gate can be easily extended to other gates. For brevity,
in this section we mostly consider the W2 waveform model. The case of

Fig. 15. (a) the EPC Cxz
W3; (b) the last event time Az

W3 under the W3 model.
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buffers and inverters is trivial. All PCs are equal to 1, and the output last
event time is the same as the input last event time, that is, with a
zero-delay; it is simply shifted with a non-zero delay, as explained later.
For an OR gate, the controlling and non-controlling values are, respec-

tively, 1 and 0, the opposite of those for an AND gate. Thus, the PCs and
the last event time can be obtained from those of an AND gate by
complementing the inputs. For example, the EPC Cxz

W2 becomes Y 1 Exy,
and the DPC wxz

W2 becomes XExy 1 YLxy for a 2-input OR gate.
An XOR gate has no controlling value since the output is always sensitive

to changes in its inputs. This implies that the EPC Cxz
W2 for an XOR gate is

the constant 1. For the same reason, the last input event always deter-
mines the last output event, hence the DPC wxz

W2 is Lxy. The last event time
Az

W2, which can be computed using (3), is max~Ax, Ay! for all input
combinations.
Concerning the basic gates with complemented outputs, namely NAND,

NOR, and XNOR gates, event propagation is the same as the uncomple-
mented case. Hence, the PCs as well the last event times are identical to
those for the corresponding uncomplemented gates. All the relationships
among PCs that are shown for the AND gate in Figure 16 are valid for
other gate types as well. For example, Cxz

W2 $ wxz
W2 holds true for both OR

and XOR gates.
Generalization of the analysis to gates with more than two inputs is

straightforward. Consider a 3-input AND gate with inputs w, x, and y, and
output z. The EPC and the DPC for the last event on input w and the last
event time for z under the W2 model are shown in Figure 17. The early and
late predicates introduced in Section 4 are extended to multiple inputs; for
example, Ewxy 5 EwxEwy means that w is earlier than both x and y.
We now give the PCs and the last event time for an n-input AND gate;

other gates are similar. Let the gate inputs be x1, x2, . . . , xn and the

Fig. 16. Summary of the waveform models and their relationships.

Event Propagation Conditions in Circuit Delay Computation • 267

ACM Transactions on Design Automation of Electronic Systems, Vol. 2, No. 3, July 1997.



output be z. The EPC Cx1z
W2 for the last event on x1 can be expressed as

follows.

Cx1z
W2 5 X2X3 . . . XnEx1x2 . . . xn 1 X2X3 . . . XnEx1x3 . . . xn 1 . . .

1 X2 . . . Xn21XnEx1xn 1 X2X3 . . . Xn

where each term, except the last one, is of the form
Xj1 . . . XjmXi1 . . . XikEx1xi1 . . . xik, m1 k 5 n21,
0 # m # n 2 1, 0 # k # n 2 1, and

Ex1xi1 . . . xik 5 Ex1xi1Ex1xi2 . . .Ex1xik

In this expression, Ex1xij is the usual early predicate Ax1 # Ax1 j. The DPC
wx1z
W2 is given by

wx1z
W2 5 X1Cx1z

W2 1 X1X2X3 . . . XnLx1x2 . . . xs

where Lx1x2 . . . xn 5 Lx1x2 . . . Lx1xn, and Lx1xj is the usual late predicate
Ax1 $ Axj. The last event time Az

W2 is calculated by

Az
W2 5 H min~Axi1, Axi2, . . . , Axik! Xi1 5 0, . . . , Xik 5 0, k . 0

max~Ax1, Ax2, . . . , Axn! X1 5 1, . . . , Xn 5 1

Non-zero gate delays can also be easily taken into account. In Figure
18(a), the delays for an AND gate are shown as a function of its inputs. A
delay di is assumed for each input combination XY; this is known as the
state-dependent delay model [Sakallah 1995; Sun et al. 1994]. The resulting
last event time Az

W2 for the W2 model is shown in Figure 18(b); for each

Fig. 17. (a) the EPC Cwz
W2 and DPC wwz

W2; (b) the last event time Az
W2 for a 3–input AND gate.
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input combination XY, Az
W2 is simply shifted by di. Other common delay

models are special cases of the state-dependent delay case. For example, all
di’s are equal for the transport delay model. In the rise/fall delay model,
d0, d1, and d2 are equal to a falling delay df, and d3 is a rising delay dr.
With more complex waveform models, delays can be a function of other
parameters. For example, in the W1 model, delays can be dependent on
initial values as well. In such a case, when going from the W1 model to the
W2 model, the maximum delay among all values of initial values must be
retained for correctness.
The above discussion assumes that delays are fixed. A more realistic

model is the min/max delay model, in which the delay di of a gate varies
within a range @li, ui#, where li and ui are, respectively, lower and upper
bounds on di. An established result [Chen and Du 1993] for floating mode,
which therefore applies to the W2 model, is that delay computation with
min/max delays gives the same result as does a delay model where the
upper bounds are treated as fixed delays. To see why, consider the
waveform at the output node of a gate. Since the W2 model ignores all
values and events until the node stabilizes, the lower bound on gate delay
has no effect on the waveform of the gate output. The same is true of the
W3 model. Thus, any delay computation method that assumes the W2 or
W3 model and fixed delays is applicable to min/max delays as well. In the
W0 and W1 cases, however, lower bounds do have an impact on waveforms.
A delay range @li, ui# for a gate creates an interval of length ui 2 li and
value U on the output waveform, which introduces pessimism into PC
calculation. The expressions derived in Sections 3 and 4 for EPCs, DPCs,
and last event times with fixed delays for the W0 and W1 models can be
extended to handle min/max delays.
An issue related to the min/max delay model is robustness or the

monotone speedup property [McGeer and Brayton 1993]. A PC l is called
robust if the circuit delay computed using l does not increase when some
gate delays are reduced. In the scenario described by McGeer and Brayton
[1993], a PC or a delay computation method handles only fixed gate delays
that are set to their maximum values or upper bounds. However, because
these delays vary within a known range, some gates can have delays less
than their maximum values. Robustness requires that the delay computed
by the PC be an upper bound for any instance of the circuit. By this

Fig. 18. (a) State-dependent delays for a 2–input AND gate; (b) the last event time.
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definition, viability and the floating mode condition are robust. The fact
that the lower bounds have no effect on the W2 waveforms is alone
sufficient to confirm these results. On the other hand, delay computation
under the W0 and W1 waveform models is not robust2 because lower
bounds do affect waveforms in these cases. In our view, if gate delays are
uncertain, then delay computation should be performed with min/max
delays as described in the preceding paragraph, rather than using fixed
delays and then reasoning about the validity of results for min/max delays.
Because of the safeness of delay computation, the correct delay will be
found under any waveform model as long as the gate delays remain within
their prescribed ranges.
A final note on this issue is that adding delays into the last event time

does not affect the relationships in Figure 16. All the event times will
simply shift according to the delay of the gate, as in Figure 18(b). Thus all
the results established with zero delays are valid with non-zero delays also.

6. RELATIONS AMONG PCS

The basic PCs summarized in Figure 16 can be related to other PCs
proposed in the literature. We consider here static sensitization [Benkoski
et al. 1987], the loose condition [Chen and Du 1993], the VIPER condition
[Chang and Abraham 1993], the condition proposed by Perremans, Claesen
and DeMan [Perremans et al. 1989] denoted PCD, the Brand-Iyengar
condition [Brand and Iyengar 1986] denoted BI, and the Du-Yen-Ghanta
condition [Du et al. 1989] denoted DYG.

Static sensitization. Early attempts at solving the false path problem
[Benkoski et al. 1987; Ju and Saleh 1991] employed static sensitization.
Like static cosensitization, discussed in Section 4, static sensitization only
deals with final stable values, and hence implicitly assumes the W2
waveform model. It is known that this DPC can overestimate [Ju and Saleh
1992; Silva and Sakallah 1993] as well as underestimate [McGeer and
Brayton 1989] circuit delays. Under static sensitization, an input event
propagates to the output only when the side inputs have a (stable)
non-controlling value. For a 2-input AND gate, the PCs are, wxz

ST 5 Y,
wyz
ST 5 X, which are shown in Figure 19(a). The last event time Az

ST

calculated using Equation (3) is given in Figure 19(b).
Recall from our analysis in Section 4 that for a condition to be correct for

event propagation under the W2 model, it must cover the EPC CW2. For
static sensitization, just the opposite is true, that is, wST # CW2, which
implies that static sensitization is incorrect. To see why it can underesti-
mate the circuit delay, consider a 2-input AND gate whose inputs both have
a pulse whose initial and final values are 0. Assuming the input pulses
overlap and the gate has zero delay, the last event time at the output is

2An example is given in McGeer and Brayton [1989] where the so-called dynamic sensitiza-
tion, an informal version of propagation under our W0 model, is shown to fail the robustness
test.
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min~Ax, Ay!. In this case, however, static sensitization produces Az
ST

5 2` regardless of the input last event times. When static sensitization
does not underestimate, we have AW0 # AST. Since AST # AW2 is always
satisfied, AW0 # AST, which proves the following result.

THEOREM 6. When static sensitization does not underestimate delay, its
estimate is equal to or better than that of the W2 model.

Loose/Viper condition. The loose condition proposed by Chen and Du
[1993] is equivalent to that used by Viper [Chang and Abraham 1993]; we
refer to it as wLV. It assumes the W2 waveform model. Consider a 2-input
gate with inputs x and y and output z. Under this DPC, an event on input
x propagates to the output if the stable value Y of input y is non-
controlling, or the stable values Xand Y are both controlling and the event
on input x is earlier than that on input y. For an AND gate, these
conditions correspond to wxz

LV 5 XExy 1 Y, which is shown in Figure 20
along with the last event time Az

LV. Since wxz
LV # Cxz

W2, this DPC is incorrect
for event propagation. The example given in Figure 2 for the floating mode
condition applies to the loose condition also. The loose condition is correct
with respect to delay computation because Az

LV 5 Az
W2.

PCD condition. The condition proposed by Perremans et al. [1989] also
assumes the W2 waveform model. Their method computes for every node
v a dynamic variable Tv which represents an upper bound to the last event
time Av. According to PCD, an event on input x of a 2-input gate propagates
to the output z under the following conditions: If the stable value X of input
x is non-controlling, then Y must be non-controlling, too, or if the stable
value X of input x is controlling and Ax # Ty, then Y must be non-
controlling. From these conditions, we obtain the PCD condition wxz

PCD 5
XE9xy 1 Y for the 2-input AND case, where E9xy 5 Ax #Ty; see Figure
21(a). Since Cxz

W2 # wxz
PCD is not satisfied, the PCD condition is incorrect for

event propagation. The last event time Az
PCD is given in Figure 21(b), where

A9 5 max~E9xy z Ax, E9xy, z Ay!. The fact that E9xy $Exy 5 Ax # Ay

Fig. 19. (a) The static sensitization condition wxz
ST; (b) the last even time Az

ST.
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implies Az
W2 # A9; that is, the PCD condition is correct for delay

computation. However, its estimate is looser than that of the W2 model.

BI condition. Brand and Iyengar proposed a condition to fix the underes-
timation problem of static sensitization [Brand and Iyengar 1986]. Their
DPC orders the inputs to a gate, and for the sensitization of an input x, it
imposes the static sensitization condition only to the inputs following x.
The inputs preceding x are ignored. Figure 22 shows the BI DPCs wxz

BI and
wyz
BI and the last event time Az

BI for a 2-input AND gate. Note that the BI
condition is not symmetric, unlike those seen so far. Since input y is the
last input, the DPC wyz

BI is the constant 1. Because for each gate there is one
DPC wxz

BI that is the same as static sensitization, the BI condition is also
incorrect for event propagation. On the other hand, it is correct for delay
computation, since Az

W2 # Az
BI # Az

W3. As can be seen, the delay for the
input combination XY 5 00, which is the source of error for static
sensitization, is chosen to be Ay, the delay up to input y.

DYG condition. Although the BI condition solved the problem of underes-
timation with static sensitization, the tightness of its estimates are very
dependent on how gate inputs are ordered. For example, when the longest
topological path is made up of signal nodes all of which are the last input to
some gate, this path is assumed sensitized by the BI condition. To reduce
the pessimism of the BI condition, Du et al. [1989] propose a DPC that uses
topological delays as a “heuristic.” Let dv and Dv be the length of the
shortest and longest path ending in node v, respectively. Consider a 2-input
gate with inputs x and y and output z. According to the DYG condition, an
event on input x propagates to the output z under the following conditions:
If dy . Ax, then X must be controlling, or if Dy , Ax, then Y must be
non-controlling.
Depending on the values dx, D, dy, and Dy, there are 7 possible cases for

the 2-input AND gate:

(1) Ax , dy, dx # Ay # Dx~Ax , Ay! : wxz
DYG 5 X, wyz

DYG 5 1

Fig. 20. (a) The loose/Viper condition wxz
LV; (b) the last event time Az

LV.
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(2) Ax , dy, Ay . Dx~Ax , Ay! : wxz
DYG 5 X, wyz

DYG 5 X

(3) dy # Ax # Dy, Ay , dx~Ax . Ay! : wxz
DYG 5 1, wyz

DYG 5 Y

(4) dy # Ax # Dy, dx # Ay # Dx : wxz
DYG 5 1, wyz

DYG 5 1

(5) dy # Ax # Dy, Ay . Dx~Ax , Ay! : wxz
DYG 5 1, wyz

DYG 5 X

(6) Ax . Dy, Ay , dx~Ax . Ay! : wxz
DYG 5 Y, wyz

DYG 5 Y

(7) Ax . Dy, dx # Ay # Dx~Ax . Ay! : wxz
DYG 5 Y, wyz

DYG 5 1

As with the BI condition, for many cases, we have wxz
DYG # Cxz

W2, so the DYG
condition is incorrect for event propagation. Regarding the last event time,
we find that for cases 1, 3, and 4, Az

DYG $ Az
W2, and that for cases 2, 5, 6,

and 7, Az
DYG 5 Az

W2. So the DYG condition is correct for delay computa-
tion.
Although we have established relationships among PCs and last event

times for individual gates, they are applicable to an entire circuit, as
proved by the following theorem.

THEOREM 7. Consider two delay computation methods Q and R whose
respective PCs lQand lR satisfy lQ $ lR for any gate in a circuit. Then, for
any path P in the circuit, lP

Q $ lP
R and tQ $ t R, where tQ and t R are the

circuit delays computed by Q and R, respectively.

PROOF. Let path P consist of nodes 0,1, . . . , k.

Fig. 21. (a) The PCD condition wxz
PCD; (b) the last event time Az

PCD.

Fig. 22. (a) The BI conditions wxz
BIand wyz

BI; (b) the last event time Az
BI.
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lP
Q 5 P

i50

k21

li, i11
Q , and lP

R 5 P
i50

k21

li, i11
R

By assumption, we have l i, i11
Q $ l i, i11

R , for i 5 0 . . . k 2 1, so lP
Q $

lP
R. The proof for tQ $ t R can be obtained from the proof of Theorem 3

simply by substituting Q for Mand R for W0. e

The relationships among all PCs can be defined as a partially ordered set
(poset) with respect to the covering relation and can be represented by a
Hasse diagram. Figure 23(a) shows the Hasse diagram for a poset of all
PCs discussed so far, with the exception of the BI and DYG conditions. A
null PC wÀ 5 0 is also added, which does not allow any event to
propagate. The other extreme PC is CW3 5 wW3 5 1, which propagates
any event. Everything else lies between these extremes, and is tighter than
CW3 and looser than wÀ. (For clarity, the obvious relations CWi $ wWi,
where i 5 0,1,2, are not shown.) The EPC CW0 is the exact one for event
propagation. A condition Q for which CQ $ CW0 holds is correct by Defini-
tion 5. The conditions (EPCs) with this property are indicated in Figure
23(a). All others are incorrect. The BI and DYG conditions not shown in the
figure have conditions dependent on ordering of inputs and topological
delays, respectively, and vary between wSTand CW3. Like static sensitiza-
tion, they are incorrect for event propagation.
Another poset can be defined for the circuit delay estimates of the PCs

based on the $ relation; see Figure 23(b). The extremes here are tÀ 5

Fig. 23. Hasse diagrams for (a) a poset of PCs; (b) a poset of the delay estimates of the PCs.
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2`, which corresponds to wÀ, and tW3 5 Dmax, which is the longest
topological delay computed by CW3 or wW3. The exact delay is tW0, computed
by either CW0 or wW0. Correct or safe PCs, indicated by shading in the
figure, produce an estimate between tW0 and tW3. Incorrect PCs such as
static sensitization can produce an estimate less than tW0.
The poset of PCs whose Hasse diagram appears in Figure 23(a) suggests

that other PCs can be obtained by creating Boolean functions of the values
of inputs and predicates based on the ordering of input events. For the
combined W2 and W3 models, the number of all possible PCs is 625.3 This
number grows if other parameters such as topological delays are included.
Obviously, many of these PCs will be meaningless. However, useful ones
can be found, as described in the next section.

7. APPLICATIONS

With the help of the preceding analysis, one can create new and potentially
useful PCs. Of particular interest are those that only depend on final stable
values, like static cosensitization. We have found two such DPCs that we
call wS1 and wS2; they are shown in Figure 24 for a 2-input AND gate, along
with their corresponding last event times computed according to Equation
(3). As the figure reveals, S1 and S2 are a combination of static cosensiti-
zation and static sensitization, and hence blend the safety of the former
and the tightness of the latter. While S1 imposes static sensitization on
input y, S2 imposes static sensitization on input x. Their estimates Az

S1 and
Az

S2 of last event times lie between Az
W2 and Az

SC.
While S1 and S2 can be used individually, we propose the following DPC,

called safe static (SS), that makes use of both. It is defined as follows for
any 2-input gate:

wSS 5 H wS1 if Dx , Dy

wS2 otherwise

We note that our safe static SS is different from the similar-sounding DPC
used by Silva and Sakallah [1994], which is equivalent to the floating mode
condition. The idea here is to impose static sensitization, which has tighter
conditions, on the input whose topological delay is longer. This reduces the
probability of the longer path being reported true when it is actually false.
In this respect, SS is similar to the DYG condition, which improves on the
BI condition with the help of topological delays. Comparing the last event
time for safe static with that for DYG, we find that for cases 1, 3, and 4,
Az

DYG $ Az
SS, and that for cases 2, 5, 6, and 7, Az

DYG $ Az
SS. So safe static

provides a better estimate of the circuit delay than DYG.
We now give an example to illustrate the differences in the estimates

provided by all the PCs discussed in this paper, with the exception of PCD,

3With three possible orderings of two input event times Ax and Ay, and two final values X and
Y, one can create ~3 1 2!2

2

5 625 Boolean functions.
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for which the upper bound Tv computed internally at run time for each
node cannot be reproduced. The estimates for the last event time (or delay)
for the circuit shown in Figure 1 are given in Table I along with the
corresponding conditions and longest paths. Observe that the delay esti-
mates agree with the poset of Figure 23(b). The exact delay calculated
under the W0 model depends on the selection of V, the set of all input
waveforms. If any number of events are allowed on the input waveforms,
the exact delay is 6. If the number of input events is limited to a maximum
of 1 (transition mode), the exact delay reduces to 4. For the former case, the
delay calculated by static sensitization is an underestimate, while, for the
latter case, it is the same as the exact delay. The new SS condition achieves
the same delay as W2. Static cosensitization, on the other hand, is as
pessimistic as topological analysis.
To evaluate the tightness of the proposed DPCs S1, S2, and SS, we have

performed experiments with CAT [Yalcin and Hayes 1995], a symbolic
timing analyzer that can compute a circuit’s delays and associated condi-
tions with any PC. The delay estimates of S1, S2, and SS along with those
of W3 (topological), static cosensitization, DYG, W2 (floating mode condi-
tion and viability), and static sensitization are shown in Table II for some
well-studied circuits: the ISCAS-85 benchmarks, carry-skip adders, and
several examples from Devadas et al. [1993].
As expected, the estimates of S1, S2, and SS lie between those of W2 and

static cosensitization. For the ISCAS-85 circuits, S1 and S2 yield the same
delay values as W2 except for c1908, where their estimate is equal to the
longest topological delay. For carry-skip adders, S1 and S2 report the
longest topological path delay. The delay estimates of static sensitization
for cla.16 and tau92ex2 are less than those of W2, which indicates the
possibility of underestimation for static sensitization. The estimates of S1
and S2 are all safe, as shown in the table. The estimates of SS are very
good; they are the same as those of W2 for all the examples except two
cases, where SS overestimates by only 1 (tau92ex1) and 2 (tau92ex2).

Fig. 24. The S1 conditions wxz
S1 and wyz

S1, and Az
S1; (b) the S2 conditions wxz

S2 and wyz
S2, and Az

S2.
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Figs. 25 and 26.

These results suggest that SS is quite tight, especially considering the fact
that it employs stable signal values only.
Finally, we make some observations regarding the computation times.

While computation is linear in circuit size for the W3 model (the topological
case), it is, in general, exponential for the W2 model. However, the delay
computation method, which incorporates a particular PC as well as its
implementation, has a significant impact on computation time. A reason-
ably fair comparison can be done among PCs that assume the same
waveform model. In our case, we have observed that the computation times
for PCs that only depend on stable signal values, e.g., DYG and safe static,
are similar. This, along with the results on delay estimates, suggests that
safe static provides an excellent accuracy/computation time tradeoff under
the W2 model.

8. CONCLUSIONS

We have presented a systematic and unified analysis of event propagation
conditions, which have been mostly studied informally before. A series of
waveform models has been developed to represent signal behavior at

Table I. Delay Estimates for the Circuit of Figure 1

Propagation condition Delay

A longest path
along which an

event can propagate

Condition/waveforms for an
event to propagate along

longest path

W3 (topological) 10 a 2 c 2 e 2 i 2 l 2 o 2 p 2 z 1
Static co-sensitization 10 a 2 c 2 e 2 i 2 l 2 o 2 p 2 z X
BI (Brand-Iyengar) 7 b 2 j 2 l 2 o 2 p 2 z Y#

DYG (Du-Yen-Ghanta 7 b 2 j 2 l 2 o 2 p 2 z Y#

S1 6 a 2 c 2 e 2 h 2 n 2 p 2 z X
S2 7 b 2 j 2 l 2 o 2 p 2 z Y
SS (safe static) 6 a 2 c 2 e 2 h 2 n 2 p 2 z X
W2 (viability, floating) 6 a 2 c 2 e 2 h 2 n 2 p 2 z XY
W1 (multiple input events) 6 a 2 c 2 e 2 i 2 l 2 o 2 p 2 z See Figure 25
W0 (multiple input events) 6 a 2 c 2 e 2 i 2 l 2 o 2 p 2 z See Figure 26
Static sensitization 4 a 2 c 2 g 2 z X
W1 (single input event) 4 a 2 c 2 g 2 z xXyY, Ax 5 Ay 5

ax 5 ay 5 0
W0 (single input event) 4 a 2 c 2 g 2 z xXyY, Ax 5 Ay 5

ax 5 ay 5 0
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different levels of detail. Our starting point is a rigorous waveform model,
called the exact or W0 model, that specifies each event occurring in a
circuit signal. With the novel use of a smoothing operator, we have
obtained approximate waveforms by eliminating signal values from the
exact model. Corresponding to the waveform models, a set of event propa-
gation conditions or PCs is derived, which allows accuracy/computation
tradeoffs to be made. We showed that most existing conditions are not
based on how events actually propagate, but rather appear to have been
developed simply to obtain an upper bound on the circuit delay. The
relationships among the derived PCs and current conditions are analyzed.
A by-product of this analysis is the ability to derive new PCs. We have
demonstrated such a PC, called safe static (SS). The experimental results
on a variety of circuits including the ISCAS-85 benchmarks indicate that
the proposed SS PC produces more accurate estimates of the circuit delay
than existing PCs with similar assumptions on circuit signals.

APPENDIX

PROOF OF THEOREM 1. We use (2-dimensional) induction on m and n, the
number of events on inputs x and y, respectively. For this purpose, we
write Az

W0 as a function of m and n, that is, Az
W0~m, n!. The EPCs Cxz2j

W0 and
Cyz2k

W0 are functions of m and n as well. So from (4), we have

Cxz2j
W0 ~n! 5 O~t y

i # t x
j # t y

i11!~vy
i Þ 0! (17)

Cyz2k
W0 ~m! 5 O~t x

i # t y
k # t x

i11!~vx
i Þ 0! (18)

where 1 # j # m, 1 # k # n. Equation (5) can thus be rewritten as

Table II. Comparison of Delay Estimates Computed by Various PCs.

Circuit W3(topolotical) Static co-sens. DYG S1 S2 SS W2 Static sens.

c432 17 17 17 17 17 17 17 17
c499 11 11 11 11 11 11 11 11
c880 24 24 24 24 24 24 24 24
c1355 24 24 24 24 24 24 24 24
c1908 40 40 37 30 40 37 37 37
c2670 32 30 31 30 30 30 30 30
c3540 47 46 46 46 46 46 46 46
c5315 49 47 47 47 47 47 47 47
c7552 43 42 42 42 42 42 42 42
csa.32.2 97 97 38 97 97 38 38 38
csa.64.4 161 161 46 161 161 46 46 46
csa.128.8 289 62 289 289 62 62 62 62
cla.16 34 34 34 34 34 34 34 33
tau92ex1 27 27 25 27 26 25 24 24
tau92ex2 93 62 56 55 46 44 42 41
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Az
W0~m, n! 5 max~t x

1 z Cxz21
W0 ~n!, . . . , t x

m z Cxz2m
W0 ~n!, t y

1 z Cyz21
W0 ~m!, . . . , t y

n

z Cyz2n
W0 ~m!! (19)

For the basis, we consider m 5 1, n 5 0, and m 5 0, n 5 1. (When
m 5 n 5 0, that is, no event on x and y, Az

W0~0,0! is trivially 2`.) For
the first case, there is a single event on input x and no event on y. For the
only event on x occurring at tx

1, we have Cxz21
W0 5 ~vy

0 Þ 0!. Substituting
into (19), we obtain Az

W0~1,0! 5 tx
1 z ~vy

0 Þ 0!, which evaluates to tx
1 if

~vy
0 Þ 0!, and 2` otherwise. This means that if input y has the

controlling value (0), the event on x does not propagate; otherwise it does,
which is indeed correct. The second case, Az

W0~0,1! is similar. Hence, the
basis holds.
For the inductive step, assume that the theorem holds for Az

W0~j, k!, j
1 k , m 1 n. We next show that it holds for Az

W0~m, n! also. First
suppose that tx

m 5 ty
n. Notice that the definition of event implies that the

condition in the summation of (17) evaluates to 1 either in the nth or
~n 2 1!st interval, so Cxz2m

W0 5 1. Similarly, Cyz2n
W0 5 1. Because of the

ordering of the events, we also have tx
0 # tx

1 # . . . # tx
m and ty

0 #

ty
1 # . . . # ty

n. Hence, Az
W0~m, n! 5 tx

m 5 ty
n, which is the expected

result.
Now suppose that tx

m Þ ty
n. Depending on the values of vx

m and vy
n, and

whether tx
m . ty

n or tx
m , ty

n, there are eight possible cases, as shown in
Table III. As an example, consider the case, vx

m 5 0, vy
n 5 0,

tx
m . ty

n. In this case, we have Cxz2m
W0 5 0 from (17). Since tx

m is the latest
event, the condition in the summation of (18) evaluates to 0 for the last
iteration i 5 m for all k. Thus, Cyz2k

W0 is a function of m 2 1. As a result,
Az

W0~m, n! reduces to Az
W0~m 2 1, n!, for which, by hypothesis, the

theorem holds. In another example, consider vx
m Þ 0, vy

n 5 0, tx
m , ty

n. It
is easy to see that Cyz2n

W0 5 1. Since ty
n is the latest event, we have

Az
W0~m, n! 5 ty

n, as expected. Similarly, in all the other cases in Table III,
Az

W0~m, n! either reduces to Az
W0~j, k!, j 1 k , m 1 n, which is

assumed to hold, or yields the required value. Hence, by the principle of
induction, the theorem holds for all m and n. e
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Table III. The Last Event Time Az
W0 as a Function of vx

m and vy
n.

vx
m vx

n tx
mvs.ty

n Az
W0~m, n!

0 0 tx
m . ty

n Az
W0~m 2 1, n!

0 0 tx
m . ty

n Az
W0~m, n 2 1!

0 1, U tx
m . ty

n tx
m

0 1, U tx
m . ty

n Az
W0~m, n 2 1!

1, U 0 tx
m . ty

n Az
W0~m 2 1, n!

1, U 0 tx
m . ty

n ty
n

1, U 1, U tx
m . ty

n tx
m

1, U 1, U tx
m . ty

n ty
n
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