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The structural relations established among agents has influence on the performance of decentralized ser-
vice discovery process in Multi-Agent Systems (MAS). Moreover, distributed systems should be able to adapt
their structural relations to changes in environment conditions. In this paper, we present a Service-Oriented
MAS where agents initially self-organize their structural relations based on the similarity of their services.
Agents integrate a mechanism that during the service discovery process facilitates the self-organization of
their structural relations in order to adapt the structure of the system to the service demand. This mech-
anism facilitates the task of decentralized service discovery and improves its performance. Each agent has
local knowledge about its direct neighbors and the queries received during discovery processes. With this
information, an agent is able to analyze its structural relations and decide when it is more appropriate to
modify its direct neighbors and select the most suitable acquaintances to replace them. The experimental
evaluation shows how this self-organization mechanism improves the overall performance of the service
discovery process in the system when service demand changes.
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1. INTRODUCTION

Nowadays, there is a trend towards large-scale, complex, and highly-dynamic systems
in order to deal with new business models and requirements [Werbach 2000]. Service-
Oriented Multi-Agent Systems (SOMAS) are considered to be a technology to sup-
port these new models where there is a high number of entities offering services that
change frequently and look for other entities to collaborate with in order to obtain a
resource or to deal with a complex goal [Huhns 2002; Huhns and et al. 2005; Brazier
et al. 2009]. SOMAS integrate Service-Oriented Computing (SOC) and Multi-Agent
Systems (MAS) technologies where: (i) service standards provide an infrastructure for
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39:2 E. del Val et al.

the interaction among agents; (ii) MAS offer a more general and complex notion of Ser-
vice Oriented Architectures (SOA); and (iii) intelligent and social capabilities of agents
allow defining complex systems.

In SOMAS, services are considered to be the basic building blocks of complex busi-
ness applications. Services are platform-independent and can be described, discovered,
and composed dynamically. These features make services suitable for giving support to
the high rate of change in business demands. However, in order to provide more flexi-
bility in the context of business applications, services should be reactive and proactive.
They should be aware of what is happening in their environment and able to perform
local actions based on their observations. Agents are able to learn from previous ex-
periences and update and reason about their information in order to improve their
decisions and achieve their goals. Moreover, SOMAS should provide mechanisms to
provide higher levels of functionality and to facilitate the emergence of new services in
a dynamic way exploiting existing services.

Service discovery is a challenging task for SOMAS when changes in the environment
occur (i.e., distribution of service demand, agents that leave and enter in the system)
and there is not a central repository responsible for the management of resources and
the maintenance of the system structure. Therefore, each agent should be able to locate
another agent that provides the required service and to update its structural links to
obtain more useful relations. The success of the service discovery process relies on
the collaboration of other agents in the system [Del Val et al. 2012b] and the self-
organization of the structural relations between agents [Abdallah and Lesser. 2007;
Gaston and desJardins desJardins desJardins 2005; Kota et al. 2012].

In systems where the environment conditions or requirements change and nodes
only have local knowledge, the inclusion of self-organization mechanisms offers ad-
vantages such as increased scalability and robustness and reduced communication.
In this paper, we present a decentralized service discovery system that integrates a
mechanism to facilitate the self-organization of the structural relations established
among agents in order to adapt the system structure to the service demand. The
self-organization mechanism considers local knowledge about interactions with direct
neighbors during the discovery process. With this information, each agent is able to
reason about when it is more appropriate to modify its structural relations with its di-
rect neighbors and which are the most suitable acquaintances to replace them. Some
of the scenarios where the proposal presented here can be applied are: file sharing
P2P systems [Sun and Garcia-Molina 2004], streaming applications [Lin et al. 2009],
overlay routing [Blanc et al. 2005], network of services [ITAO et al. 2001; Viroli and
Zambonelli 2010], and sensor networks [Fernandez-Marquez et al. 2012] among oth-
ers.

The rest of the paper is organized as follows: in Section 2, a review of related
work about decentralized search of resources and self-organization proposals is pre-
sented. In Section 3, the context where the proposed service discovery process and
self-organization mechanism are going to be applied is described. In Section 4, we
present our formal model for decentralized service discovery that underpins our pro-
posed self-organizing mechanism. In Section 5, the service discovery process and the
self-organization of the structural relations between agents are explained. A set of ex-
periments to validate the structural self-organization mechanisms are presented in
Section 6. Finally, in Section 7, some conclusions and final remarks are presented.

2. RELATED WORK

Nowadays, decentralized systems appear as an alternative to traditional centralized
approaches. The evolution of the Internet and communications, and the emergence of
new market models have generated new requirements such as decentralized resource
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search or dynamic self-organization to changes in the environment in order to improve
the system performance. In large-scale systems, where there is a lack of global knowl-
edge, decentralized search and dynamic self-organization generates new challenges
such as dealing with uncertainty or action coordination based only on local states,
which cannot be tackled by traditional approaches [(ed.) di Marzo Serugendo et al.
2011; Biskupski et al. 2007]. In this section, we present several works that deal with
decentralized service discovery and self-organization in distributed systems.

2.1. Search in Unstructured Environments

Search approaches commonly used in decentralized systems, where all the entities
are considered to be equal and there is an arbitrary topology, are based on blind or
informed algorithms.

Blind algorithms do not consider any information about resource locations and use
flooding or random strategies that can overload the system with the traffic generated
during the search process [Ouksel et al. 2004; Zhong 2006].

In order to prevent the generation of traffic, informed algorithms that consider local
information have been proposed [Crespo and Garcia-Molina 2002; Basters and Klusch
2006]. The information is about their direct neighbors or statistics of previous searches
and it is stored in local registries. These algorithms require a period of time to collect
information that improves the search. If links between peers change frequently, sta-
tistical information stored in local indexes could become useless. Moreover, some of
the heuristics that are used to guide the search process could overload some peers and
leave other potential peers without traffic.

There are other informed approaches where the underlying structure of the system
is loosely structured using certain criteria. This facilitates the search process [Zhang
et al. 2004; Bianchini et al. 2009]. Initially, agents are connected randomly and they
use a reorganization algorithm to group agents with similar services together. In order
to avoid isolated clusters of agents, these algorithms establish a percentage of similar
and dissimilar agents that should be in the neighborhood of the agent. For distributed
searches, agents use algorithms based on similarity and if they do not find any similar
service, they use random algorithms. The main disadvantage of these approaches is
the high cost of communication required to organize the entities into communities and
the consideration of a fixed number of neighbors that should be similar and dissimilar
to the agent which reduces the flexibility of the system.

Some of the approaches that use blind or informed strategies to locate resources in
decentralized systems consider Semantics. As Semantics we understand the introduc-
tion of machine interpretable languages in the descriptions of resources. Therefore, Se-
mantics plays an important role in reducing the participation of the user in the service
discovery process. Specifically, the inclusion of Semantics in the service discovery im-
plies the use of ontologies and semantic markup languages such as OWL-S !, SAWSDL
2, or WSMO 2. Semantic markup languages provide a formal and explicit specification
of shared concepts. These languages facilitate the description of services and queries
with a logic formalization. Markup languages exploit ontologies to facilitate sharing,
reuse, composition, and mapping, which makes services computer interpretable. As a
consequence, agents can reason about services to provide automatic service discovery,
execution, and composition and inter-operation [Mcllraith et al. 2001]. With regard
to service discovery, semantics provide matching flexibility and accuracy considering
those concepts that have the same meaning to be similar concepts even though they

Lhttp://www.w3.org/Submission/OWL-S/ visited:26/03/2013
2http://www.w3.0rg/2002/ws/sawsdl/ visited:26/03/2013
Shttp://www.w3.org/Submission/WSMO/ visited:26/03/2013

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



394 E. del Val et al.

are syntactically different. In the context of decentralized system for resource location,
Semantics has been included in several ways: as one of the criteria to organize the net-
work structure, to provide new ways of resource location, and to improve the accuracy
of the search results [Haase et al. 2008; Bianchini et al. 2009; Ding et al. 2010; Del Val
et al. 2012¢; Shaikh et al. 2012; Kontominas et al. 2013].

2.2. Emergence and Self-Organization

Emergence and self-organization are close concepts that are used in the context of com-
plex, adaptive systems. We considered emergence as the phenomenon in which global
behavior arises from individual actions of its components. These elementary compo-
nents have not a global view of the whole system (i.e., the properties of the system are
not present in its components). From our point of view, the concept of self-organization
involves an ordered relation among the components. Systems improve their order by
taking local decisions without a central control that decides how the system evolves.
This behavior can be optimized and usually tends to an equilibrium state.

Emergence is considered as the phenomenon where global behavior arises from the
interactions between the local parts of the system [Wolf and Holvoet 2005; Fernndez
et al. 2014]. An example of emergence in decentralized systems such as P2P is the use
of Ant Colony Optimization algorithms [Caro et al. 2005; Forestiero et al. 2009; Leito
2013]. These algorithms are inspired on the behavior of ants and specifically on a prin-
ciple called stigmergy. Stigmergy is an indirect mechanism of communication that is
based on the information that ants leave in the environment. This information is con-
sidered by other ants in order to make decisions. Works based on stigmergy propose a
hybrid protocol for routing and for improving the efficiency of the paths. This protocol
combines reactive ants, which use broadcast mechanisms for route discovery and boot-
strap their routing tables, and proactive ants, which use unicast mechanisms based on
probabilities for system maintenance.

Self-organization is considered the mechanism that enables a system to arrange its
organization at run-time, without explicit external commands. Starting from entities
that are structured in a sub-optimal organization or that are not organized at all, a
self-organizing system is able to form a specific organization to pursue a well-defined
goal [Kota et al. 2012]. The main issue in self-organization is to determine which is
the best mechanism to reorganize the current structure through the execution of local
actions to achieve the desirable behavior with a high degree of uncertainty in the sys-
tem. In this context, researchers from different areas have proposed mechanisms that
face the problem of self-organization [Serugendo et al. 2005]. Specifically, we review
some of the proposed approaches in Peer-to-Peer and Multi-Agent Systems.

In P2P approaches, there are works where peers consider different criteria to im-
prove the organization of their structural relations. Wang et al. [Wang 2011] present
a P2P system where peers consider trust values about their neighbors in order to de-
cide which local actions are more appropriate to improve the structure of the system.
Semantic information and trust in each peer of the network are taken into account to
form groups of peers with similar domains. The system has a hierarchical structure
where ’expert-peers’ contain information about the set of peers that have information
related to their domain. To build this structure and acquire knowledge about the en-
vironment, a broadcast mechanism and trust values are used by the peers. However,
the hierarchical organization in peers and ’expert-peers’ can overload ’expert-peers’
since they initially received and process all the queries and also the system is more
sensible to deliberate attacks. Condie et. al also consider trust in order to adapt a ran-
dom network of peers [Condie et al. 2004]. A peer i considers 'local trust values’ with
respect each peer it has interacted with. A ’local trust value’ represents the number
of requests that have been solved successfully by peer j (i.e., the peer that interacts
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with i). If a peer ¢ has an acquaintance j that has a higher trust value than one of
its current neighbors, then it changes its current link by a new one with peer j. In
open environments where the peers that are part of the system changes it is difficult
to establish these ’local trust values’ because peers do not have information about pre-
vious direct interactions with new peers.There are other approaches that instead of
trust mechanisms they use mechanisms based on tags, gossip, and ostracism in or-
der to change the structure of the network to avoid relationships with untrustworthy
neighbors [Griffiths and Luck 2010; Savarimuthu et al. 2011].

There are other approaches that instead of considering ¢rust they consider similar-
ity to decide when the local structure of peers should be reorganized. Raftopoulou and
Petrakis present a iCluster overlay network that manages text files. The initial struc-
ture of peers is random [Raftopoulou and Petrakis 2008]. The system has two global
parameters that establish the number of long-links (links with dissimilar peers) and
short-links (links with similar links) that a peer should have. Periodically, each peer
evaluates its degree of internal clustering (degree of similarity of short-links). If the
degree of internal clustering is under a threshold, the peer initiates a reorganization
sending a message to m of its neighbors to find other peers enough similar to its inter-
ests and replace its current links. A drawback of this proposal is that initially nodes
need to find possible candidates to create clusters through random walks which affects
to the success of the searches. Another drawback is that the decision of considering re-
organization of the structural links is done periodically instead of when peers consider
more appropriate. Moreover, when peers cannot do a search based on similarity, they
use a k-flooding algorithm that increases the traffic in the network. Another thing that
this approach do not consider is the inclusion of semantic information. There are other
approaches that consider similarity based on the semantic description of the resources
of the nodes of the network. Al-Asfoor et al. propose an initial random structure where
nodes self-organized their neighbors considering a First-In First-Out or semantic crite-
ria [Al-Asfoor et al. 2012]. The authors conclude that the self-organization mechanism
based on semantics provides best results. However, this criterion could divide the sys-
tem into several isolated clusters that provide similar resources.

Reinforcement Learning has been used in MAS to dynamically adapt the links of
agents calculating a probability that is based on information related to its current
state, previous decisions, and environment conditions [Einhorn and Mitschele-Thiel
2008]. Abdallah et al. presents a self-organization mechanism where each agent, when
it receives a message, updates its current state using a reinforcement algorithm and
decides if it is appropriate to reorganize stochastically its current links adding or re-
moving neighbors [Abdallah and Lesser. 2007]. The reinforcement learning algorithm
used in the decision making process to update the behavior of agents is called Weighted
Policy Learner (WPL). This gradient algorithm allows agents to learn stochastic poli-
cies that make agents to slow down learning when moving away from a stable policy
and speedup learning when moving towards a stable policy. This approach improves
previous proposals based on reinforcement learning [Peshkin and Savova 2002] since
it considers the dynamism of the network. Nevertheless, the decision making algo-
rithm considers the reorganization of agents links based on a predefined probability.
Moreover, the decision of removing neighbors is also conditioned by a constant that is
dependent of the average degree of connection of the network.

There are other approaches focused in cooperative problem solving in organizations
and how these organizations can be rearranged in order to improve its performance as
the environmental conditions and the organizational goals change [Kota et al. 2012;
Kamboj and Decker 2007]. Many of these approaches rely on hierarchical structures
where agents change their relations in order to distribute their workload to subordi-
nates. The change of relations is based on a utility function that evaluates the reor-
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ganization cost, the load of the agent, and the communication cost. However, some of
these models assume that all the agents are acquaintance of each other (fully con-
nected network) that is not a realistic situation in open environments and also rely on
the hierarchical structure that reduces the flexibility of the system. There are other
approaches that consider self-organization mechanisms in order to provide a service
composition that deals with an specific goal [Khondoker et al. 2011; Nallur and Bah-
soon 2012]. The main drawback of these approaches is that they assumed that there is
a global view of all the services available in the system and that broadcast mechanisms
are used.

In this article, we present a Service-Oriented MAS where the underlying structure
is a growing network. When an agent enters in the system, it establishes a link with a
set of agents already present based on a probability that considers the semantic sim-
ilarity of the attributes of the agents (i.e., the services that the agents offer). Details
can be found in [Del Val et al. 2012a]. The service discovery process carried out by the
agents in the system includes a self-organization mechanism to reorganize the struc-
tural relations between agents when environment conditions such as service demand
change. This proposal attempts to improve previous approaches in several ways:

— from the structural point of view:

— the system is not based on a hierarchical organization. All the agents are consid-
ered to be equal;

— our proposal differs from other proposals in the initial self-organization of the
network. In the majority of the proposals for decentralized service discovery, the
initial structure of the network is random. In our proposal, we present a grow-
ing network that is self-organized from the beginning since the connections be-
tween new agents and agents already present in the system are based on a prob-
ability that considers the semantic similarity of the attributes of the agents (i.e.,
the services of the agents). The semantic service descriptions of the services that
the agents offer are public. The semantic similarity between semantic service
descriptions is calculated using a matching function that establishes the degree
of match between them. The initial network structure generated considering a
self-organization criterion called homophily is adapted through self-organization
mechanisms to changes in the service demand,;

— local information is considered to create the initial structure, during the service
discovery process, and to self-organize the structural links as service demand
changes;

— from the service discovery point of view:

— there is no an initial period to acquire knowledge through flooding strategies;

— an agent does not maintain information about routes that could change frequently
in highly dynamic environments. Each agent only maintains information about
who are its neighbors and the services that offer its neighbors;

— the service discovery is not based on previous information or statistics that require
a training period in order to be reliable;

— the service discovery is based on semantic similarity between the service descrip-
tions of the agents and the degree of connection of the agents. Similarity is calcu-
lated considering the semantic information of the agents and not just keywords.
We assume that the service descriptions and the degree of connection of an agent
is known by its direct neighbors;

— from the self-organizing point of view:

— each agent takes advantage of the information generated during its activity in the
service discovery. With this information, agents can reason about when is more
appropriate to consider a structural change in its neighborhood. It is not necessary
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Fig. 1. An example of a decentralized service discovery system. (a) Agent i establishes a link with two
similar agents k and j and with a dissimilar one n; Agent ¢ only knows its direct neighbors k, j, and n. If
agent i needs to locate a service (i.e., rentalCar), it will forward the query to its most promising neighbor
(i.e., k) based on the homophily between the neighbor and the target agent (i.e., t) that should provide the
required service and the degree of the neighbor. (b) Agent : decides to reorganize its links and changes its
link with n, since it is not being used, by a link with a previously known acquaintance v.

to have a flooding phase in order to obtain information for the self-organization
process;

— the acquaintances that are considered to establish a profitable relation with are
established taking into account the activity of the system instead of using global
knowledge or randomly selecting neighbors. The set of acquaintances that an
agent maintains is limited to a fixed number;

— agents evaluate the utility of their links considering not only information related
to the traffic in the network but also semantic information about services.

3. SERVICE DISCOVERY SCENARIO

To illustrate in which consists the service discovery and the self-organization mech-
anism we present the following scenario. Consider a network of services as a form
of distributed computing system. This network contains different groups of semantic
web services provided by software agents as a part of an overlay network. Agents offer
services that are not enough to deal with their goals. Therefore, they should interact
with other agents in order to achieve a task. However, agents only know their direct
neighbors. In order to locate potential provider agents, they need to start an efficient
service discovery process that only requires a few steps. Moreover, we assume that the
goals of agents changes over time, therefore, the service demand changes and agents
could consider more profitable changing their structural relations in order to reach the
required provider agents in less steps.

The scenario in Figure 1 shows a network of agents that offer semantic web services
from different categories. The structural relations between these agents have been
established taking a homophily criterion into account. Homophily is a social principle
that establishes that a contact between similar people occurs at a higher rate than
among dissimilar people. Homophily implies distance in terms of social characteristics
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that can be translated into network distance [McPherson et al. 2001]. In a structure
that is based on homophily, an individual has a higher probability of being connected
to similar individuals than to dissimilar ones. In the case of agent i, it has connections
with agents k and j, which offer similar services, and agent n, which offers a dissimilar
service. Note that agents that offer services from similar categories are represented in
Figure 1 with similar colors. Agent i offers the service bookHotel; however, in order
to achieve one of its goals, it needs to locate an agent that offers a service similar to
rentalCar from the Transport category. At that moment, agent i creates a query g = {,
rentalCar, Transport, TTL, ¢ path = {k}|k € A} that consists of the identifier of the
agent that creates the query, the required semantic service description, the semantic
category associated to the service, the Time To Live (TTL), which is the maximum
number of times that the query can be forwarded, the threshold that indicates the
degree of similarity that an agent considers to stop the search, and the set of agents
that participate in the search process to reach the target agent. If the query exceeds
the TTL, it is considered to be a failure of the service discovery process. Otherwise,
the query is forwarded to one of the neighbors. It is assumed that all the agents are
collaborative and follow the same criterion to forward the queries.

In the scenario shown in Figure la, agent i should choose one of its neighbors,n,
j, or k, to forward the query ¢. In order to select the most promising neighbor, the
agent i considers: (i) the homophily between its neighbors and a fictitious agent
t = (rentalCar,Transport) that offers a service similar to the service that appears
in the query and that has a category similar to the category specified in the query g;
and (ii) the degree of connection of the neighbors. Assuming the values of homophily
that appear in Figure 1a and the degree of connection of each neighbor, agent i sends
the query to the most promising agent (i.e., agent k). This process is repeated un-
til the semantic similarity between a local service of an agent and the service in the
query is over a certain threshold ¢ or the query exceeds the TTL. In the described sce-
nario, the process ends when the query arrives to agent v (see Figure 1a). Afterwards,
agent i stores agent v in its local view as a possible candidate for establishing a fu-
ture structural relation if some of its current relations are not being used. The number
of acquaintances is limited, therefore an agent maintains an acquaintance in the ac-
quaintance set until it is completed. If the set is completed and a new acquaintance is
considered to be added to the set, an existing one is replaced by the new one based on
their utility estimation.

As time passes, service demand changes. Agent i based on its local view of the system
realizes that the service demand has changed and that the link with agent n is not
being used to forward queries. However, it has an acquaintance v that connects to a
set of agents that offer services that are being demanded in this moment. Therefore,
agent i decides to break its current structural relation with n and establishes a new one
with an acquaintance that was discovered as a result of a previous service discovery
process ((i,n) — (i,v)) (see Figure 1b). This self-organization action reduces the path
distance towards agents that provide demanded services and improves the success rate
in future discovery processes.

4. A FORMAL MODEL FOR SERVICE-ORIENTED MAS

In order to deal with the decentralized service discovery and self-organization process
described in the previous scenario, we propose a decentralized model that is made up
of a set of autonomous agents that offer their functionality through a set of semantic
services. These agents have a reduced view of the global community: just a limited
number of direct neighbors are known and the rest of the network remains invisible
to them. We assume that each relation with a neighbor implies a cost of maintenance,
therefore, agents have a limited number of relations. Moreover, agents considering
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local information are able to locate the required service and update their structural
relations with other agents in order to adapt to changes in the service demand.

DEFINITION 4.1. (System). The system is a tuple < A, L >, where A= {i,...,n}isa
finite set of autonomous agents and, L C Ax Ais a set of links, where each link (i,j) € L
indicates the existence of a direct relationship between agent i and j.

It is assumed that the knowledge relationship among agents is symmetric; therefore,
the network is an undirected graph. An agent controls its own information about (i) the
semantic services it offers, (ii) the categories of its services, and (iii) local knowledge
about a set of neighbors and acquaintances.

DEFINITION 4.2. (Agent). The knowledge model of agent i is a tuple <
Si,C, AR AK ¢, >, where

—C is the set of service categories (relation types).

—S; = {s1,...,8,} is the set of semantic services offered by the agent i. Each service
has associated a category ¢ € C. Each service s, € S; is defined by the tuple s, =
(I, Oy, Py, Effr), where Iy, is the set of inputs, Oy, is the set of outputs, Py are the
preconditions for the execution of the service, and Effy are the effects of the service
execution.

— AR C A s the set of agents that agent i has a structural relation with. Each agent

. . . i 1| . .
i maintains a vector of values T;; = [1;; ... . j] for each one of its neighbors. From

the point of view of the agent i an element 7; ; of the vector represents the utility of the
relation between i and j for queries of category c. Moreover, for each neighbor agent i
knows the set of services they offer.

— AK C Ais the set of acquaintances of agent i. If agent j is an acquaintance of agent
1, It means that i is at least aware of the existence of j. In the context of our service
discovery scenario, acquaintances are the agents found as a result of the discovery
process but the agent i does not have a direct link with them. Agent i maintains a
vector of values m, ; = [17}7]- nlcj‘] that represents the probability that agent i will
establish a new relation of category c € C with agent j.

—¢i: A — AR is the forwarding function that selects the most promising neighbor, which
the agent has a structural relation with, to forward a service request to during the
service discovery process.

The main focus of our self-organization mechanism is the adaptation of the struc-
tural relations. Structural relations define the set of agents with which an agent es-
tablishes a relation. The criterion considered to initially establish structural relations
is homophily [Lazarsfeld 1954; McPherson et al. 2001]. This criterion is present in
many Complex Networks and has been used in the system presented in this paper to
create the social structure of agents in a self-organized way. Homophily allows agents
to establish structural relations when they enter the system and they do not have pre-
vious information to estimate the utility of potential structural relations. The effects of
homophily criterion to establish links is a network where agents are usually connected
with similar agents and also with a few dissimilar agents. This structure facilitates the
decentralized search of services reducing the number of steps to locate a resource [Del
Val et al. 2012c].

In our system, the homophily function H (i, j) calculates the similarity of two agents
i and j based on the degree of match between two sets of services, where S; and S; are
the sets of services provided by the agents i and j, respectively. We consider each set
of services S; (or S;) to be composed by a set of semantic concepts that can be classified
in: Inputs (I;), Outputs (O;), Preconditions (P;), and Effects (Eff;).
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S; ={ CarRecommender } S; ={RentBike }
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Fig. 2. (Left) Full connected weighted bipartite graph G, and (Right) resulting maximum weighted match-
ing relaxed bipartite graph G.

The level of matching between two sets of semantic concepts, C; and C}, is calculated
through a bipartite matching graph [Bellur and Kulkarni 2007] (see Figure 2). Let G =
(Ci,C;, E) be a complete, weighted bipartite graph that links each concept ¢; € C; to
each concept ¢; € Cj, (¢;, ¢;) € E, and let E represent the edges established in the graph
E = C; x C;. The term w;; represents the weight associated to the arc e; = (¢c;,¢;) € E
between ¢; and c; as the semantic similarity between those concepts. Four degrees of
match can be identified: exact, subsumes, plug-in, and fail [Paolucci et al. 2002]. The
match is considered to be exact if ¢; € C; is equivalent to c; € C; (c1 = ¢); it is
subsumes if ¢; subsumes ¢, (¢; 3 ¢o); it is plug-in if ¢; is subsumed by ¢; (¢; T ¢2); and
it is fail, otherwise. For simplicity, we have considered these four degrees of match but
other degrees could be considered [Klusch et al. 2009]. A value in the interval [0, 1] is
assigned to each degree of match, where 1 represents an exact match among the terms,
0.75 represents a subsumes relation, 0.5 represents a plug-in relation, and 0 a fail. The
best match among concepts is obtained by calculating the maximum weighted bipartite
matching, G' = (C;,C;, E'), where E' C E are the edges that have the maximal value.
The graph G’ is a relaxed bipartite graph because not all the concepts from C; have
to be connected to a concept in C;; therefore, two concepts from C; can share a concept
from C;. The weight of this graph is calculated as follows:

E Wij

wijEE’
max (|Cy, |C51)

Specifically, to calculate the homophily between two agents, four bipartite graphs are
defined, (one for each of the components of services present in the sets S; and S;): In-
puts (I;, I;), Outputs (O;, O;), Preconditions (7;, P;), and Effects (Eff;, Eff;). The linear
combination of the W of each set of concepts gives the value of the homophily be-
tween agents (see Equation 2, where the parameters « and S assign different weights
to the components of the formula).

Wer = (1)

H(i,j) = a[BxWa, + (1= 8)Wea, | + (1 —a)[B+ Wa, +(1 = B)Wg;

Eff

e)

The homophily between agents is considered to built a network based on preferences,
which grows according to a simple self-organized process. The construction process of
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a growing network ensures that the oldest nodes have a higher probability of receiving
new links than the newest ones. Therefore, the total number of neighbors an agent has
will depend on its age. The average degree of connection of a network built following
this process follows an exponential distribution [Dorogovtsev and Mendes 2003].

5. SELF-ORGANIZATION IN SERVICE DISCOVERY

In the proposed decentralized system, when an agent needs a service, since there is not
service discovery facilitator nor a registry to be queried, an active search process must
be launched. This search process determines if there is an agent in the network that
provides a service that is similar enough to the required one. Depending on the success
of the query resolution, an agent reasons about whether it is worthwhile to maintain
or change its current structural relations. In this section, the service discovery and the
self-organization of the structural relations are explained.

5.1. Service Discovery

The process of service discovery is carried out as follows. An agent i sends a query ¢
that contains the identifier of the agent, the semantic service description, the category
of the required service, the Time To Live (TTL), which is the maximum number of
times that the query can be forwarded, the similarity threshold to consider a service
similar enough to the target service, and the agents that participate during the service
discovery (¢ = {i,s,¢,TTL,c},path = 0). Then, the query is forwarded to the most
promising agent among its neighbors j € A, i.e., the agents with which agent i has a
structural relation.

AR
(i
¢;(t) = argmax [1— | 1 — _H@Gt) @
JEAR S Hnt)
ne Al

Equation 3 calculates the most promising neighbor j € A% of an agent i to reach
an initially unknown provider agent ¢ that has the service s of the query ¢ =
{id,s,¢,TTL,e,path =k | k € A} in its set of services S;. This equation uses homophily-
based factors (H) and degree-based factors (number of neighbors |.A|) to explore the
network. The divisor of the expression is just a normalization factor. The homophily-
based factor is based on the semantic similarity between the services offered by the
agent j and the service that the target agent ¢ should offer, i.e. the service s specified
in the query ¢. As an example, agent 7 in Figure 1 has three neighbors to forward the
query (k, j,n). In order to select the most promising neighbor agent i applies Equation
3 as follows:

5 4 5
0.5 0.5 0.15
A(t) = 1—(1-22) - (1-—) 1-(1-=2) | =
ot ar%?nax{ ( 1-15) ( 1-15) ( 115”

argmax|[0.942,0.897,0.502] = k

k,j,n
This decision minimizes the length of the path to the provider agent that can solve
the query since the structure of the network is based on degree and homophily [Del
Val et al. 2012c].

The receiver agent updates its information about the queries received (see Alg. 1
Lines 2,3). Then, if the TTL of the query does not exceed the TTL, the receiver agent
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performs a matchmaking of the query against the services it offers. If the best match-
ing service has a degree above a certain semantic similarity threshold ¢, then the
search ends successfully (see Alg. 1 Line 6). This threshold is established by the agent
that starts the service discovery.

In the case that the target agent is found, the agent that started the process adds
the provider agent as an acquaintance agent (see Figure 1b). The provider agent that
has the required service propagates a message to the agents that participated in the
search, which in turn update and analyze the utility of their relations (see Alg. 1 Lines
9,10).

In the case of an unsuccessful matching, following the same process, the agent de-
creases the TTL and forwards the query to its most promising neighbor. Each time an
agent forwards a query, it adds its identification to the query (see Alg. 1 Lines 12,14).

ALGORITHM 1: Function that describes the service discovery process that an agent i carries out when
receives a query.

1: function serviceDiscovery(i,q = (id,s,c, TTL, e, path))
2y — H#i+ 1 /* num queries received */

3 #S — #S+1 /* num queries of category c that agent i received */

4: t + (s,¢,0,0) /* target agent that provides service s of category c */

5: if TTL > 0 then

6 /* checks the homophily of agent i with the target agent t */

7 if H(i,t) > ¢ then

8 /* the agent i offers a service similar enough to the service of the target agent t */

9: /* agent i sends an inform to the agent id that initiates the search*/
10: inform(id, i)

11: AE — AK U {i}

12: updateLinksUtility(path) /* agents that participate in a successful search update their information*/
13: sel fOrganization(path)

14:  else

15: i+ ¢i(t) /* selects the most promising neighbor */

16: TTL < TTL -1

17: /* the query is forwarded to the most promising neighbor */

18: serviceDiscovery(i,q = (id, s,c, TTL,e,path U {i}))

19:  endif

20: else

21: inform(id, 0)

22: end if

23: end function

5.2. Self-Organizing Structural Relations

The structure of relations, that is, how agents are arranged, may severely affect the
performance of the system [Abdallah and Lesser. 2007; Gaston and desJardins des-
Jardins desJardins 2005; Kota et al. 2012]. Therefore, agents should check their struc-
tural relations with a frequency based on the number of changes in the environment
conditions. Each agent considers two aspects: (i) the establishment of a suitable crite-
ria to evaluate its structural relations; and (ii) when it is more appropriate to change
its relations, breaking one or more relations or establishing new relations with its ac-
quaintances.

The criterion that we propose to evaluate structural relations is based on their util-
ity. In the context of service discovery, we have defined the utility of a structural rela-
tion between agents i and j for a category c as:

#5
_ i c

Ue. . me

W= g, M 4)
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¢
i

where —* is the ratio between the number of queries for service category c received

by i and the total number of queries received by i so far, and m§ € (0, 1) is the average

degree of match for queries of category ¢ performed by agent j so far. Note that -

represents how important c is for agent ¢, while mj reflects the specialization of j in
the services that belong to category c. Remark that the term m§ and the term H of
Equation 3, which is used to select the most promising neighbor, are related since H
also considers the specialization of its neighbors in services that are similar to the
services in the query.

As time passes, agent i evaluates probabilistically whether to maintain a relation
with agent j for queries of category c. If a relation with a neighbor is frequently and
successfully used to redirect queries about services of a certain category, then it is
interesting for the agent to maintain the relation. However, if a relation is seldom
used, then the agent must decide whether or not to maintain it. Therefore, relations
that are used during the discovery process are continuously reinforced by productive
interactions, while other relations are weakened and eventually broken. The utility of
a structural relation decays exponentially according to Eq. 5 [Jin et al. 2001]:

Ti=1—e Vi (5)

where p € (0,00) is an adjustable parameter and U;; € R* is the utility of the estab-
lished relation between agent i and agent j for the category c. High values of p make
7/ ; approximate 1 even with low values of utility, while low values of p make the agent
more demanding and the relation must have a high utility in order to be maintained
(see Fig. 3).

Each agent i maintains a vector of values 7, ; = [7}'; ... TJ?] for each one of its neigh-
bors. From the point of view of the agent i an element 7/, of the vector represents the
utility of the relation between i and j for queries of category c. When agent i estab-
lishes a new relation of category ¢ € C with agent j, the corresponding value 7/, is
initialized to 1.

As established relations may break over time, new relations with some of the ac-
quaintances can be formed. Thus, for every acquaintance j € AX, agent i maintains
a vector of values n, ; = [n}; ... nfjl] that represents the probability that agent i will
establish a new relation of category c € C with agent j. The value 7, ; is strengthened
every time agent i obtains some knowledge about agent j that increases the potential
utility of establishing a relation with agent j, and it is weakened every time agent 7
becomes aware of something about the acquaintance j that decreases this potential
utility.

Lety U; ; be the estimated utility that agent i would obtain if it established a relation
of type ¢ with agent j. The probability of actually establishing a new relation with
agent j is given by Eq. 6 (note the similarity to Eq. 5):

w1 e ®)

where p € (0,00) is another adjustable parameter. The greater the estimated utility
by including a relation of category ¢ with agent j, the higher the probability that this
relation will actually be established.

Agents, that participate in the service discovery update their information about the
utility of their relations with other agents considering the information about their cur-
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Fig. 3. Functional form of 5 for different values of p. When p = 1, agents decide to change their links as
soon as their utility decreases. As the value of p parameter increases, agents maintain links with low utility
until their utility is close to 0. In that moment, their utility and the probability of maintaining the links
decreases faster.

ALGORITHM 2: Function that describes how an agent i updates the utility of its links.

1: function update LinksUtility(path)
2: for i € path do

3: /* agents that participate in a successful search process */
4: forjec AXFUAl do
5: for c € C do
. c #5 c
6: U,iyj = Zo My
7: if j € A then
8: Ty 1= e PUL /* neighbors */
9: else .
10: ng ;41— e Ui /* acquaintances */
11: end if
12: end for
13:  end for
14: end for

15: end function

rent links with neighbors and acquaintances (see Alg. 2). Afterwards, agents reason
about changing their structural relations. This reasoning process is described in Al-
gorithm 3. An agent i that has participated in a successful search process analyzes
which is the category ¢ with the maximum number of queries that it received. Then,
the agent selects the neighbor j € AR with the minimum utility value for this cate-
gory (minU(AE)), and the acquaintance ai € AX with the maximum utility value for
this category (mazU (AX)). After that, in order to consider an structural change, agent
i checks if the utility of the acquaintance ai is greater than the utility of its current
neighbor j. Moreover, agent i checks if the current neighbor ;j has a degree of connec-
tion of 3.
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The structural relations between agents are undirected. Therefore, in our system
both agents in a relation should consider appropriate change this relation. Agent j
also analyzes which is the category ¢ with the maximum number of queries that it
received.Then, the agent selects the neighbor n € .AR with the minimum utility value
for this category (minU (AR)) and the acquaintance aj € AK with the maximum utility
value for this category (mazU (AK )). Similarly to agent i, agent j checks if the utility
of the acquaintance aj is greater than the utility of its current neighbor n. Agent j also
checks if its current neighbor ¢ has a degree of connection of 3.

In order to change the link (i, j) for a new one, the algorithm checks which agent
will obtain the highest utility establishing a new link. This agent will be the agent
that change its current structural relation with the previously selected acquaintance.

ALGORITHM 3: Function that describes how an agent  decides reorganizing its links.

1: function sel fOrganization(path)

2: for i € path do

3: ¢ + argmaz(#{|c € C)

4:  j,minU; < mmU(.AB) /* i’s neighbor with lowest value of 7 ; */

5:  ai,mazUq; + mazU(AK) /* i’s acquaintance with highest value of 7 ,; */
6: if (maxUq; > minU;) A (|N;| > 2) then
7.
8

¢ + argmaz(#;|c € C)

n, minU; < minU(.Af’) /* j’'s neighbor with lowest value of 77 ,, */
9: aj, maxUqgj; ma:z:U(A;() /* j’'s acquaintance with highest value of o , ; */
10: if (maxUa,; > minU;) A (|N;| > 2) then
11: if mazUq; > maxzU,; then
12: AR AR
13: AS — AK —ai
14: AR +— AR U {as}
15: else
16: AR AR —n
17: AK «— AK —aj
18: AR v AR U {aj}
19: end 1f
20: end if
21: end if
22: end for

23: end function

6. EXPERIMENTS

In order to evaluate the proposed mechanism for self-organization during service dis-
covery in Service-Oriented MAS, several tests have been performed. We have devel-
oped our own simulation tool in Java in order to validate our proposal. In the exper-
iments, we did not focus on how much time each simulation required since we con-
sidered that the number of snapshots that each self-organization mechanism requires
would be less dependent of the hardware where the experiments were performed. The
number of iterations that we have considered in each experiment are established based
on the evolution of the system until the results remain constant.

The tests evaluate the performance of the service discovery when self-organization
mechanisms are used by the agents. The tests include the following metrics:

— the average number of steps that are needed to successfully resolve a query,
— the percentage of successfully resolved queries,
— the number of structural relations that have changed during the service discovery,
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— the efficiency of the system, calculated as

B #q-p  #l
 H#msg #l+ Al

The rationale of Equation 7 is the following. Let #¢ be the number of queries that have
been successfully solved, p the average number of steps required to arrive to the target
service, #msg the total number of messages generated, #! the number of the original
relations, and Al the number of structural changes that have occurred as a result of
the adaptation decisions in the system. The first term of Equation 7 indicates the de-
gree of adaptation of the system. When the value of this term approaches 1, it means
that the system is completely adapted. In this case, the majority of searches end suc-
cessfully, and the number of messages generated in the system is close to the number
of messages in the best scenario (#q - p). In the case that the system is not adapted
to the service demand, the number of unsuccessful searches increases; and therefore,
the number of useless messages that overload the system increases. Consequently, this
term, which reflects the adaptation of the system, is close to 0. The second term of the
efficiency metric indicates the quality of the structural changes. The combination of
both terms reflects the efficiency of the system. The system efficiency is high (close to
1) when the number of structural changes is low but enough to reduce the path length,
to improve the number of successful searches, and to reduce the number of useless
messages in the system. The system efficiency is low when there is a high number of
structural changes but the path length is not reduced. Therefore, the number of use-
less messages that navigate the network increases the workload of the system and
reduces its efficiency.

Each network of the tests is an undirected network based on homophily with 1,000
agents. We considered 30 networks in each test. We assume that all the agents are
cooperative and have an homogeneous behavior, that is, the agents will fulfill the rules
and redirect the query. Each agent offers one semantic web service associated to a cat-
egory. Agents are distributed over 16 semantic categories. The set of semantic service
descaiptions used for the experiments have been taken from the test collection OWL-S
TCA4.

All the agents in the system have the same probability of generating service queries.
The query is successfully solved when an agent that offers a similar service (over a
threshold ¢) is found before the TTL expires (7T'T'L = 100).

(7

6.1. Self-Organization Parameters

In this test, we analyzed the influence of the p and n parameters (see Egs. 5 and 6) in
the self-organization mechanism proposed in this paper. The average degree of connec-
tion of the network is 2.5. Query distribution in this test is modeled as an exponential
distribution (A = 0.35) that represents that there are always a few service categories
that are the most demanded and the rest of services have a lower demand rate [Adamic
and Huberman 2002; Huberman and Adamic 2000]. In the experiment, we have done
a snapshot of the measures in each iteration. Each snapshot consists of 5,000 queries.
The value of ¢ threshold is 0.75.

We considered several combinations of p and ; values that represent different self-
organization behaviors of agents. We grouped these combinations into 4 cases. Each
case defines an adaptation behavior of the agents. These behaviors range from 'impul-
sive’ behaviors where agents rewire their links as soon as their utility decreases to
more rational’ or ’demanding’ agents that wait until the utility of their links decreases

4http://www.semwebcentral.org/projects/owls-tc/ visited:15/10/2012
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Fig. 4. Evolution over time of system measures considering different values for the p and p parameters.
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Fig. 5. Influence of p and p parameters when take values 1 or 10 in the structural self-organization..

considerably. The results are shown in Figure 4. We show the most representative
values of p and p for each case (see Table 5 and Fig. 3):

—Case A (p = 1,u = 10). p = 1 means that the agent decides to rewire a relation
quickly, as soon as its utility starts to decrease. © = 10 implies that the agent is not
strict with the utility of the acquaintances. An agent with that configuration is not
rigorous with the utility of its current relations, and as soon as their utility decreases
it will replace them with acquaintance that it is not sure that it is going to be used
for the forwarding process. Therefore, the structural changes are almost random.
In this scenario, the number of steps in the discovery process decreases since only
the queries about services that are situated near the source agent are solved. The
improvement in the success rate and efficiency is not significant due to the random
and high number of structural changes that do not provide a suitable reorganization
of the structural relations.

— Case B (p = 10, u = 10). p = 10 means that the agent decides to maintain its current
relations although their utility have low values. ;1 = 10 implies that the agent is not
strict with the utility of the acquaintances. An agent with this configuration rewires
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its current relations when its utility has decreased considerably. The agent replaces
them with acquaintances without high utility. In this scenario, the number of rewired
relations is low, the average number of steps in the discovery process decreases con-
siderably in the first iterations, and there is an improvement in the success rate and
efficiency.

—Case C (p = 1,4 = 1). p = 1 means that the agent decides to remove a relation as
soon as its utility starts to decrease. 1 = 1 means that the agent is strict with the
utility of its acquaintances. The agent does not consider an acquaintance as a ’good
alternative’ if it does not have a utility value that is high enough. Although the agent
wants to rewire its relations when their utility starts to decrease, it has to wait for
an acquaintance with high utility. In this scenario, the number of rewired relations
is a bit lower than expected, but there is an improvement in the success rate and
efficiency.

—Case D (p = 10, = 1). p = 10 means that the agent decides to maintain its cur-
rent relations until their utility has low values. 1 = 1 means that the agent is strict
with the utility of the acquaintances. In this scenario the agent only rewires rela-
tions when their utility is really low and if their acquaintances have a high utility.
This configuration produces the lowest number of structural changes. Therefore, the
improvement in service discovery process and in the system efficiency takes more
time.

From the results shown in Figure 4, we can conclude that in configuration A agents
rewire many more relations than necessary to adapt the system to the service demand.
Each structural change implies a cost for the system; therefore, its efficiency decreases
considerably (see Eq. 7). In configuration D, the agents are not impulsive and they
decide to wait until the utility of their links decreases. Therefore, the adaptation pro-
cess does not consider many structural changes. The degree of adaptation achieved is
not enough to provide a significant improvement in the different set of measures (path
length, percentage of successful searches, and efficiency). This configuration is not ap-
propriate in dynamic environments where the service demand changes frequently. In
these scenarios B and C there are a balance between the number of rewired relations
and the improvement in system performance. It can be concluded that the best config-
urations are B and C.

6.2. Comparison with other approaches

In the second test, we evaluated the influence of the proposed self-organization mech-
anism based on: (i) the utility functions for the evaluation of structural relations with
neighbors, AZ and acquaintances, AX (see Egs. 5 and 6); and (ii) the criteria that each
agent uses to decide when it is more appropriate change current structural relations.
We compared the results of our proposal (Utility) with those obtained without using
adaptation mechanisms (Without Adaptation), with a system where the service distri-
bution over agents is equal to the service demand (Optimal), and with a self-organizing
mechanism based on reinforcement learning algorithm (WPL) (see Figure 6).

The self-organizing mechanism based on RL uses a learning strategy (Weighted Pol-
icy Learner) that is similar to WoLF [Bowling and Veloso 2002]. The Weighted Policy
Learner algorithm is based on the following idea: slow down learning when moving
away from a stable policy and speedup learning when moving towards the stable pol-
icy. The decision-making algorithm to establish when it is appropriate to add or remove
a link is based on a reorganization parameter and on the average degree of connection
of the network.

The experiments were done in 30 networks where their average degree of connection
is 4, since WPL breaks the networks in too many isolated parts when the average de-
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Fig. 6. Evolution over time of system measures considering different adaptation mechanisms: Utility and
WPL.

gree of connection is 2.5. In this test, the number of queries per iteration is 5,000. The
distribution of queries follows an exponential distribution (A = 0.35). WPL has a reorga-
nization rate value of 0.002. Utility is configured with parameters p = 1 and y = 1.
Note, that for reasons of clarity, the error intervals of the results of the experiments
are not shown here in the graphs.

In general, both strategies improve the average path length in the search process
(see Fig. 6(a)). However, WPL takes more time to reduce the average path length in the
searches, and its improvement is not as significant as the improvement achieved by
Utility. Note that using WPL the error intervals are bigger since the degree of adap-
tation to the service demand achieved is lower than the degree of adaptation achieved
with Utility. The error intervals of the Utility strategy decreases as the degree of
adaptation increases. At the 10th iteration mean path and the error intervals are equal
to those obtained with the Optimal system adaptation.

Considering the number of changes in the structural relations between agents (see
Fig. 6(c)), Utility initially generates a high number of changes if we compare it with
WPL. In fact, WPL follows a constant rate of changes, and the adaptation is slower. With
Utility agents only rewire relations when the acquaintances are significantly better
than the current relations. This makes agents change a reasonable number of struc-
tural relations. Through local agents’ decisions, the system is able to regulate the num-
ber of structural changes required. As the structure is getting adapted to the service
demand, the number of changes decreases and also its variablity (i.e., the error in-
tervals are smaller than in the first interations). The success of the service discovery
system is improved with both strategies (see Fig. 6(b)). With both adaptation mech-
anisms, agents are able to create new relations that connect them with other agents
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Fig. 7. Evolution over time of system measures considering dynamic changes in the service demand and
different adaptation mechanisms: Utility and WPL.

that offer the most demanded services. Utility improves the success rate in the first
two iterations. However, WPL takes more time to achieve a success rate over 90%. Fig.
6(d) shows the efficiency of the system when self-organization mechanisms are in-
cluded. The efficiency was calculated taking into account the success of the service
discovery, the average path length, and the number of structural changes (see Eq. 7).
The best results were obtained by the Utility, which reduces the number of steps
in the search process and increases the number of successful discovery queries faster
than WPL. Moreover, Utility is able to regulate, in a decentralized way, whether it is
appropriate to make structural changes or not.

6.3. Dynamic Service Demand

The agents activity evolves over time, for example according to the time of the day, the
different days of the week, or different seasons of the year [Howard et al. 2001][Aquin
et al. 2010]. For this reason, the system should be able to adapt itself without external
coordination according to the customers demand dynamics. The aim of the third test
is the evaluation of the performance of adaptation mechanisms with dynamic service
demands.

In this test, the number of queries per iteration is 1,000. The experiments were done
in 30 networks where their average degree of connection is 4, since WPL breaks the
networks in too many isolated parts when the average degree of connection is 2.5. WPL
has a reorganization rate value of 0.002. Utility is configured with parameters p = 1
and i = 1 (see Section 6.1 case B).

Initially, the service demand follows an exponential distribution where there is a
reduced set of service categories that are much more demanded than the other cat-
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egories. This demand changes at iteration 50. The new demand follows another ex-
ponential distribution, but after iteration 50 the most demanded services are from
categories that were the least demanded in the previous iterations. This new distribu-
tion continues until iteration 150, where the service demand is reverted to the initial
distribution.

Figure 7 shows the results of this experiment. In the first interval [0,50], Utility
allows agents to adapt their structural relations faster; therefore, the number of steps
in the discovery process is reduced, the success improves, and the system efficiency in-
creases considerably even though the number of structural changes is high. WPL needs
more time to adapt the structural relations to the current demand since the number
of redirections is too low to deal with changes in the service demand. Note that since
the degree of adaptation achieved with WPL is not as high as the degree of adaptation
achieved by Utility the error intervals with WPL are bigger than with Utility.

At the beginning of the second interval [50,100], there is a sharp change in the ser-
vice demand. The systems where agents use Utility were completely adapted to the
previous service demand. As a consequence, there is a jump in the number of struc-
tural changes and in the average number of steps (see Figure 7(c)). Nevertheless, the
average number of steps is lower than in systems that use WPL. Moreover, there is an
important drop in the success and in the efficiency of the system (see Figures 7(b) and
7(d)). Both algorithms need time in order to be able to start improving the structure
of the network. At the end of this interval, both algorithms have improved the success
rate of the solved queries and the mean path length is reduced (see Figure 7(a)). Nev-
ertheless, in the case of Utility, the efficiency of the system is still better than the
efficiency of WPL (see Figure 7(d)). Finally, in the third interval, the number of struc-
tural changes using WPL are enough to adapt to the current service demand (i.e., the
service demand distribution of the first interval) since the adaptation in the second
interval has only been partial. In the case of Utility, the network structural relations
were adapted to the previous demand and initially the system requires a higher num-
ber of structural changes to adapt to the new service demand. Nevertheless, since the
average number of steps are remains low and the success rate is high, the efficiency is
maintained as in previous intervals.

7. CONCLUSIONS

In this work, we have proposed a Service-Oriented MAS where agents offer their func-
tionality through services. Unlike other approaches present in the literature that make
use of the hierarchy of the entities of the system, in our system all the agents are equal
and only have a local view in order to make self-organization actions. Another differ-
ence with current approaches of decentralized service discovery that start from a ran-
dom structure for the system, we present an initial self-organized network structure
based on a social feature called homophily. Therefore, when agents enter in the sys-
tem, they establish relations with other agents taking into account homophily that is
based on the semantic similarity of the services provided by the agents. The resultant
structure is a self-organized growing network.

Agents in the system need to locate other agents that offer certain services to fulfill
their goals. We have described a decentralized service discovery where agents, consid-
ering homophily and the degree of connection with their direct neighbors, are able to
reach the agent that provides the required service in few steps.

However, if service demand changes and the new service demand distribution does
not correspond to the distribution of services among agents, the performance of the
service discovery could be affected. In order to adapt the structure of the system to
changes in service demand, we have included a self-organization mechanism in the
service discovery process. This mechanism exchanges current relations of agents that
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are not being used for new relations that are expected to be frequently used. During
the service discovery, agents evaluate the utility of their current links and the suit-
ability of their acquaintances. This utility not only considers the traffic that passes
through an agent, but also the type of services that the agent offers. Based on this
information, each agent is able to decide when it is worthwhile to modify its structural
relations with its current neighbors and selects the most appropriate acquaintances to
replace these neighbors in order to maintain its degree of connection in the network.
The set of acquaintances is not composed by agents randomly selected as in other ap-
proaches present in the literature. In the presented proposal, the set of acquaintances
is composed of agents found as a result of a service discovery process.

Several experiments have been performed to evaluate the effects of the inclusion of
the proposed self-organizing mechanism in the service discovery performance. First,
we analyze the influence of a set of configuration parameters in our self-organization
mechanism. Second, we compare our proposal with three different ones: (i) systems
where service discovery does not include a self-organization mechanism; (ii) systems
that have an structure completely adapted to the service demand; (iii) and systems
that include a self-organization mechanism based on reinforcement learning. Finally,
we evaluate the proposed self-organization mechanism in a dynamic environment with
different service demands. In general, the inclusion of the proposed self-organization
mechanism improves the efficiency of the service discovery by reducing the number of
steps needed to locate the required service as well as by increasing the number of suc-
cessful searches. The rate of structural changes is reduced significantly as the system
is getting adapted to the service demand. Furthermore, this mechanism performs well
under situations where drastic changes in the service demand occur. As a future work,
we plan to extend the presented proposal including aspects related to non-functional
parameters of services and the consideration of heterogeneous behavior of agents.
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