
Comparing and Contrasting Model-Driven Engineering at
Three Large Companies

Håkan Burden
Computer Science and

Engineering
University of Gothenburg

Gothenburg, Sweden
burden@cse.gu.se

Rogardt Heldal
Computer Science and

Engineering
Chalmers University of

Technology
Gothenburg, Sweden

heldal@chalmers.se

Jon Whittle
School of Computing and

Communications
Lancaster University

Lancaster, UK
j.n.whittle@lancaster.ac.uk

ABSTRACT
Hutchinson et al. recently carried out an interview-based
study of how model-driven engineering is practiced in 17
companies. Their results are revealing: they found that suc-
cessful MDE companies develop domain-specific languages;
are motivated by a clear business case; and are commit-
ted at all levels of the organization. Whilst the results are
useful, the study is a very broad one, with one or two inter-
viewees per company. This paper supplements Hutchinson’s
study by focusing on three large companies, but studying the
companies in depth through a number of interviews at each.
These three companies have a number of things in common
– they are all large companies applying MDE and are all un-
dergoing a parallel transition to agile methods. The paper
reflects on similarities and differences in the way these com-
panies apply model-driven engineering, but also discusses
how findings from this study either validate or refute those
of Hutchinson et al.

Keywords
Case study, Agile methods, Domain-specific languages

1. INTRODUCTION
Model-driven engineering (MDE) focuses on the use of

high-level abstractions, or models, as primary artefacts for
understanding, analyzing and developing software [10]. When
applied successfully, MDE can lead to an increase in pro-
ductivity, better quality software, and more effective reuse
of software components. Equally, however, there are many
factors – technical, social and organizational – that can cause
MDE to hinder a software development effort [18]. In prior
work, Hutchinson et al. [7, 8, 9, 18] carried out an exten-
sive study of MDE practice and provided detailed insights
as to why some companies adopt MDE successfully whereas
others fail.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Hutchinson et al.’s study aimed at providing broad cov-
erage of MDE practice: it surveyed 450 MDE practitioners
and interviewed 22 MDE professionals from 17 different com-
panies across 9 industrial sectors. The results are revealing;
however, such a broad study is also necessarily shallow. The
data is based on a survey of mainly closed questions and on
semi-structured interviews, where only one or two people
per company were interviewed.

To complement the analysis by Hutchinson et al., this pa-
per reports on a much deeper, albeit less broad, study of
MDE practice in three large Swedish companies: Ericsson
AB, Volvo Cars Corporation and the Volvo Group. The aim
was to limit the investigation to a small number of compa-
nies but delve more deeply into how MDE is being applied
in each. This paper compares and contrasts MDE practice
at the three companies and examines how their experiences
either validate or refute findings from the earlier study by
Hutchinson et al. As such, this paper is a narrow but deep
investigation of MDE practice which complements Hutchin-
son et al.’s broad but shallow study.

The three companies in question were deliberately cho-
sen to have both similar and contrasting features. Erics-
son’s Radio Base Station unit was an early adopter of MDE
(since the late 1980s), has many years of experience in ap-
plying MDE for mobile communications, and has focused
on the use of UML and UML profiles. Electronic Propul-
sion Systems at Volvo Cars, on the other hand, committed
to MDE in 2010 within a domain (automotive) which is of-
ten highlighted as a success story for MDE, and focuses on
models developed using Simulink. Whereas MDE is now
an accepted part of the development culture at Volvo Cars,
software implementation at the Volvo Group is still mainly a
code-centric business with a few pockets of MDE expertise.
All three companies develop products in a specialized em-
bedded systems domain. At the time of the study, all three
organizations were undergoing a transition to agile develop-
ment practices.

Our methodology was to study each company through a
series of 25 in-depth interviews with software developers and
project managers, split across the companies. Interviews
were audio recorded and transcribed. A grounded approach
was then used to extract useful insights. Additional field-
work, in the form of attending project meetings, informal
follow-on conversations, and reporting back to the compa-
nies at formal meetings, also provided data in the form of
field notes.

Our results both confirm and refute findings from Hutch-
inson et al.’s study and the broader literature on MDE prac-
tice. We observed a number of key differences in the way
that MDE is being applied across the three companies, and
that these differences can have a significant effect on the
overall success of the MDE effort. Contrary to perceived
wisdom, we have also observed that agile methods and MDE
can co-exist peacefully although we note a number of ten-
sion points where their joint application may aggravate a
development process. The value of abstractions is heavily
dependent on context, and can in fact complicate and ob-
scure the structure and behaviour of a system instead of pro-
moting clarity. Where and how to apply MDE still seems to
be a question without a fine-grained way to determine the
answer. However, in one company, MDE had a significant
effect on productivity by integrating domain experts with
low-level implementation by forming a new unit supported
by an MDE framework.

2. COMPANY CONTEXTS

2.1 Volvo Cars Corporation
Within Volvo Cars Corporation, our study focused on a

unit named Electric Propulsion Systems, EPS. EPS is a
new unit developing software for electric and hybrid cars.
At the time of the study, EPS was developing their sec-
ond generation of electric propulsion vehicles. Whereas the
first generation was developed independently of the rest of
Volvo Cars, the second generation was being integrated into
a new Volvo Cars platform under development. The sec-
ond generation was the first major project at EPS which
applied MDE. Although EPS started from scratch in terms
of defining and building their MDE infrastructure, there was
a legacy of MDE knowledge within Volvo Cars to build on,
since another unit, working on combustion engines, has had
experience with MDE since 2005.

At the time of the study, there were two major process
changes underway at EPS. First, there was a push to in-
crease the proportion of in-house software development. This
was done in a bid to keep expertise and domain knowledge
within the company. Secondly, EPS was undergoing a tran-
sition to an agile development process in order to shorten
lead-times. In both cases, MDE was seen as a key enabler.
To explain how agile methods and MDE are applied at EPS,
we briefly explain the development process at Volvo Cars.

Development at Volvo Cars has traditionally followed a
five phase waterfall model – see Figure 1a. A new concept
– e.g., a new engine type – is first scoped out as a set of
use cases and Simulink models. Together, these specify the
concept. At this stage, both functional and non-functional
requirements are formally specified in these models and sim-
ulations validate them. Phase 2 (System design) breaks
the concept specification down into a set of textual require-
ments, component interfaces described in a graphical mod-
eling notation, a database model describing the electrical
architecture of the car, and a deployment model describing
how to map components on to ECUs (Electronic Control
Units), defined in a company-specific tool. An ECU is an
embedded system that controls an electrical subsystem in
the car (e.g., brake control, transmission control). It is im-
plemented by one or more software components. A modern
car can contain up to 150 ECUs and the life-time expectancy
of an electrical architecture is at least 10 years.

In Phase 2, components are defined black-box. The elec-
trical architecture connects the ECUs to the software com-
ponents and is defined on top of the AUTOSAR (AUTomo-
tive Open System ARchitecture1) standard, a hardware ab-
straction layer that facilitates updating hardware and soft-
ware during the electric architecture’s lifetime.

Phase 2 is designed to support parallel development of
components: it freezes the component interfaces so that
components may be developed either in-house or by sub-
contractors independently. Given the importance of the
component interfaces to the overall development process,
there is a formal approval process for interface changes,
which may take up to 20 weeks.

It is in Phases 3 and 4 (Model-in-the-loop and Integration)
where MDE has brought significant changes. Previously,
most component development was done by sub-contractors
based on the Phase 2 specification. Now, the move is to-
wards defining the internal behavior of components using
Simulink in-house. The interfaces of the Simulink models
are generated from the system design as black boxes which
are then manually filled with behavior according to the tex-
tual requirements. The models are then used to generate
executables for testing and integration in Phase 4.

Since some of the components interact with components
that are developed off-site, their interaction is validated in a
simulated environment developed by EPS. To calibrate the
behavior of the models, testing on rigs of hardware is re-
quired. Without the rigs and simulations, validation would
have to wait until both in-house and out-sourced compo-
nents were available for testing. Ultimately, if a concept
is successful, it will go into mass production (Phase 5), al-
though most concepts do not make it that far.

As mentioned above, the organization was going through
a transition to an agile development process. In practice,
this meant that each team working on a component had a
large degree of freedom to choose development methods and
styles. Agile methods did not, however, extend across all
phases. Component interfaces were still defined in Phase 2
with a lengthy approval process required to change them.
As we shall see later, this caused tensions for the engineers,
who, on the one hand, were working in a very agile fashion,
but, at the same time, were expected to work to previously
frozen and difficult-to-change interfaces.

2.2 The Volvo Group
Within the Volvo Group, our study focused on Trucks

Technology, which develops software for various truck brands
– Volvo, Renault, Mack, UD and Eicher. The five brands are
developed on top of a shared platform. The truck platform
serves the same purpose and has the same overall structure
as the car platform at Volvo Cars but has a longer life ex-
pectancy (around 20 years). Trucks Technology take overall
responsibility for system design and integration but most of
the software is implemented by external suppliers.

The process at Trucks Technology (Figure 1b) is very sim-
ilar to that at EPS with two exceptions. Firstly, since each
truck brand has unique mechanical and hardware configu-
rations (e.g., number of axles, suspension type), each brand
needs different parameters and parameter values in the soft-
ware. With a shared platform for all brands, the system
design needs to keep track of all possible configurations. In
total, there are 150,000 configuration points.

1http://www.autosar.org

(a) Process at Volvo Cars (b) Process at Volvo Trucks

Figure 1: Solid arrows are automated transformations; dashed arrows are manual implementations.

Secondly, at Trucks Technology, Simulink is only used in
Phase 1. Implementation is in C. So, instead of generating
Simulink from the system design, header files are generated.
The specifications of the header files are then realized using
C in Phase 3. Even if the implementation is in C, Trucks
Technology have developed a simulated environment since
they have the same need for early validation and integration
of software and hardware as EPS.

After having just successfully launched their first truck
on the new platform, at the time of our study, Volvo Trucks
was in a time of organizational reflection. Trucks Technol-
ogy were considering to expand their MDE activities and
introduce more executable models, a move that is justified
by a need to validate integration earlier and a wish to raise
the level of abstraction in their implementation.

2.3 Ericsson AB
The Radio-Base Stations unit (RBS) has used MDE since

the late 1980s. RBS delivers software for mobile communi-
cations on the GSM, 3G, 4G and multi-standard networks.
90% of the software developed at RBS is deployed on a single
hardware node and so there are strict constraints on memory
consumption and processing speed. The reason for adapting
MDE at RBS was primarily to handle the rising complexity
of the products. RBS has defined their own UML profiles
using off-the-shelf modeling tools from a major tool vendor2.

All four generations of mobile communication have under-
gone the same transition, from inception to becoming estab-
lished products. RBS uses two types of model: descriptive
and prescriptive. In the inception phase, models are descrip-
tive – that is, they are used mainly for communication and
documentation. In this phase, however, the focus is on de-
veloping new features and so models are kept lightweight to
avoid slowing the process down. Component diagrams and
collaboration or sequence diagrams are used in this case.
During the main development phase, implementation may
be code-centric or model-centric. In the latter case, prescrip-
tive models are used – that is, models that precisely describe
the system to be built. Code may be generated from pre-
scriptive UML state machines and custom-made DSLs are
used to test the model. When it is clear that a product
will survive on the market and will need to be maintained
for many years, the need for more accurate documentation
arises, which necessitates creating new models or improving
existing models.

A year before the interviews were conducted at Ericsson
the interviewees had been reorganized into cross-functional
teams, XFTs [15]. At Ericsson, an XFT consists of one soft-
ware architect (often the domain expert), around five devel-
opers and two testers. By combining different skill sets, the
aim is to reduce the number of manual hand-overs in the de-
velopment process as well as to shorten lead times and have

2not named, for reasons of confidentiality

a better integration of hardware and software. The transi-
tion to XFTs meant that the development teams now have
a short-term commitment towards features instead of long-
term responsibility for a certain phase of the development
process.

XFTs have not changed the need for consistent model-
based documentation, neither have they enforced a move
towards code-centric development. The choice of implemen-
tation method is a question of legacy: if a sub-system started
as an MDE project, it will continue to be developed using the
same MDE tools (or upgraded versions); if the sub-system
started out in code-centric fashion, it will remain so.

3. METHOD

3.1 Aim
Our study aims to investigate the following two questions:

(i) What are the similarities and differences in the way that
the three companies have adopted and applied MDE? (ii)
How does the nature of practice at the three companies agree
or disagree with the findings from Hutchinson et al.?

Recall that our study – as a deep study at three large
companies – is intended to supplement that of Hutchinson
et al., which is broad and shallow. Note that we only stud-
ied particular sub-units within each company, as described
in Section 2. For ease of writing, we henceforth refer to
Ericsson RBS, Volvo Cars EPS, and Volvo Group Trucks
Technology as Radio, Cars and Trucks, respectively.

3.2 Study Design
The three companies were deliberately chosen because

they are similar in some respects but different in others. All
three are large companies developing products in an embed-
ded systems domain. However, the way they have adopted
MDE (see Section 2) is different in each case. These charac-
teristics allowed us to compare and contrast MDE practices
across the three companies. Another reason for choosing
these companies is more pragmatic: we had existing relation-
ships with key individuals in all cases. We approached our
contacts in each company. In the case of Radio and Trucks,
based on a discussion of the aims of the study, our contacts
suggested sub-units to study. In the case of Cars, our con-
tact already worked in an appropriate sub-unit, which was
therefore self-selected. At the end of this selection process,
each company had assigned a point of contact responsible
for coordinating the study within the company. This respon-
sibility included selecting suitable interviewees, supporting
site visits, and coordinating formal and informal progress
meetings within the company.

Data was collected from each sub-unit using a variety of
methods: (i) semi-structured interviews with staff; (ii) con-
versations with staff in informal settings (e.g., over coffee
or lunch); (iii) observations of design and development ac-

Organization
Role MDE Exper. Radio Cars Trucks

Architect
5+ 4 2 2
0-5 0 1 0

Developer
5+ 2 2 0
0-5 2 5 1

Tester
5+ 1 0 1
0-5 0 1 0

Table 1: Roles and MDE experience of the interviewees

tivities, and team meetings; (iv) formal progress meetings
with the company points of contact and additional man-
agers or engineers depending on their availability and inter-
est; (v) presentations of results to broader audiences at tech-
nical meetings. We used the interview data as the primary
source: findings emerged from the interview data; we then
used the other sources to validate or elaborate on these find-
ings. Field notes were taken in (ii)-(v); we followed estab-
lished practices for documenting informal conversations and
observations [4, 12]. Data collection was primarily carried
out by the first author; the remaining authors participated
in activities related to (ii), (iv) and (v). A non-disclosure
agreement was signed with each company to allow for open
and honest sharing.

We interviewed a total of 25 individuals across the three
companies – 9 at Radio, 12 at Cars and 4 at Trucks. In-
terviewees were selected to represent a range of architects,
developers and testers, all of which had been involved in an
MDE effort. Table 1 summarizes the distribution of inter-
viewees across these roles as well as the number of years
experience each has using MDE in this role. The relatively
low number of interviewees at Trucks is due to the fact that
Trucks is not yet active in using MDE during the develop-
ment phase; hence, we could not interview MDE developers
there. At Radio and Trucks, the interviewees were dom-
inated by more experienced engineers (5+ years of MDE)
but each company assigned at least one engineer with lim-
ited MDE experience. At Trucks, the experienced engineers
had often worked with MDE at other companies before join-
ing their present employer. Due to how MDE was adopted
at Cars, the less experienced interviewees outnumbered the
more experienced ones seven to four. One interviewee at
Cars volunteered to participate out of curiosity.

At Cars and Radio, the interviews took place between Jan-
uary and March, 2013. For Trucks, the timing was slightly
different – interviews took place between early March and
June. None of the interviewees spoke English as their na-
tive language. Even so, the majority of the interviews were
conducted in English so that the content could be analyzed
by all the researchers. All interviews were conducted by the
first author and were carried out on-site.

The interviews lasted an hour each on average and were
semi-structured in nature. The interviewer began with gen-
eral questions - such as the interviewee’s current role and
background - and then delved into MDE-specific topics, such
as their experience of MDE, their motivation for applying
MDE, the benefits and challenges of applying MDE in prac-
tice etc. Each interview followed a different direction ac-
cording to the interests of the interviewee and what the
interviewer picked up as particularly interesting. In some
cases, the interview was followed by a second interview or

an informal meeting in order to clarify statements. An ini-
tial analysis of each interview was conducted immediately
after carrying it out; this enabled emerging themes to be
explored in subsequent interviews, thus allowing later in-
terviews to confirm or deny earlier ones, as advocated by
Robson [14].

The interviews were each recorded and transcribed. They
were then analyzed using a lightweight version of grounded
theory [6, 16]. Each interview was analyzed and annotated
by at least two researchers; the annotations were then grouped
into themes. Themes, as well as the comments from where
they originated, were discussed extensively amongst the three
researchers and a consensus was reached, in each case, on
which findings were the most interesting to document. In
each case, findings were validated or further explored us-
ing data collected in (ii)-(v) above. The themes were also
contrasted with the findings of Hutchinson et al.’s study.

4. FINDINGS
In this section, we present the most prominent findings

from the data collected during our study. Each subsec-
tion describes a recurring theme where we found similarities
and/or differences in the way different companies were ap-
plying MDE. We illustrate the themes with exemplars taken
from the interview data; where it helps to illuminate key is-
sues, quotes are included in italics. These quotes are taken
verbatim from the interviews. In some cases, we mark an in-
terviewee’s response in a quote with “I” and the researcher’s
question with “R”.

4.1 MDE to Bring Development In-House
In earlier work [18], Hutchinson et al. noted that MDE

can allow some companies to bring out-sourced development
back in-house. The reason given for this in [18] is that out-
sourced tasks are often relatively straightforward develop-
ment jobs; these ‘simpler’ jobs are easier for subcontractors
to carry out independently, but are also easier to automate
using MDE. In our new study, we also found that MDE
can bring out-sourced jobs back in-house; however, different
reasons for this were discovered. Indeed, one of the primary
motivating factors for introducing MDE at Cars was to bring
development tasks in-house. Traditionally, the models de-
veloped in Phase 2 of Cars’ process (Sec. 1a) were sent out
to external suppliers for implementation. This is currently
still the case at Trucks. However, at Cars, MDE has re-
duced the dependency on these external suppliers since the
out-sourced tasks are now done in-house – using Simulink
to automatically generate development activities previously
left to the suppliers.

Cars have found two key benefits from this. Firstly, Cars
now has more control over the development process: they
are no longer dependent on suppliers who may not deliver
on time and who may not deliver sufficiently high quality
components. Secondly, in-house MDE development sup-
ports Cars’ move towards agile development. In agile de-
velopment, external dependencies – such as on suppliers –
can be a major point of tension. Using suppliers as part of
an agile process threatens to break two key agile principles:
(1) it slows things down because the team becomes depen-
dent on delivery schedules of the supplier; and (2) it forces
the team to write specifications for the supplier to work to,
which can lead to overly heavy documentation. Hence, the
most effective agile process is one in which all development is

carried out in-house (not necessarily physically co-located).
MDE has allowed Cars to develop both the Simulink spec-
ification and the generated implementations in-house. This
has given them a lot more control over their process leading
to productivity gains. It is also a success story in which ag-
ile and model-driven methods can not only co-exist but can
actually mutually support each other.

Compare, for example, the following quotes. At Trucks,
which is still dependent on external suppliers in India, there
are issues because the Simulink specification sent to India
requires domain knowledge to properly understand it. Con-
trary to perceived wisdom, a formal model is not necessar-
ily understandable without the domain background because
there are all kinds of hidden assumptions in the definition
and integration of Simulink blocks. This can lead to prob-
lems where suppliers without domain expertise improvise
incorrectly around the specification: “. . . you can just get a
feeling for if it works correctly or not. But usually in Ban-
galore, they don’t . . . Many of them haven’t seen a truck or
played around with it at least, so they don’t know. They don’t
have this natural feeling for . . . how it should work”.

In contrast, at Cars, bringing the development in-house,
using MDE as an enabler, was a way to increase produc-
tivity by controlling tightly scheduled iterative development
loops: “That’s the key objective, so to say, with this whole
in-house software development . . . That’s where the big in-
crease in speed is from a Volvo perspective.” MDE was also
seen to have other benefits than simply speed: it led to cost
savings and a higher quality product because Cars could
now produce software more relevant to its business, rather
than software adapted by a supplier from another customer
“in some cases . . . [suppliers] are just reusing an old soft-
ware that they have delivered to some other OEM [Original
Equipment Manufacturer].”

4.2 Leveraging Domain Experts
A key benefit of MDE at Cars is that it allows domain ex-

perts, who specify requirements, to be directly involved in
the development process because they understand the Simu-
link model and can work together with developers to gener-
ate code from it. This again has two major benefits. Firstly,
it means that domain experts are much more closely involved
in the implementation process: developers and domain ex-
perts work together on developing the Simulink models and
generating code from them. This in turn leads to a higher
quality product. One interviewee put it well: “In my opin-
ion, the only reason to work with Simulink, is that the sys-
tem designer and tester and all other stakeholders at Volvo
actually understand what they see. You can sit around a Si-
mulink model and discuss an implementation and review it,
and so on. If we would have been working in C or something
like that, it’s just the programmer who understands what is
happening in the code.”

Hutchinson et al. noted the importance of having two key
skill-sets to make MDE work: both modeling/abstraction
skills as well as compiler/optimization developer skills [18].
Both skills are needed to apply MDE successfully in practice
because a company has to come up with good models but
also typically needs either to develop its own model trans-
formations or adapt off-the-shelf transformations. Whereas
Hutchinson et al. recommend both skill sets to be possessed
by the individual – what they term the ‘MDE guru’ – Cars
has been successful even when these two skill sets are held

by different people. The critical factor that makes this work,
however, is that MDE brings the modeling (or domain) ex-
pert much closer to the software expert. The use of exe-
cutable models reduces misinterpretations of the specifica-
tion and allows domain experts and developers to ‘try things
out’ in close cooperation.

The second benefit is once again that it supports the agile
processes at Cars because those specifying the requirements
and those developing the implementation work closely along-
side each other. Indeed, many of the employees at Cars come
from an electrical or mechanical engineering background and
have been trained in Matlab/Simulink rather than program-
ming languages like C. Hutchinson et al. [7] found a similar
story at another large automotive company in which MDE
was introduced precisely to address the lack of software en-
gineers compared to electrical engineers: “You couldn’t find
a computer scientist if you went on a search party.” MDE
allowed this company to build software using domain ex-
perts who understood Simulink and a relatively small team
of software specialists could build the generators. The case is
similar at Cars. MDE reduces the need for“pure . . . software
guys” because it allows domain experts to get directly in-
volved in (some) implementation tasks.

4.3 Secondary Software Supporting MDE
Previous research has pointed out that the introduction

of MDE tools requires significant effort in adapting them to
the context of the organization [18, 17]; commercial MDE
tools cannot be simply taken ‘off-the-shelf’ but may require
major tailoring to a company’s existing processes. In our
study, we found further evidence of the need for this, but
also found that it is not just single tools that need tailoring,
but that an organization may need an entire suite of sup-
porting applications – which we term secondary software –
to make MDE work in practice. Crucially, much of this sup-
porting software is needed precisely to allow domain experts
to participate in the development process.

As an example, scripts play a major role in tailoring MDE
at Cars: “they have actually just made some scripts to make
life easier”. These scripts have different origins – “a few
scripts are from the supplier and a few scripts are developed
by us, yeah, and by Volvo” – and are used in various ways,
from massaging XML files into the correct format to flashing
Simulink models onto hardware or for diagnostic purposes
(“When you generate code and deploy it on hardware, you
also through the scripts add a lot of debug information”).
The message is clear: there is a lot of “grunt work” needed
around the MDE tools to support both integration of MDE
tooling into a broader context and to provide support for
domain experts being part of the process. This is an inter-
esting observation because one of the commonly perceived
benefits of MDE is to automate ‘grunt work.’ Here, the
grunt work is automated, but the need for it arises directly
because of the use of MDE.

Interestingly, Kuhn et al. [11] found that one of the fric-
tions that engineers at General Motors encountered was the
lack of support for developing scripts and small applica-
tions. From our study, it seems that this is a question of
organizational support and not the accessibility to domain-
appropriate technologies.

The motivation for these scripts is to automate recurring
tasks that are complicated or tedious. (This supports Hutch-
inson et al., who state that one of the success stories of MDE

is when small DSLs are used “bottom-up” to automate small
but repetitive tasks [18]). Furthermore, the scripts form an
important part of the secondary software that domain ex-
perts at Cars depend on to be active contributors in the de-
velopment process – since the scripts compensate for their
lack of programming skills by automating many tasks that
might be straightforward for programmers but not for do-
main experts. These simple tasks can range from extract-
ing a view of the signals from the overall system model,
through to “trimming” a Simulink model to ensure perfor-
mance in the generated code: “Yeah. Exactly. So you have
a model, and then your inputs to that model are calibration
variables. So I’ve been working with them and optimizing the
engine . . . so I get the perfect output . . . ”. Taken together,
the scripts provide a chain of functionality, which is abso-
lutely essential: “But the benefits I perceive from modeling
your software, they will not be utilized as much as possible
if you don’t have a good framework to work with.”

In this way the MDE framework encodes the software
development process, from requirements down to deploy-
ment of binaries and ensures that the information stays
in-house. Another consequence is a shift of focus when it
comes to reuse – the MDE infrastructure enables fast re-
implementation of functionality so the reuse and mainte-
nance of existing models is not as important as the reuse
and maintenance of the tool chain. A lesson here is that
the framework should developed in an agile way to quickly
supply new features as the complexity of the system grows.

In contrast to the emphasis at Cars on developing and
maintaining secondary software, Radio, as early adopters of
MDE in 1980s, arguably underestimated the need for sec-
ondary software to tailor tool suites: “I: Because that is not
the core business for Ericsson . . . R: Perhaps that is some-
thing that scares the management at Ericsson, it is a huge
invest– I: – yeah. It isn’t always that easy to define the busi-
ness case.” In other words, the development of secondary
software can seem like a distraction from the organization’s
core business. It is essential, however, for companies to rec-
ognize that secondary software in MDE is part of the core
business.

The exception at Radio is a UML profile used for defining
the management interface for the base stations. The pro-
file has its own organizational unit for its development and
maintenance, supported by a set of tools and model trans-
formations enabling the interface specifications to be ported
to different textual formats: “We need to be very careful
with what we change because it will have an impact on cus-
tomer tools . . . We do have a process for how to change it
and we review the changes very carefully. For new functions
we want it to look similar, we want to follow certain design
rules and have it so it fits in with the rest.”.

4.4 Legacy
In adopting new processes in a large organization, a criti-

cal challenge is how to deal with legacy. We saw interesting
contrasts, for example, in how the three companies inte-
grated new development methods, e.g. agile processes and
MDE, with legacy processes, such as a waterfall.

A legacy of the waterfall model at Cars, for instance, is
that Cars freezes the component interfaces in Phase 2. The
motivation is that sub-contractors and suppliers can then
independently develop software in Phase 3 using their own
processes and technologies as long as they fulfill the inter-

faces. In principle, this allows a degree of organizational
control over the process. This process of freezing interfaces
remains at Cars, despite a move towards agile MDE where
components are developed by domain experts using Simu-
link models and code generation. But a tension point is the
need to adhere to frozen interface definitions, which are not
easy to change.

The interfaces and electric architecture of the car are frozen
around twice a year. This freeze fixes the entire architecture
of the car. Although interface changes can be requested be-
tween freezes, this involves a lengthy negotiation process be-
tween all teams that are dependent on the interfaces and so
teams are often reluctant to undertake this: “R: So you can’t
change it if you come to understand that, wait a minute, I
need to have this parameter as well. I: Absolutely. R: Or I
need a new signal to answer this signal in case of - I: Ex-
actly.” Instead, developers try to predict what they will
need and add extra interface parameter requests; these pa-
rameters may ultimately turn out to be redundant. Hence,
there is a problem of interface bloat and Cars ends up with
agile teams working effectively but constrained by a highly
non-agile infrastructure. The same issue of frozen interfaces
was described at Trucks.

Radio uses XFTs, which appears to make the process
of changing interfaces straightforward – “as an XFT team,
when I do some changes on the interface, I do both sides” –
because the XFT has control over an entire feature, whereas,
previously, developers only had ownership of a small part of
a feature and could not update other aspects: “Somebody
had to decide and define down to bits and pieces in a docu-
ment and assign that work item to you . . . And then you had
to be finished at the same time because you have to deliver
at the same time. So you had to synch that.”

The lesson here seems to be that conflicting process cul-
tures can lead developers to subvert processes: the Cars case
of agile developers trying to work around non-agile interface
freezes is a case in point.

4.5 System Comprehension and Abstraction
Abstraction is usually argued to be a major benefit of

MDE. High-level, abstract models should aid system com-
prehension and allow stakeholders to see ‘the big picture’.
Although raising the level of abstraction of system develop-
ment is undoubtedly a worthy goal, and MDE certainly goes
some way towards supporting this, our data contains numer-
ous examples where models and modeling tools can actually
work against system comprehension. Once again, there are
both similarities and differences in how this manifests itself
at each of the three companies.

Interviewees at Radio, for example, reported multiple prob-
lems of comprehension, ranging from overly complex model
specifications to difficulties in merging and navigating mod-
els to the irreversibility of design decisions when modeling.
The sheer size of the models used at Ericsson became a bar-
rier to understanding them: “We had one model that we
always updated and tried not to branch it too much because
it became impossible to merge all the changes that we had.
And we also had like 8000 sequence diagrams that we should
maintain.” Eventually, developers drifted back to Microsoft
Word because it was simpler to maintain: “And I think that
got people to be a little bit afraid of the amount, all this
big amount of sequence diagrams and all this big amount of
information that we need. Of course we needed the informa-

tion, but it became so painful to update it for every feature
that we tried to add to the system . . . So I think that is the
reason why people started to use Word again.”

Another Radio interviewee talked about the difficulty of
reversing design decisions: “So someplace there you have
to decide is this capsule actually consisting of many cap-
sules or are there actually two capsules because there are
probably parallel state machines. But if the system is ana-
lyzed wrongly on top and you try to realize it by using soft-
ware UML, then it ends up with something that’s very, very
strange. And it costs a lot to handle that . . . Refactoring
stuff in that situation is really hard.” The reason for this is
that current MDE tools (a UML tool from a major tool ven-
dor in Radio’s case) force the developer to make decisions
but these cannot easily be undone later because there are so
many different models that are mutually dependent on each
other across multiple levels: it can be hard to predict the
effect of a refactoring and to make sure that all views are
consistently updated. This is in contrast to refactoring code
because developers are not forced to edit according to the
abstract syntax tree: they can cut/paste text freely.

Even predicting the effects of changes is hard because it
can be very difficult to navigate through models due to mul-
tiple levels and viewpoints: “If you look at it, you just see
one point. It’s like playing football with a cone. You just
see this part. And then you double click to open something
else. And double click to open something else. And then you
look at that. And then you’ve forgotten this . . . Your brain,
my brain, at least, can’t handle that.” In addition, the non-
linear nature of graphical models makes them difficult to
read because there is no obvious place to start: “When you
document, it puts it on the table. Start at page one. And it
goes to page 200. And then you’re finished. But a model isn’t
like that.” A similar phenomenon was reported by Kuhn et
al. [11], who found that a modeler at General Motors cre-
ated his own linear numbering scheme for Simulink blocks
so he could remember which block to start reading from.

The result is that developers at Radio often ended up
struggling with the models and the modeling tools. As one
interviewee put it: “Because in textual coding the code is the
main artefact. But when you go to graphical modeling, the
tool becomes the main artefact. Because you can’t really ex-
port your models to a new tool.” An open research question,
therefore, is how to free MDE from the constraints of tools?

Similar problems were experienced at Trucks. Although
MDE adoption at Trucks is still in its early days, there is still
a lot of modeling of requirements in Simulink; these Simulink
models are typically sent to suppliers for implementation.
These requirement models can become very large: “If we
take out the generated specification from this tool . . . it is
3,000-plus pages.”. The sheer size of this specification means
that suppliers cannot or do not look at everything: “And he
[supplier] says, ‘I’ve never read it. Because I wouldn’t do
anything but just reading it.”’ Typically, Trucks extracts
what they think is the relevant part of the specification for
each supplier, but this can cause problems if information is
missing: “They’re looking through a peep-hole really.”

An additional comprehension problem reported at Trucks
is related to finding the right level of abstraction. A key is-
sue appears to be that different developers model at different
abstraction levels, which can cause mismatches or incorrect
interpretations: “We probably have 60 function developers
right now actually working. And they each . . . have a little

bit of different dialect when they are writing. Somebody goes
a little bit lower. Some a little higher. Different experience.
And probably you have at least 50 of these persons all writ-
ing requirements in this . . . area. So you have 50 dialects of
writing requirements in this spec.”

4.6 Craftsmanship
One of the key messages that arises from our interviews is

a lack of knowledge about when and where to apply MDE.
MDE is not suitable for all development tasks – and indeed,
different types of MDE are more suitable in some cases than
others – but there is currently a lack of experience in the
MDE industry as to how to apply MDE most effectively
where it matters most. This manifests itself in four ways:
(i) knowing which parts of a system are most appropriate
for MDE and which are not; (ii) knowing how best to apply
MDE once a decision is made; (iii) encoding best practices to
transfer MDE “craftmanship” to future projects; (iv) avoid-
ing over-generalization by assuming that if MDE worked well
for one project, it will work for others.

Cars has partially overcome some of these problems by
adapting the experiences of MDE from other units within
Volvo, such as Powertrain, which develops software for com-
bustion engines: “It’s like this. Right now we are in a learn-
ing process of what these Simulink patterns look like to gen-
erate efficient code. Powertrain, which have been code gen-
erating for many years, have patterns for TargetLink, who
are competitors, and there Volvo has a very good knowledge
of what is good and bad design patterns. When it comes to
the world of Simulink, it is something that we currently are
obtaining, that experience, what we should and should not
do in a Simulink model.”

The introduction of Simulink at Cars is therefore based on
the concrete experiences from previous projects within the
company and the skills of individual engineers. However,
this does not imply that Simulink is suitable for all domains
within Volvo Cars. Our interviews show, for example, that
the transition into MDE is more complicated within the ac-
tive safety domain. In this case, there are challenging run-
time constraints which generated code must satisfy, since the
underlying algorithms demand more CPU and memory than
the algorithms used at Cars. Even within automotive, some
sub-domains then are more suitable than others because of
(e.g.) the requirements place on the generated code. It ap-
pears that as an MDE community, we have very little way
of assessing, in a fine-grained way, the requirements for each
sub-domain, how those requirements affect the applicability
of MDE, and what are the MDE patterns most appropriate
for that particular sub-domain.

Contrast this with the analogous situation for program-
ming languages at Radio. There, the organization has spent
many years building up a wide-spread knowledge of how best
to match programming languages to specific sub-domains:
“We cannot use one language for every part because they’re
not suitable for that . . . It’s great to write test kits in Erlang
. . . When close to the OSS [Operation Support System] and
GUI, of course, Java is excellent.” When transitioning into
MDE this knowledge has to be rediscovered. An example of
this comes from Cars where a consultant with prior experi-
ence of both C and Simulink stated that“I found out making
timers, it was tough in the C code . . . it maybe took you 20
minutes to set up one single timer. And in the modeling
world, it’s just a matter of seconds to make a timer . . . On

the other hand, if you’re doing some data, like moving in an
array or something, . . . I found that quite complicated in the
modeling world. That was more practical in C.”

According to one project owner at Radio, there are two
questions to ask when considering modeling a certain sub-
domain: (i) Will the generated code be efficient enough, and
(ii) Do the developers have the right competence: “You have
to take that into account when you form the business case
for the start of the project. In some areas, the cost for de-
veloping that competence is too big . . . If MDE is not some-
thing that shows black figures in the end, we shouldn’t do it.”
Clearly, there are other considerations too (for example, in-
terviewees at all three companies said that applications with
strict non-functional requirements on memory handling and
processing capacity are known to be difficult to implement
using MDE); the point is the application of MDE on a large-
scale in practice still appears to be in a relatively immature
state – one in which elements of MDE “craftmanship” have
not yet been formalized and shared.

4.7 Applying MDE in a New Unit
Other authors have written about strategies for introduc-

ing MDE into an organization. Hutchinson et al., for in-
stance, talk of the need to place MDE on the critical path
in a development effort – however small it may be – to en-
sure that the MDE team is not assigned the weakest staff
[18]. Aranda et al., in a study of MDE at General Mo-
tors, report tensions when engineers were asked to redefine
their role in an organization due to the introduction of MDE
[1]. This came about because GM employed domain experts
with a background in physics and mechanical engineering as
software developers, which was made possible because they
knew Simulink from their University training. Software en-
gineers were employed to develop the secondary software.
This division of resources, which was similarly applied at
Cars, required engineers to redefine their roles.

Cars, perhaps by chance, came up with an interesting
and rather successful strategy for introducing MDE. Be-
cause Electric Propulsion Systems was a new business area
for Cars, a completely new unit was created for the devel-
opment work. The creation of a new unit meant that many
of the classical issues associated with change management
– such as requiring engineers to redefine their roles, or re-
quiring culture changes within a team – naturally did not
exist. The new unit was not tied down to legacy, either in
terms of software, organizational culture, existing process,
or external relations. In other words, the new unit more
or less had a clean slate to develop new ways of working as
needed. Crucially, however, such a new unit could not suc-
ceed in a vacuum. It was not enough simply to create the
new team and expect great things to happen; rather, the
team had access to historical expertise in MDE from other
units within Volvo. But the new unit allowed the team to
pick up best practices as they wished, and to exclude prac-
tices that did not resonate with their new way of thinking.
An example of this is how the new unit at Cars defined their
own agile processes on top of MDE processes from Power-
train. Although the creation of a new unit may not always
be feasible, or even desirable, this way of handling the in-
troduction of MDE is consistent with the recommendations
of Christensen, who states that when changes become too
extensive within an existing organization the solution is to
start afresh [3].

5. RELATED WORK

5.1 Hutchinson et al.
The most closely related work to ours is that of Hutch-

inson et al. [7, 8, 9, 18]. This subsection therefore gives
a detailed comparison of the findings from the two studies.
The main conclusions of Hutchinson et al. are given in Ta-
ble 2, grouped according to different aspects of introducing
MDE. The final column in the table indicates whether our
findings either validated (V) Hutchinson’s study or refuted
(R) it. Although most of our results validate Hutchinson,
we both (i) offer additional evidence to support the find-
ing (a form of replication), and (ii) typically offer deeper or
additional insights related to the finding in each case.

Earlier sections of the paper have elaborated on validated
findings. In this section, therefore, we focus on findings
which refute Hutchinson et al. The refuted findings come
exclusively under the categories of Control and Training.

In relation to Control, we discovered that software ar-
chitects at Radio who are used to specifying their domain
knowledge in textual documents found MDE tools and lan-
guages intimidating. The introduction of MDE enforced on
them a level of formality with which they were not comfort-
able. In contrast to Hutchinson, who argues that middle
managers are often a bottleneck when introducing MDE be-
cause they are risk-averse, our study shows that this need
not be the case – again at Radio, we found that middle man-
agers can be champions of MDE precisely because it can
minimize risks related to human error or external organiza-
tional dependencies. We also found that code gurus are not
necessarily averse to MDE; software engineers employed at
Cars, for instance, do not mind building secondary software
to support domain experts because they have specifically
been employed as consultants to do this.

In relation to Training, Hutchinson et al. have criticized
UML education in Universities because educators often tend
to focus on teaching the syntax of UML rather than prob-
lem solving. At Cars, the domain experts have been trained
at University in Simulink and, contrary to UML, appeared
to be well-equipped to enter the company and transition,
using MDE and Simulink, to a more software development-
oriented role. Hutchinson et al. have also argued that Uni-
versities unnecessarily separate modeling/abstraction skills
from compiler/optimization skills in their curricula. This
can cause problems, but does not appear to do so at Cars
because Simulink allows the domain experts and implemen-
tors to work very closely together.

Similarly, at Cars, there is a supply of Simulink-trained
engineers leaving University, which is exactly what Cars
needs to hire. This conflicts with many situations in the
Hutchinson study where companies hired engineers skilled
in a particular technology, but then required them to work
on modeling, for which they were not trained.

5.2 Other Related Work
There are a very large number of papers describing case

studies of applying MDE in practice, as well as a smaller
number of empirical studies on industrial use of MDE. To
limit the scope, we here describe only the most prominent
of these papers, with a particular emphasis on those that
go beyond the pure technical aspects of MDE in that they
also include organizational and social factors, especially as
relates to the automotive and telecoms sectors.

Findings from Hutchinson et al. Validated
or Refuted

Domain Successful MDE tends to favor DSLs over General-Purpose Languages [18] V
When developing DSLs, focus on narrow, well-understood domains [8, 9, 18] V
Domain experts already model: they use informal DSLs so can transition easily to MDE [18] No data

Process MDE more successful if driven bottom-up, by developers (not from managers) [7, 18] V
Put MDE on a critical path to get the best resources [7, 8, 9, 18] V
Productivity gains from MDE can be lost elsewhere (e.g., unreadable generated code) [8, 18] V
Most MDE project failures are at scale-up [8, 18] V
Organizations must constantly evolve MDE infrastructure as understanding grows [7] V

Motivation MDE needs a clear business driver [7, 18] V
MDE works well for domain-specific products, rather than general software [9] V
Target MDE where it can have maximum impact quickly [9, 18] V
Organizational buy-in for MDE is important at all levels [7, 9] V

Control MDE requires significant customization of tools to an organization’s context [18] V
MDE can bring outsourced development activities back in-house [18] V
Architects like MDE: the generator lets them control architectural rules more easily [18] R
Code gurus do not like MDE: they lose control to the generator [18] R
Middle managers are risk-averse and reluctant to try new techniques such as MDE [18] R

Abstraction If the models are too close in abstraction level to code, there are limited benefits [7] V
Simplicity in models can be counter-productive; managers may see it as laziness [18] No data
MDE engineers need a mix of abstraction and compiler skills [9, 18] V

Training MDE training is too often focused on tool idiosyncrasies, rather than problem solving [7] R
Universities do not adequately train engineers in MDE [18] R
Businesses hire too much based on knowledge of specific technologies of the day, which may
not be relevant to modeling [18]

R

Table 2: Comparing the conclusions of Hutchinson et al. with data from Radio, Cars and Trucks.

In a recent publication, we presented a taxonomy of chal-
lenges and potentials when applying MDE tools in industry
[17]. The taxonomy was deduced from the interviews con-
ducted by Hutchinson et al. and validated through a limited
set of the data obtained in this study. The findings empha-
size how current MDE tools are lacking in both usefulness
and usability and concludes that more research is needed
to understand the interplay between organizations, human
factors and the technical features of the tools.

Kuhn et al. [11] and Aranda et al. [1] report on two paral-
lel studies of applying MDE at General Motors. The former
focus on individual perceptions of the adoption of MDE at
GM; the latter reports on how MDE induced changes at the
organizational level. At the individual level, engineers expe-
rienced both forces and frictions related to MDE tools and
languages – for example, a lack of support for developing sec-
ondary software (see Sec. 4.3). At the organizational level,
[1] found, for instance, that software developers felt “down-
graded” when MDE was introduced, because they were now
asked to focus on secondary software whereas domain ex-
perts focused on primary functionality.

Baker et al. [2] describes a process of introducing MDE
at Motorola. They also report on the lack of organizational
maturity in terms of which processes to use in combination
with MDE, the difficulties in adapting existing skills to the
new challenges of MDE and the unwillingness of the orga-
nization to change in order to make the most out of the
transition into MDE. A previous study conducted at Ra-
dio can be found in [13]. Here the emphasis is on MDE in
relation to architectural concerns (deployment, algorithms,
performance etc.) but the authors point out some organiza-
tional aspects of MDE, such as the possibility that the cost
of modeling can outweigh the benefits.

6. VALIDITY
In terms of threats to internal validity, we followed a sys-

tematic approach in setting up the study and followed best
practice guidelines in both data collection and analysis. A
systematic approach is straightforward to follow in the case
of the interviews (i), as strict protocols can be set up. In the
case of the more informal aspects of the fieldwork – namely,
(ii) and (iii) – there are inevitable critiques of representative-
ness and rigor. However, we were not able to carry out more
rigorous, formal experiments within the companies because
this would have been too disruptive. In such cases, infor-
mal interactions are an established way to gather data [4,
12]. Indeed, a benefit of informal interaction is that it lets
the respondent be in control, which, in turn, enables the dis-
course to lead to new topics not anticipated by the researcher
[5]. The informal settings allowed the researchers to interact
with employees that were not assigned as interviewees. This
gave an opportunity to validate if data collected through the
formal interviews represented a shared understanding or a
minority view. Another benefit of the informal interactions
was that often engineers from other units would be present,
which gave the opportunity to see if findings carried across
to other units or not.

We have taken great care in our study to validate emerg-
ing findings from the interviews. This mitigates to a large
extent any misinterpretations that the researchers may have
made. Throughout the study, the companies have been in-
volved in validating our analysis: in seminars with the re-
spective contact persons and through recurring interactions
with engineers in both formal and informal settings. All
three companies approved this paper.

In terms of threats to external validity, the three compa-
nies all develop large-scale software for embedded systems

and this software is expected to have a long lifetime. There-
fore, our findings may not apply to MDE in small companies
or for software with a shorter life expectancy. All three com-
panies were transitioning into a combination of agile prac-
tices and MDE; although we have some findings related to
this aspect, it may be too early to fully understand how these
practices work together. Another limitation is that we stud-
ied only one unit at each company; other units might have
very different experiences of MDE. We have mitigated this
to some extent by interviewing a broad spectra of engineers
within each organization.

7. CONCLUSIONS
In general our results validate the conclusions of Hutch-

inson et al. However, in two ares our data refutes their ob-
servations: how to introduce MDE so that the engineers feel
they do not loose control and in to which extent engineers
have the right training for MDE.

Additionally, our own data illustrates how it is possible
to involve the domain experts directly in market leading
software implementation. The resulting productivity gains
are possible due to investments in secondary software that
compensates for the domain experts lack of programming
skills. In this way the secondary software captures both the
domain and the best practices of implementing the same.

Our findings present initial insights in how MDE and agile
practices can naturally coexist in the context of embedded
software. A future direction of research is then to further
explore how domain experts can be included not only in the
specification of new features but become directly involved in
their implementation - from innovative idea to integration on
hardware. A special case of the above is how agile practices
and MDE can combine to enable innovation in industrial
sectors where external organizations play an important role
in the overall development.

Acknowledgments
The authors would like to thank all those who took part in
the interviews, including those who facilitated the study at
Radio, Cars and Trucks. The study was partly funded by
the Software Center, Gothenburg, Sweden.

8. REFERENCES
[1] J. Aranda, D. Damian, and A. Borici. Transition to

Model-Driven Engineering - What Is Revolutionary,
What Remains the Same? In MODELS 2012, 15th
International Conference on Model Driven
Engineering Languages and Systems, pages 692–708.
Springer, October 2012.

[2] P. Baker, S. Loh, and F. Weil. Model-Driven
Engineering in a Large Industrial Context – Motorola
Case Study. In Proceedings of the 8th international
conference on Model Driven Engineering Languages
and Systems, MoDELS’05, pages 476–491, Berlin,
Heidelberg, 2005. Springer-Verlag.

[3] C. M. Christensen. The innovator’s dilemma: when
new technologies cause great firms to fail. Harvard
Business School Press, Boston, Massachusetts, USA,
1997.

[4] K. Davis. Methods for studying informal
communication. Journal of Communication,
28(1):112–116, 1978.

[5] K. DeWalt and B. DeWalt. Participant Observation: A
Guide for Fieldworkers. Anthropology / Ethnography.
Rowman & Littlefield Pub Incorporated, 2002.

[6] B. Glaser and A. Strauss. The Discovery of Grounded
Theory: Strategies for Qualitative Research.
Observations (Chicago, Ill.). Aldine Transaction, 7
edition, 2009.

[7] J. Hutchinson, M. Rouncefield, and J. Whittle.
Model-driven Engineering Practices in Industry. In
Proceedings of the 33rd International Conference on
Software Engineering, ICSE ’11, pages 633–642, New
York, NY, USA, 2011. ACM.

[8] J. Hutchinson, J. Whittle, and M. Rouncefield.
Model-driven engineering practices in industry: Social,
organizational and managerial factors that lead to
success or failure. Science of Computer Programming,
2013. Accepted for publication.

[9] J. Hutchinson, J. Whittle, M. Rouncefield, and
S. Kristoffersen. Empirical assessment of MDE in
industry. In Proceedings of the 33rd International
Conference on Software Engineering, ICSE ’11, pages
471–480, New York, NY, USA, 2011. ACM.

[10] A. Kleppe, J. Warmer, and W. Bast. MDA Explained:
The Model Driven ArchitectureTM: Practice and
Promise. Addison-Wesley Professional, 2005.

[11] A. Kuhn, G. C. Murphy, and C. A. Thompson. An
exploratory study of forces and frictions affecting
large-scale model-driven development. In Proceedings
of the 15th international conference on Model Driven
Engineering Languages and Systems, MODELS’12,
pages 352–367, Berlin, Heidelberg, 2012.
Springer-Verlag.

[12] G. Michelson and V. S. Mouly. ’You Didn’t Hear it
From Us But...’: Towards an Understanding of
Rumour and Gossip in Organisations. Australian
Journal of Management, 27(1 suppl):57–65, 2002.

[13] L. Pareto, P. Eriksson, and S. Ehnebom. Concern
coverage in base station development: an empirical
investigation. Software and Systems Modeling,
11(3):409–429, 2012.

[14] C. Robson. Real World Research: A Resource for
Social Scientists and Practitioner-Researchers.
Regional Surveys of the World Series. Blackwell
Publishers, 2002.

[15] K. Schwaber and M. Beedle. Agile Software
Development with Scrum. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 1st edition, 2001.

[16] A. Strauss and J. Corbin. Basics of qualitative
research: grounded theory procedures and techniques.
Sage Publications, 17 edition, 1990.

[17] J. Whittle, J. Hutchinson, M. Rouncefield, H. Burden,
and R. Heldal. Industrial Adoption of Model-Driven
Engineering: Are the Tools Really the Problem? In
MODELS 2013, 16th International Conference on
Model Driven Engineering Languages and Systems,
Miami, USA, October 2013.

[18] J. Whittle, M. Rouncefield, and J. Hutchinson. The
state of practice in model-driven engineering. IEEE
Software, 2013.

