Software Population Pyramids: The Current and the Future
of OSS Development Communities

Saya Onoue, Hideaki Hata, Kenichi Matsumoto
Graduate School of Information Science
Nara Institute of Science of Technology, Nara, Japan

{onoue.saya.og0, hata, matumoto}@is.naist.jp

ABSTRACT

Context: Since human power is an essential resource, the
number of contributors in a software development commu-
nity is one of the health indicators of an open source software
(OSS) project. For maintaining and increasing the popula-
tions in software development communities, both attract-
ing new contributors and retaining existing contributors are
important. Goal: Our goal is understanding the current
status of projects’ population, especially the different expe-
rienced contributors’ composition of the projects. Method:
We propose software population pyramids, a graphical illus-
tration of the distribution of various experience groups in a
software development community. Results: From the study
with OSS projects in GitHub, we found that the shapes
of software population pyramids varies depending on the
current status of OSS development communities. Conclu-
sions: This paper present a software population pyramid of
the distribution of various experience groups in a software
community population. Our results can be considered as
predictors of the near future of a project.

Categories and Subject Descriptors

H.1.2 [Models and Principles|: User/Machine Systems—
human factors; J.4 [Social and Behavioral Sciences|:
Sociology

General Terms

Human Factors

Keywords

OSS, software development community, population pyramid

1. INTRODUCTION

The Heartbleed security vulnerability in OpenSSL clari-
fied the challenges of open source software (OSS) projects,
that is, the population of software development communi-
ties. In the OpenSSL project, there had been only a few

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ESEM *14 September 18-19, 2014, Torino, Italy.

Copyright 2014 ACM 978-1-4503-2774-9/14/09 ...$15.00.

full-time core developers and a number of part-time volun-
teer developers, and this shortage of human resources can
be considered as one of the causes’. Therefore maintain-
ing and increasing the populations in software development
communities are one of the challenges of OSS projects.

Zhou and Mockus studied long term contributors (LTC),
by addressing the research question “what impacts the
chances that a new joiner to a software project will be-
come an LTC[5]?” From the analysis of the behavior of in-
dividual participants in Gnome and Mozilla, they reported
that future LTCs tend to be more active and show more
community-oriented attitude than other joiners during their
first month.

Yamashita et al. proposed a pair of population metrics,
namely, magnetism and stickiness[4]. They defined mag-
net projects as those that attract a large proportion of new
contributors, and sticky projects as those where a large pro-
portion of the contributors will keep making contributions.
With two values of magnetism and stickiness, OSS projects
are classified into the following four categories. Attractive
projects have high magnet and high sticky values. These
projects are successful in both attracting new contributors
and retaining existing ones. Fluctuating projects have high
magnet but low sticky values. These projects are successful
in attracting new contributors, but unsuccessful in retaining
them. So the members of these OSS development commu-
nities fluctuate year by year. Stagnant projects have low
magnet but high sticky values. These projects are contrary
to the fluctuating projects, that is, they retain the exist-
ing contributors but cannot attract new ones. Terminal
projects have low magnet and low sticky values. Based on
this classification, they empirically studied OSS project his-
tories, and found at-risk projects.

To see the population of OSS development communities
in detail, we adopt population pyramids, a graphical illus-
tration of the distribution of various age groups in a pop-
ulation. In general, population pyramids are used to show
the current status of countries’ population, and may provide
insights about political and social stability, as well as eco-
nomic development. In addition, they are known to be pow-
erful predictors of the future?. Depending on the countries’
situations, the shapes of population pyramids varies. In our

'Free Can Make You Bleed http://www.ssh.com/blog/
makesyoubleed, Apr. 30, 2014.

2Population pyramids: Powerful predic-
tors of the future - Kim Preshoff, TED-Ed,
http://ed.ted.com/lessons/population-pyramids-powerful-
predictors-of-the-future-kim-preshoff

software population pyramids, contributors are grouped by
their experiences in the communities. With the same data of
the previous study[4], we created software population pyra-
mids for OSS project communities and analyzed them. The
differences between our study and the previous study can be
summarized as follows:

e Yamashita et al. considered a developer to be authors
of code changes. So they only focused on the com-
mit and pull request activities. However, we are also
interested in other contributors who send issues and
comments. So we analyze other activities as well as
commit and pull request activities.

e Our software population pyramids are consisted of var-
ious experience groups in a software development com-
munities. So, our method can see LTCs, though the
previous study didn’t distinguish the developers’ expe-
riences.

We found that (i) the shapes of software population pyra-
mids varies depending on the current status of OSS project
communities (Attractive, Fluctuating, Stagnant, and Termi-
nal), and (ii) software population pyramids can be consid-
ered as predictors of the near future.

2. POPULATION PYRAMIDS FOR OSS

In a general population pyramid, the population is dis-
tributed along the horizontal axis, with males shown on the
left and females on the right. The male and female popula-
tions are broken down into 5-year age groups represented as
horizontal bars along the vertical axis, with the youngest age
groups at the bottom and the oldest at the top. The shape
of the population pyramid gradually evolves over time based
on fertility, mortality, and international migration trends.

In this paper we propose software population pyramids,
population pyramids of software development communities.
Contributors are considered as the constituent member of
the communities, and the contribution periods are regarded
as existing periods or lifetimes. Although the previous study
limited contributions to coding activities[4], we treat both
coding activities and discussion activities as contributions to
see the volumes of overall contributors’ populations. There
are some differences between our software population pyra-
mids and the general population pyramids.

e A population pyramid consists of males’ and females’
bars. But a software population pyramid consists of
coding contributors’ and discussion contributors’ bars.

e In a general population pyramid, people appear at
birth and disappear when they die. But in a soft-
ware population pyramid, contributors start their ex-
periences when they join and end when they leave the
development communities.

e The height of the population pyramids are similar
each other because people do not live more than 200
years. But software population pyramids have differ-
ent height since OSS projects have different existing
periods and people can leave freely.

e Since the parent-child relationships exist in population
pyramids, there are correlation between the volume of
parent population and children population. However,

injt, last,
Developer 1 | coding

inity lasty
Developer 2 R — | discussion

init last,
Developer 3 D:' =

i

=

discussion

===

. = Iagtc]
{ coding

>t

t t,

|
IZI discussion‘ZI moved - coding

Figure 1: Contribution periods.

software population pyramid do not have such rela-
tionships. This can cause the pyramid change dramat-
ically.

3. DATA COLLECTION

Similar to the previous study[4], we analyze the GitHub
dataset provided by Gousios[3]. This dataset includes de-
velopers’ activity histories of 90 OSS projects. We classified
them into coding and discussion contributions. Coding con-
tributions include commits and pull_requests. Discussion
contributions include commit_comments, issue_comments,
pull_request_comments, and issue_events.

We obtained the dates of those events for each contributor,
and identify the contribution period from the first event to
the last event. Contribution periods are divided into coding
periods and discussion periods based on the classifica-
tion of the activity events. In Figure 1, the coding periods
are represented as solid lines, and the discussion periods are
represented as dotted lines. At the time t1, there are two
contributors. Developer 1 has the coding experience from
init. to t1, and developer 3 has the discussion experience
from inity to t1. In our software population pyramids, con-
tributors with discussion experiences are shown on the left,
and contributors with coding experiences are shown on the
right.

Since coding is the essential contribution in OSS develop-
ment, we distinguish coding contributions from other discus-
sion contributions, and present separately in software popu-
lation pyramids. Although some contributors only work on
discussion, there are chances that contributors move from
discussion contributions to coding contributions. At the
time t2, there are three contributors. Developer 1 has con-
tinued the coding contribution, and developer 2 starts dis-
cussion contributions. Developer 3, who have contributed on
discussion, stared coding contributions before t2. We con-
sider him or her as a coding contributor with the experience
from init. to t2, and marked as moved contributors. Cod-
ing periods are represented as gray, discussion periods are
represented as dark gray, and moved periods are represented
as light gray.

4. ANALYSIS

We present the results of the analysis using software pop-
ulation pyramids with respect to two research questions.

RQ1: Are there typical shapes of software popu-
lation pyramids depending on the current status of
OSS development communities?

2 years

1 year

==

1 1 1 1 1 1
750 500 250 0 250 500 750
(a) Attractive (homebrew, 2011/12)

6 years = =
5years =
4 years =
3years =
2years =

1 year =

T 1 1 1
10 5 0 5 10

(c) Stagnant (clojure, 2011/12)

4 years = !
3 years
2 years

1 year

1
II [: I I
100 50 0 50 100

(b) Fluctuating (paperclip, 2011/12)

4 years = —
3 years =
2 years =
= -
fear L =

I ; I
5 0 5
(d) Terminal (blueprint-css, 2011/12)

|Z| discussion‘ZI moved - coding

Figure 2: Software population pyramids and the current status.

In the previous study, the magnetism of a project is cal-
culated as the proportion of contributors who made their
first contribution in the time period, and the stickiness of a
project is calculated as the proportion of contributors in the
time period who have also made contributions in the follow-
ing time period[4]. They empirically classified projects into
four categories: attractive (high magnet and high sticky),
fluctuating (high magnet and low sticky), stagnant (low
magnet and high sticky), and terminal (low magnet and low
sticky). Note that these classifications are based only on
the number of coding contributors. The previous study did
not take discussion contributions into account for the cur-
rent status typology of OSS development communities. We
present four software population pyramids belonging to such
four categories in Figure 2.

(a) The project homebrew on December 2011 is attractive.
Attractive projects have both new and experienced
contributors. In the software population pyramid, we
see many coding contributors on right. Although the
homebrew project has the largest magnet value in the
dataset, its sticky value is not so high[4]. This can
be seen in the pyramid, that is, there is much volume
near the bottom and less volume near the top. In addi-
tion, we found there are many discussion contributors
on left comparable to the coding contributors. As a
result, the pyramid forms balanced shape. Other at-
tractive projects have similar balanced shape.

(b) The project paperclip on December 2011 is fluctu-
ating, many contributors come and leave. First, we
found there is much volume of coding contributors
near the bottom and less volume near the top. Sec-
ond, we found that there are many discussion con-
tributors compared to the coding contributors. This
project seems to be successful in attracting new con-
tributors including both coding and discussion contrib-
utors, but unsuccessful in retaining them, especially re-
taining coding contributors. The fluctuating projects
found to have left-sided pyramids.

(¢c) The project clojure on December 2011 is stagnant.
The majority of the community members are coding

contributors. Although there are many valuable cod-
ing contributors, there are little discussion contribu-
tors. These projects are contrary to the fluctuating
projects, that is, the stagnant projects have right-sided
pyramids.

(d) The project blueprint-css on December 2011 is ter-
minal. There are less coding contributors and discus-
sion contributors. The shapes of the terminal projects’
software population pyramids are collapsed.

RQ2: How do software population pyramids
change over time?

We investigated the transition of software population
pyramids over time. Figure 3 shows the transition of the
software population pyramids of three OSS projects. Soft-
ware population pyramids are created at the four snapshot
on June 2010, June 2011, June 2012, and June 2013.

The homebrew project has been attractive since June 2011.
On June 2010, there are many discussion contributors, but
not many coding contributors. Until June 2011, it attract
many coding contributors as well as discussion contributors.
From then, the homebrew development community grows. It
keeps attracting new contributors, and retain existing con-
tributors. As a result, the height of the pyramid increased,
and the shape becomes like pyramid.

Next, we examine the changes of the blueprint-css’s
software population pyramids, which was a terminal project
in 2011. The shape of this software population pyramid is
unbound and unstable. This project had little discussion
contributors from 2010 to 2013, and do not have them in
2013. Long term developers who have stayed until 2011 dis-
appeared in 2012. Current contributors of this project are
different from the previous contributors.

Finally, we examine the changes of the jekyll’s software
population pyramids, which was also a terminal project in
2011. This software population pyramid has number of dis-
cussion contributors more than number of coding contribu-
tors. After that, it has a little moved developers, and num-
ber of both contributors increased in 2011. Number of dis-
cussion and coding contributors continued to increase, and

=

1 I I 1 I T] I 1
750 500 250 0 250 500 750 750 500 250 O 250 500 750

i

1 T T I I 1 1 T T I I 1
750 500 250 0 250 500 750 750 500 250 0 250 500 750

2010/06 2011/06 2012/06 2013/06
(a) homebrew
. = 3 = 3 3
3 =] 3 —
= E 3 3 3
- — 3 3 } 3
- I \:I I E E E =
; ; ; ! g ! ! : : a g
2010/06 2011/06 2012/06 2013/06
(b) blueprint-css
5years = = = =
4 years = E: E: J E: J
Syeawsg E E E
Zyearsg E E E
150 100 50 0 50 100 150 15 100 50 0 50 100 150 15 100 50 0 50 100 150 150 100 5 0 50 100 150
2010/06 2011/06 2012/06 2013/06

(c) jekyll

|Z| discussioan, moved . coding

Figure 3: The transitions of software population pyramids.

the population pyramid becomes balanced shape in 2013.
This project classified as terminal project in 2011. However,
there are many discussion contributors, which is different
from the case of the blueprint-css. Therefore, we think this
project had a possibility to become attractive or fluctuating
project in near future.

In summary, we see that the population of the current sta-
tus can be predictors of near future. Especially, discussion
contributors are important to attract new coding contribu-
tors, and they may be potential coding contributors.

S. RELATED WORK

Human factor is a related field of study to this re-
search. For example, Zhou and Mockus et al. Reported
that a new contributors to become a Long Term Contribu-
tor (LTC) tend to show more community-oriented attitude
than other contributors[5]. Our study presented entry and
exit of contributors of OSS projects. These results indicated
that participation and retirement of contributors are differ-
ent to every project.

Social Network Analysis is a related field of study to
this research. For example, Bird et al. Reported that devel-
opers play a significant social role in email lists [1]. Similarly,
Bird et al analyzed email addresses in open source software
projects to examine the community structure among devel-
opers [2]. Although our study collected data from different
kinds of development archives, specifically the developers’
activity events in GitHub, these results also indicated con-
tributors have many different roles.

6. CONCLUSIONS

This paper presented a graphical illustration of the dis-
tribution of various experience groups in a software commu-
nity population, called a software population pyramid. Soft-
ware population pyramids show the volumes of contributors
in the software development communities. We distinguish
coders from not coding contributors, and designed the soft-

ware population pyramids, to see the transition from not
coding contributions to coding contributions. From an em-
pirical study with OSS projects in GitHub, we found that
the shapes of software population pyramids vary depend-
ing on the current status of development communities. We
think that lively discussions may attract new contributors,
and lively developments may agitate existing contributors
for staying. Clarifying such effects is one of our future work,
and we plan to continue studying developers’ migration over
OSS projects.

7. ACKNOWLEDGMENTS

This study has been supported by JSPS KAKENHI
Grant Number 26540029, and has been conducted as a part
of “Research Initiative on Advanced Software Engineering
in 2013” supported by Software Reliability Enhancement
Center (SEC), Information Technology Promotion Agency
Japan (IPA).

8. REFERENCES

[1] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and
A. Swaminathan. Mining email social networks. In
Proc. of MSR, ’06, pp. 137-143, 2006.

[2] C. Bird, D. Pattison, R. D’Souza, V. Filkov, and
P. Devanbu. Latent social structure in open source
projects. In Proc. of SIGSOFT ’08/FSE-16, pp. 24-35,
2008.

[3] G. Gousios. The ghtorent dataset and tool suite. In
Proc. of MSR ’13, pp. 233-236, 2013.

[4] K. Yamashita, S. McIntosh, Y. Kamei, and
N. Ubayashi. Magnet or sticky? an oss
project-by-project typology. In Proc. of MSR ’14, pp.
344-347, 2014.

[5] M. Zhou and A. Mockus. What make long term
contributors: Willingness and opportunity in oss
community. In Proc. of ICSE ’12, pp. 518-528, 2012.

