
COMMUNICATIONS OF THE ACM December 1997/Vol. 40, No. 12 113

Programming is not just an
activity, it’s a discipline,
with its own value sys-

tem—or so I believed. I’d like to
describe an experience that shook
my faith.

A few years ago I started
building a system for under-
standing speech. I wanted to do
so in part because speech under-
standing seemed to be an area
where I, as a programmer, could
contribute. Of course there are
already hundreds of people work-
ing on speech recognition and
understanding. But the predom-
inant research style in speech is
an engineering one [6], which
seems to lack several qualities a
real programmer could provide:

• One missing element was ambi-
tion. Rather than aiming to
incrementally improve an exist-
ing system to achieve a slightly
lower error rate, I aimed at an
optimal model, that is, a proto-
type of an architecture powerful
enough to support optional
interpretation.

• The key to this seemed to be
the full integration of different
sources of knowledge. That is,
to make sense of speech signals,
noisy as they inevitably are, I
aimed to exploit syntactic con-

straints, semantic preferences,
the local context, and so forth,
seamlessly and online as the
input is received.

• The best way to arrive at an
architecture for this seemed to
be introspection. Since humans
can understand speech, I aimed
to build a system that mimic-
ked that process. To do so,
rather than undertake a full sci-
entific investigation of how
people understand, I took the
simpler approach of just imag-
ining what I would do, if some-
one handed me a speech signal
and asked me to figure out its
meaning.

• Finally, to produce an extensi-
ble system, I aimed for a clean,
esthetically pleasing design, specif-
ically, one that was modular,
declarative, parallelizable, and
so forth.

That, in a nutshell, was what I
thought a programmer could
contribute.

And many people agreed this
was a good research strategy. I
remember one computer science
conference at whuch I outlined
my goals and plans and a hun-
dred people nodded with under-
standing and agreement at every
point. However, at speech confer-

ences my presentations were
received coldly, although I didn’t
understand why.

I set to work, fleshing out and
implementing my vision of the
ideal speech understanding sys-
tem. After three years learning
and building and debugging, I
had a system that worked, taking
speech inputs from a microphone
and outputting representations of
their meaning [7].

I then evaluated its perfor-
mance and discovered it was
completely outclassed by the sys-
tems built by plain, old engi-
neering approaches.

Re-reading the literature
showed that my attempt was not
novel, and neither was my fail-
ure. There have been many simi-
lar approaches to speech
understanding, as surveyed in
Klatt [3] and Ward [8]—after
exciting starts, all have faded
away without achieving much.
The reasons for this include spe-
cific technical aspects of the
speech understanding task, as
discussed elsewhere [8]; but the
root cause of the failure lies, I
believe, in the value systems of
the programmers.

The specific aspects of pro-
gramming that led me (and oth-
ers) astray were, in fact, the four

Programming as a
Discipline?

Nigel Ward

http://crossmark.crossref.org/dialog/?doi=10.1145%2F265563.265580&domain=pdf&date_stamp=1997-12-01

114 December 1997/Vol. 40, No. 12 COMMUNICATIONS OF THE ACM

points I listed. To recapitulate,
making the contrast with engi-
neering practice clear:

1. Ambitiously wanting to build
a radically new, high-perfor-
mance, general-purpose system
straight off, rather than accept-
ing the need to build up know-
how through a succession of
limited but useful systems.

2. Prizing full integration, rather
than just the amount of inte-
gration worthwhile [4].

3. Aiming at introspectively
plausible processing, rather
than identifying real issues.

4. Relying on aesthetic principles
of design, rather than just
designing a system to get the
job done. These are discussed
further in [9].

Of course, these tendencies are
not invariably bad. They often
pay off, and so have become some
of the core values of the program-
ming community. Ambition is
important in a fast-moving field.
Integration is an obvious good, as
millions of people who work on
systems to get information from
where it is to where it’s needed
will testify. Introspection also is
often useful, as seen by the multi-
tudes of communications proto-
cols, operating systems, and so
forth, which exploit anthropomor-
phic metaphors. Principled design
is another obvious good.

But these values and tendencies
are not infallibly useful. They have
led many researchers astray in
speech understanding, and in other
fields too. In human-computer
interaction, in artificial intelli-
gence, and in robotics, it can be
argued that a programming mind-
set is often a liability [1, 2, 5].

Software, as a relatively new
field of human endeavor, allows a

more exciting methodology than
plain, old engineering. Therefore,
to the students in my software
classes, I always try to instill a
sense of programming as a disci-
pline, complete with its own
mind-set and values. But the
experience with speech under-
standing has humbled me. Maybe
programming should, after all, be
considered not as a discipline, but
just a skill, like writing or draw-
ing. And maybe we should train
students to be, say, engineers who
can program, not programmers as
such.

Nigel Ward (nigel@sanpo.t.utokyo. ac.jp)
is an associate professor at the University
of Tokyo.

References
1. Brooks, R.A. Intelligence without reason. In

Proceedings of the Twelfth International Joint Con-
ference on Artificial Intelligence, 1991, pp. 569-
595.

2. Cohen P.R. A survey of the eighth national
conference on artificial intelligence. AI Mag.
12 (1991), 16–41.

3. Klatt, D.H. Review of the ARPA Speech
understanding project. J. Acoust. Soc. Amer. 62
(1977), 1324–1366.

4. Moore, R.C. Integration of speech with natural
language understanding. In D. B. Roe and
J.G. Wilpon, eds., Voice Communication Between
Humans and Machines. National Academy
Press, Washington, DC, 1994, pp. 254–271.

5. Newman, W. A preliminary analysis of the
products of HCI research, using pro forma
abstracts. In Proceedings of CHI ’94, pp. 278-
284.

6. Roe, D.B. and Wilpon, J.G., eds. Voice Com-
munication between Humans and Machines.
National Academy Press, Washington, DC,
1994.

7. Ward, N. An approach to tightly-coupled syn-
tactic/semantic processing for speech under-
standing. In AAAI Workshop on the Integration
of Natural Language and Speech Processing, 1994,
pp. 50–57.

8. Ward, N. Second thoughts on an artificial
intelligence approach to speech understand-
ing. In Fourteenth Spoken Language and Discourse
Workshop Notes (SIGSLUD-14), Japan Society
for Artificial Intelligence, 1996, pp. 16–23.

9. Ward, N. Artificial intelligence and other
approaches to speech understanding: A case
study in methodology. J. Exper. Theoret. Art.
Int. To appear.

© ACM 0002-0782/97/1200 $3.50

c

