
Faithful Reproduction of Network Experiments

Dimosthenis Pediaditakis Charalampos Rotsos Andrew W. Moore
Computer Laboratory, University of Cambridge

{firstname.lastname}@cl.cam.ac.uk

ABSTRACT
The proliferation of cloud computing has compelled the research
community to rethink fundamental aspects of network systems and
architectures. However, the tools commonly used to evaluate new
ideas have not kept abreast of the latest developments. Common
simulation and emulation frameworks fail to provide scalability, fi-
delity, reproducibility and execute unmodified code, all at the same
time.

We present SELENA, a Xen-based network emulation frame-
work that offers fully reproducible experiments via its automation
interface and supports the use of unmodified guest operating sys-
tems. This allows out-of-the-box compatibility with common ap-
plications and OS components, such as network stacks and filesys-
tems. In order to faithfully emulate faster and larger networks,
SELENA adopts the technique of time-dilation and transparently
slows down the passage of time for guest operating systems. This
technique effectively virtualizes the availability of host’s hardware
resources and allows the replication of scenarios with increased I/O
and computational demands. Users can directly control the trade-
off between fidelity and running-times via intuitive tuning knobs.
We evaluate the ability of SELENA to faithfully replicate the be-
havior of real systems and compare it against existing popular ex-
perimentation platforms. Our results suggest that SELENA can ac-
curately model networks with aggregate link speeds of 44 Gbps or
more, while improving by four times the execution time in compar-
ison to ns3 and exhibits near-linear scaling properties.

Categories and Subject Descriptors
C.2.5 [Computer Systems Organization]: Computer - Communi-
cation NetworksLocal and Wide-Area Networks; D.4.8 [Software]:
Operating SystemsPerformance

Keywords
Network experimentation, emulation, Virtualisation

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ANCS’14, October 20–21, 2014, Los Angeles, CA, USA.
Copyright 2014 ACM XXX-X-XXXX-XXXX-X/XX/XX ...$15.00..

The adoption of networking technologies by a widening spec-
trum of applications and environments has highlighted a series of
limitations in the design of the predominant protocols and archi-
tectures. In order to support the growing requirement for scalable
network performance, an equal effort is put towards the develop-
ment of network experimentation tools.

We identify three key properties in the realm of network mod-
eling and experimentation: fidelity, reproducibility and scalability.
Fidelity characterizes the ability of the experiment to replicate spe-
cific system behavior with high precision and accuracy. Examples
of network experimentation fidelity can be characterized by the re-
quirement for functional realism in terms of network hosts and net-
work topology, the ability to reuse realistic applications and traffic
models and the accurate recreation of the timing properties of the
real system.

Scalability is an equally important property for experimentation
platforms, defined by the ability to support and gracefully man-
age network experiments of growing size. This requirement is ex-
tremely difficult to meet with respect to current network architec-
tures, primarily due to the exponential increase in their size, link
speed and complexity. Experimental scalability can be further de-
composed in three functional aspects: execution time scalability,
which describes the required wall-clock time to replicate an exper-
iment, resource scalability, which characterizes the ability of the
platform to minimize hardware requirements, and fidelity at scale,
which reflects the ability to maintain high fidelity as the size of the
experiment increases. The three scalability aspects exhibit Pareto
efficiency: a platform cannot improve one of them without affecting
negatively the remaining two aspects.

Reproducibility is a third key property for network experimen-
tation which has gained significant interest in the recent years [13,
32]. Reproducibility describes the ability of the platform to export
and replicate experimental scenarios and its results. It requires a
rich automation abstraction for the configuration of all experimen-
tal details, but must also provide guarantees on fidelity across het-
erogeneous hardware platforms (e.g. control the impact of host’s
available processing capacity on the results obtained from an ex-
periment execution).

This paper presents SELENA, an holistic network experimenta-
tion tool supporting reproducibility and exposing explicit control
on the trade-off between scalability and fidelity. The tool runs in-
a-box and can faithfully emulate complex network architectures
with high-speed links. We argue that emulation provides the op-
timal approach to maximize the fidelity of an experiment, due to
its support for unmodified real-world software and OS. The design
of SELENA combines a variety of network experimentation opti-
mizations (e.g. VM-based emulation, link modeling, time dilation,
automation API etc.) under a common framework. Unlike the pop-

Tool Name Readily Reproducible Hardware Real Unmodified SDN Fidelity at scale Execution
available Experiments requirements Stacks applications support Node Link speed Speed

Simulation
NS2 [16] X X Low x x x ••• ••◦ •◦◦

NS3 [15]/ OMNeT++ [34] X X Low x x partially ••◦ •◦◦ •◦◦
FS-SDN [12] X X Low x x X ••• ••◦ ••◦

NS Cradle [17] / DCE [32] X X Low X no full POSIX partially ••◦ •◦◦ •◦◦
Simulation-Emulation Hybrid

OpenVZ-S3F [37] X(outdated) x Low X X X •◦◦ •◦◦ •◦◦
SliceTime [35] X(outdated) x Low X X x •◦◦ •◦◦ •◦◦

Emulation
ModelNet [33] X(outdated) x Average X X x ••◦ •◦◦ ••• (RT)
DummyNet [5] X x Average X X x ••◦ •◦◦ ••• (RT)

MiniNet [13] X X Low X X X ••◦ •◦◦ ••• (RT)
Time-controlled Emulation

DieCast [10] x x Low X X x ••◦ ••• ••◦
TimeJails (TVEE) [8] x x Low X X x ••◦ ••◦ ••◦
SELENA (this work) X X Low X X X ••◦ ••• ••◦

Testbeds
Planetlab [26] X n/a High X X custom OVS ••◦ •◦◦ ••• (RT)

Ofelia [21] X n/a High X X X ••◦ •◦◦ ••• (RT)

Table 1: Comparison of popular network experimentation platforms across different dimensions

ular container-based Mininet platform [13], SELENA employs OS
virtualization achieving better resource control and isolation and
wider support for network stacks and OSes [36].

In order to overcome the inherent scalability limitations of net-
work emulation, SELENA revisits the idea of Time Dilation [11]:
controlling resource availability per unit of time, by virtualizing
time progression in the guests of the experiment. This approach
fundamentally provides users with direct control on the scalability
trade-offs of an experiment. For example, time dilation opens an
opportunity for near-real time execution of a large number of low-
fidelity experiments to explore a variable-space, whereas when pre-
cise behavior details are sought, an experimenter can run a higher-
fidelity experiment (or set of experiments) by increasing respec-
tively the time dilation factor (TDF). Our approach improves ear-
lier approaches in time-controlled emulation in two ways: first, it
provides support for recent Xen versions and requires zero guest
modifications (if it works on Xen, it works on SELENA) and sec-
ond, it offers better experimental automation and reproducibility. In
addition, due to the varying performance profiles of existing SDN
forwarding devices [30], SELENA supports high precision switch
emulation models, which further improve the fidelity of OpenFlow-
based experiments.
In summary, SELENA provides the following key features:
•Reproducibility: A Python API can be used by experimenters

to describe custom experiments, automating their creation, de-
ployment and execution.

•Fidelity: Time-dilation functionality [11] scales guests’ view
of physical resources helping to accurately model complex net-
works. We successfully patched the latest version of Xen and
tested it against recent Linux and FreeBSD kernels. SELENA
supports any paravirtualized (PV) guest, requires zero modifica-
tions and provides full POSIX compatibility. Real-world appli-
cations and network stacks can be directly tested on our platform.

•Scalability: Slowing down the progression of time at guests
enables support for high link speeds (40 Gbps or higher) and
larger networks, within a single host. In section 4.4 we describe
a methodology for exploring the scalability and accuracy lim-
its that a given TDF value can provide, helping users to better
understand how to efficiently use SELENA.

•Software Defined Networking (SDN): Apart from supporting
all popular software switch and controller implementations, we
also incorporate a flexible OpenFlow switch emulation model
which offers better realism in terms of control plane behavior.

To the best of our knowledge, SELENA is the only open-source
network emulation tool 1 which provides all the above features.
The rest of this paper is organized as follows. Section 2 provides an
overview of related network experimentation platforms. Section 3
describes the architecture and implementation details of SELENA.
Section 4 evaluates the fidelity and scalability of SELENA against a
real-world deployment, and compare it against the Mininet emula-
tion framework and the ns-3 simulation platform. We also evaluate
the accuracy of our switch model and the ability of SELENA to
replicate real network applications. Finally, we discuss the limita-
tions of our work in Section 5, point out future work directions and
conclude in Section 6.

2. BACKGROUND AND RELATED WORK
This section presents a survey of network experimentation prac-

tices, focusing on aspects of fidelity, reproducibility and scalability.
We categorize relevant approaches into four broad categories.

Simulation is a popular experimentation method, employing sim-
plified models to replicate network functionality. ns-2 [16], ns-
3 [15] and OMNET++ [34] are some of the most popular event-
driven network simulators, supporting a plethora of simulation mod-
els (e.g. for link properties, network protocols etc.). These plat-
forms aim to provide good resource scalability, deterministic re-
producibility and simplify the early-stage evaluation of new ideas
by masking the complexity of system-level details. However, their
fidelity is typically sacrificed in favor of scalability, influenced by
the simplistic assumptions of the network and system models.

Many users consider simulation a weak method for testing new
ideas because it does not incorporate real-world network stacks
and it does not support execution of unmodified applications. This
weakness has motivated recent efforts like DCE [32] and NSC [18],
which attempt to extend ns-3 and bridge the API mismatch between
real-world applications and simulation. While these attempts are a
big leap forward, they compromise scalability (the main advantage
of simulation) and offer partial POSIX compatibility. Simulation
platforms have also added support for recent approaches to net-
work control. For example, FS-SDN [12] seeks to help studying
the macroscopic impact of novel network control applications on
data-plane performance using lightweight flow-level models.

Emulation aims to improve experimentation fidelity by enabling
the reuse of real world protocols and applications within a vir-

1Available at http://selena-project.github.io

 OVS

veth1.1

Bridge

veth3.1

eth1

Switch

eth2

Guest

QS2

eth1

H1

Guest

Q1

QV2 QV3

eth1

H2

Guest

veth2.1 veth2.2

Bridge

Control domain kernel-space
Xen HyperVisor

H1 H2

Switch

Dilated
Time

Host Host

Figure 1: SELENA emulation architecture builds on Xen. Emulated hosts run in dilated time, control-domain perceives real time.

tual network. The majority of relevant platforms replace the net-
work layers below the data-link with simplified models which repli-
cate their functionality. The ModelNet [33] project established
a pioneering approach in scalable emulation of Internet topolo-
gies. Its architecture fuses edge hosts running unmodified applica-
tions, with nodes emulating virtual network topologies using Dum-
myNet [5]. ModelNet improved scalability by increasing hard-
ware requirements and could only parallelize execution at the ex-
tent which a particular application and topology allows it.

Recent efforts in emulation frameworks aim to scale-down re-
source requirements and fit large network experiments in a sin-
gle host, without significant precision losses. The developments
in computer resource virtualization allowed emulation platforms to
isolate instances of virtual network components and improved con-
trol on resources usage [4, 27]. Mininet [13] is the most popular
framework of this category, highlighting a reproducibility require-
ment in network experimentation. Mininet automates the exper-
imentation workflow, so that a particular high-level scenario de-
scription consistently recreates the same network topologies, con-
figurations, traffic patterns and application behaviors across differ-
ent host architectures. In order to improve further the fidelity in
replicating SDN architectures, Gupta el al. [12] developed a con-
trol plane proxy service for Mininet, enabling users to integrate
switch models into network experiment.

Nonetheless, the increasing complexity of emulated systems af-
fects their computational scalability and restricts the support for
large network sizes and link speeds in real time. This limitation has
precipitated the development of time-controlled emulation, where
experiment time is virtualized. By executing scenarios at a slower
pace, available hardware resources are scaled and therefore the ac-
curacy of results is improved. Of particular note is DieCast [11]
which, like SELENA, employs full-system emulation using Xen
to scale CPU, disk and network IO resources by dilating the time-
progression in guests. Unfortunately, DieCast’s patches for time
dilation are no longer compatible with modern versions of Xen, it
requires guest modifications, it does not offer automation mech-
anisms for reproducible experimentation and, finally, it does not
support realistic OpenFlow switch models. Similarly, TimeJails
(TVEE) [8] is a VM-based solution with time virtualization sup-
port which combines multiple virtual routing instances in a single
virtual machine to improve resource scalability. TVEE applies dy-
namic hardware allocation to maximize utilization and allows em-
ulating large numbers of virtual nodes per host.

Testbed infrastructures like Ofelia [21] and Planetlab [26], are
large virtualized computer infrastructures, used for the deployment
of experiments. Such platforms achieve high fidelity, similar to

multi-host emulation at the cost of higher hardware requirements.
Kim el al. [19] highlighted potential measurement noise and biases
in network measurements on Planetlab nodes, due to the shared
nature of network testbeds and the limited control on resources.

Hybrid approaches like OpenVZ-based S3F [37] and Slice-
Time [35] provide an alternative towards experimental resource
scalability and fidelity, by combining the emulation with simula-
tion. Specifically, they typically enforce weak virtual time syn-
chronization between emulated nodes, using a centralized simula-
tion engine. SliceTime, for example, uses ns-3 to coordinate the
execution of Xen guests by controlling the hypervisor’s schedul-
ing policy. Guests run independently for a quantum of time and a
global service synchronizes them periodically with the ns-3 clock.

Table 1 presents a comparison of the presented network experi-
mentation frameworks. Each entry categorizes a platform with re-
spect to its fidelity (Real Stacks, Unmodified applications, SDN
support), scalability (Hardware requirements, Fidelity at scale, Ex-
ecution Speed) and reproducibility. SELENA falls under the cate-
gory of “time-controlled emulation” and aims to combine the com-
petitive advantages of Mininet and DieCast. It supports repro-
ducible experimentation, it presents good scalability properties and
furthermore, its functionality can be extended with custom Open-
Flow switch models.

3. SELENA DESIGN
This section presents the design of SELENA. Using as reference

a simple experiment scenario, we provide a high level description
of its execution model (§ 3.1), followed by a presentation on how a
user can construct experiments over the platform via its automation
API (§ 3.2). Furthermore, we elaborate on the details of the under-
lying mechanisms which improves resource scalability (§ 3.3), data
plane fidelity (§ 3.4), and control plane realism (§ 3.5).

3.1 Overall architecture
SELENA revisits the idea of network emulation using OS-level

virtualization. Recent efforts in network experimentation [13] use
lightweight approaches, like container-based virtualization. We ar-
gue that hypervisor-based virtualisation provides better heterogene-
ity support (e.g. supports a wide OS range2) and improved resource
control granularity [36]. SELENA uses Xen [3], a mature open-
source hypervisor which exhibits good performance and scalabil-
ity properties [22]. Furthermore, the Xen Cloud Platform (XCP)
provides a rich API (xen-api), supporting remote Virtual Machine

2http://wiki.xen.org/wiki/DomU Support for Xen

(VM) configuration and resource control. Using xen-api, SELENA
automates the deployment and execution of virtual network topolo-
gies and experimental scenarios.

Figure 1 presents a trivial network experiment topology; two
hosts interconnected through a switch. SELENA uses a simple
mapping mechanism: each host or network device is mapped to
a VM, while each link maps to a pair of virtual network interfaces
(one for each guest) bridged in the Dom0. With respect to Fig-
ure 1, the hosts (H1 and H2) and the switch (SW) are mapped to
separate VMs. Host SW is configured with two network interfaces,
each bridged in the Dom0 using a separate bridge with an interface
from hosts H1 and H2. The interfaces illustrated with pink color
(e.g. veth1.1) are Xen-specific netback devices, transparent to the
guests of the experiment. The resulting virtual machine configura-
tion is a precise representation of the emulated network scenario,
replicating both topological and functional properties, like queue
sizes, link speeds and host resource limitations. SELENA also vir-
tualizes time for all participating guests (blue sandbox), allowing
experimenters to control the trade-off between resource and time
scalability and fidelity.

3.2 Reproducible experiments
SELENA exposes a programming API to specify, deploy and

execute network experiments. We share the same views with the
authors of Mininet [13] on experimental reproducibility and au-
tomation. We believe that both requirements are fundamental for
a network experimentation platform, improving repeatability of re-
sults and simplifying the frequent trial-and-error cycles of applied
research. The mechanism outlined in this section makes experi-
mentation with SELENA simple and user-friendly. Experimenters
can effortlessly re-run experiments with varying parameters, like
queue sizes, link speeds, topologies and application or even host
configurations. An experiment can be repeated on different plat-
forms and hosts, requiring only the installation of SELENA and
the script defining the network topology and functionality of the
experiment. The process of defining and executing a network ex-
periment in SELENA consists of four steps.
Step 1 - Network description

SELENA provides a Python API for the definition of the network
hosts and their topology, as well as their configuration parameters.
Listing 1 presents the topology definition of the experiment in Fig-
ure 1. A network definition is typically composed by the user and
contains two types of objects: nodes and links. A node object con-
tains several fields defining Xen-specific guest resource configura-
tions (e.g. memory size, virtual CPUs and affinity), the template
of the VM and the node network interfaces along with their initial
configuration (e.g. IP and MAC address, queue sizes). The link ob-
ject is simpler and specifies the link end-points (node and interface
IDs) along with the link capacity and latency characteristics.
Step 2 - Experiment deployment

During deployment, SELENA parses the network description,
checks for common syntax or semantic errors (e.g. malformed IP
addresses, duplicate links, platform resources availability) and in-
vokes the relevant xen-api callbacks to create the VMs of the ex-
periment and then installs the required network bridges in Dom0 to
replicate the topology.
Step 3 - Experiment initialization

SELENA uses a distributed control and monitor framework to
synchronize host configuration and scenario execution, which con-
sists of a low overhead daemon running on each host and a central
coordination service running on Dom0. The guest daemon is
responsible to report host status information to the coordination

Node−0 (H1)
newNode (

0 , "H1" # u n iq ue ID , name l a b e l
NodeType . LINUX_HOST , # g u e s t t e m p l a t e
[(1 0 0 0 , # 1 s t i n t e r f a c e , queue l e n

"RANDOM" , # MAC a d d r e s s
" 1 0 . 0 . 1 . 2 " , # IP a d d r e s s
" 2 5 5 . 2 5 5 . 2 5 5 . 0 " , # NetMask
" 1 0 . 0 . 1 . 1 ") , # Gateway
(. .) , (. .)] , # a d d i t i o n a l i n t e r f a c e s

1 , # number o f VCPUs
" 4 , 5 , 6 , 7 " , # VCPU Mask
" 512M") # Gues t RAM

Node−1 (H2)
newNode (1 , "H2" , NodeType . LINUX_HOST ,)
Node−2 (Swi tch)
newNode (2 , " Swi tch " , NodeType . LINUX_OVS ,)
Link : H1<−−>Swi tch
newLink (

(0 , 0) , # Node−0, 1 s t i n t e r f a c e
(2 , 0) , # Node−2, 1 s t i n t e r f a c e
1000 , # Link speed i n Mbps
0 . 2) # La tency (NetEm params)

Link : H2<−−>Swi tch
newLink ((1 , 0) , (2 , 1) , 1000 , 0 . 2))

Listing 1: A simple network topology: 2x hosts 1x switch

P r e v e n t a r p b r o a d c a s t s
setArp (0 , " e t h 1 " , " 1 0 . 0 . 1 . 3 " , " f e : f f : f f : 0 0 : 0 1 : 0 3 "))
setArp (1 , " e t h 1 " , " 1 0 . 0 . 1 . 2 " , " f e : f f : f f : 0 0 : 0 1 : 0 2 "))
C o n f i g u r e t h e s w i t c h
pushCmd (2 , [" ovs−v s c t l s e t−f a i l −mode br0 s e c u r e "])
pushCmd (2 , [" ovs−v s c t l add−p o r t b r0 e t h 1 "])
pushCmd (2 , [" ovs−v s c t l add−p o r t b r0 e t h 2 "])
pushOFRule (2 ,

" b r0 " , " add−f low " , " i n _ p o r t =1 , a c t i o n = o u t p u t : 2 ")
pushOFRule (2 ,

" b r0 " , " add−f low " , " i n _ p o r t =2 , a c t i o n = o u t p u t : 1 ")
Run n e t p e r f f o r 10 s e c o n d s
pushCmd (0 ,

[" n e t p e r f −H 1 0 . 0 . 1 . 3 − t TCP_STREAM −l 1 0 −D1"])

Listing 2: A sample execution scenario description

service and to execute the commands of the experiment in a timely
manner. The daemon communicates with the coordination service
using a signaling protocol over the Xenstore service, thus minimiz-
ing the interference with the emulated network’s resource. During
initialisation, SELENA boots sequentially all the VMs which have
been created in the previous step and configures the network inter-
faces using the coordination service.
Step 4 - Scenario execution

In the final step, SELENA executes the experimental functional-
ity. This is defined through a separate user-composed Python script,
describing a sequence of time-controlled commands to run on each
guest. When the scenario is executed, each command is transmitted
to the guests through the coordination service (via Xenstore).

Listing 2 presents a simple scenario, applied on the network
topology in Listing 1. The scenario installs a static datapath be-
tween the two ports of the switch and creates static ARP entries
to avoid unnecessary broadcast traffic. Then it instructs H1 to ini-
tiate a netperf session and fill the pipe of the virtual path to H2.
Experiments in SELENA run in dilated virtual time and therefore,
scenario commands are also executed in virtual time. For exam-
ple, a 10 seconds netperf session will last multiple times longer in
real-time for TDF values higher than 1.

In order to minimize the time it takes to install, configure and
start large experiments, we implement a series of optimizations.
Firstly, SELENA provides a set of guest templates containing the
minimum required software for network experimentation. Our
Linux-based guests contain a minimal 3.13 kernel and a stripped-
down set of applications and tools, resulting in low memory guest

footprint (20 MB) and fast boot times (2-4 seconds). Secondly, SE-
LENA uses the copy-on-write disk cloning functionality of Xen, to
decrease the time it takes to replicate a VM’s disk image from our
templates. Finally, after the completion of an experiment, guests
are cached in a guest pool. During Step-3, the deployment script
checks initially in the pool to find any matching guest VMs created
from the same template and reuses it. Nonetheless, the virtual in-
terfaces of guests and the respective bridges in Dom0 are always
clean-installed. Using these techniques SELENA can cold-boot,
for example, a 52 node topology in ≈ 130 seconds.

3.3 Scaling resources via elastic time
An inherent limitation of real-time emulation is resource scal-

ability for high throughput or node-count experiments. For ex-
ample, emulating the packet-level behavior of a 40 GbE link in
real time generates a high event rate and potentially an unman-
ageable CPU load. Effectively, fidelity is upper-bounded by the
ability of the platform to scale the experiment computation and
match the emulated system’s performance properties. SELENA
overcomes this limitation by virtualizing time. In order to achieve
this, we implement a time virtualization mechanism in the hyper-
visor, which allows an experimenter to slow down time progres-
sion on guests and effectively scale network, disk IO and CPU re-
sources. Our approach is similar to the bullet time video effect:
augmented per-frame time enables the viewer to perceive more de-
tails from a scene.

With respect to Figure 1, emulated nodes (H1,H2,SW) run inside
a sandbox using a common time-dilation factor (TDF), while Dom0
and the hypervisor operate in real-time. SELENA adjusts all guest
time sources by the TDF parameter, controling effectively the per-
ception of time-progression both at the kernel and the user-space
of the guest VM. Each guest continues to receive a fair fraction
of available hardware resources, unaffected by time virtualization.
For an experiment with TDF = 2, a virtual time of 1 second lasts 2
seconds of real time and the perceived network, disk IO rates and
CPU appear doubled within the virtual time domain.

Having created the necessary “computational headroom” to em-
ulate faster IO and processing, the users may chose to further adjust
the speed of individual resources for guests. The amount of CPU
time that a guest receives can be adjusted via the weight and cap
parameters of Xen’s credit2 scheduler [2] (in non work-conserving
mode). Dilating time by a large factor, however, can occasion-
ally introduce transient scheduling inaccuracies. This effect can be
minimized by tuning the Xen scheduler parameters, using a scaled
time-slice and an increased ratelimit value (controls the minimum
non-preemptive VM scheduling duration). In addition, disk IO
rates can be limited from within guests via the cgroups mechanism
and its blkio controller.

Implementation details

SELENA supports time dilation control without requiring mod-
ifications in guest OS. Our approach takes advantage of the Linux
PVOPS drivers, which provides out of the box in-kernel support for
Xen para-virtualized drivers. The resulting modifications required
to implement time virtualization were limited only in the Xen hy-
pervisor source code (≈ 400 LoC). We have successfully patched
a recent version of the Xen hypervisor (v4.3). In order to avoid
xen-api toolstack modifications, we expose TDF control through
the sysfs filesystem, using a modified domain creation hypercall
(XEN_DOMCT L_createdomain).

In order to present the functionality of time virtualization in SE-
LENA, we initially describe handling of time in Xen. During boot,

Process
accounting

Process
profiling Jiffies Low-res

timers

Clock Event

ISR

Xen VIRQ
Xen
TSC

Xen
Clock Source

Clock Tick
IRQ

Handler

Clock Sync TOD

High-res
timers

Timekeeping
xtime / wall_time

tick_sched_timer

Linux Guest

XEN Hypervisor
Native or Emulated

set
next

event

VIRQ_TIMER

H
yp

er
vi

so
r_

se
t_

tim
er

_o
p

Figure 2: Architecture of the various timekeeping facilities of a
Linux PVOPS kernel

the Linux kernel selects the appropriate drivers and clock-sources.
Fortunately, the generic time-of-day (GTOD) framework handles
transparently a variety of clock sources3. Figure 2 shows the Xen-
specific components of the timekeeping subsystem. At the bottom
reside the low-level bits of the Xen clocksource, a place which typ-
ically plays the role of the “bridge” to real hardware. An OS typi-
cally requires two basic clock services, time-keeping and time event
scheduling, and therefore, our solution needs to support both.

In terms of time-keeping, Xen exposes to guests two timestamp
values, the system-time (time since guest boot or resume) and a
wall-clock time (time since epoch when system-time was zero),
through a shared memory structure (shared_info_page). System-
time is updated by Xen every time the guest is being scheduled. In
between updates, the guest keeps accounting of wall-clock and sys-
tem time by extrapolating the current values based on the value of
TSC register (an x86 register counting CPU clock cycles). TSC
values in Xen are obtained through the rtdsc instruction. They
are either native and read directly from the CPU register or em-
ulated by Xen (intercepted through a trap). In order to effectively
virtualize time-keeping, the hypervisor multiplies with the TDF pa-
rameter all the wall-clock, system and emulated TSC time values
provided to the guest. Additionally, because native TSC values are
unmodifiable, our approach multiples with the TDF value the TSC
scaling factor (tsc_to_system_mul), a constant used by the guests
to convert TSC cycles to system time.

In terms of time event scheduling, the guest PVOPS driver in-
tercepts and translates such requests to equivalent Xen hypercalls
(HY PERV ISOR_set_timer_op). When the timer expires, the hy-
pervisor delivers a software timer interrupt (V IRQ_T IMER) back
to the guest and triggers the associated timekeeping interrupt han-
dlers. Time event virtualization in SELENA is achieved in the hy-
pervisor by intercepting timer-setup hypercalls, scaling their time-
out values with the TDF parameter. Our approach also covers the
case of periodic timer events used by older Linux version. Re-
cent Linux kernels also employ loop-based delays for timeout val-
ues lower than ∼ 10usec. These types of events are not directly
managed by the hypervisor, but our approach is sufficient to ensure
accurate event execution.

3FreeBSD also follows a similar approach

3.4 Network Emulation
SELENA emulates network links by creating pairs of guest net-

work interface devices bridged in Dom0. The Xen architecture uses
two virtual interfaces (VIFs), the netfront driver, exposed to the
guest, and the netback driver, exposed to Dom0. Netfront and net-
back interconnect using shared memory rings. This separation of
network devices into multiple VIFs introduces a challenge for SE-
LENA to provide good guarantees for network resources, like la-
tency and throughput. Effectively, a link in SELENA must manage
at least four independent network queues (see Figure 1), running at
different rates, and ensure lossless resource allocation. Ultimately,
networking performance effects (e.g. queueing) should occur in the
boundaries of the emulated hosts, and not in Dom0.

SELENA’s time virtualization provides a useful mechanism to
experiment with low latency network environments. High TDF
values provide sufficient head-room to minimize packet processing
delays and test high-bandwidth setups. For instance, for TDF = 1,
the average RTT over an idle guest-to-guest link is approximately
300 usec, a value which drops to 30-50 usec for TDF = 10. SE-
LENA uses the netem qdisc [14], a traffic-control primitive in the
Linux kernel supporting constant or stochastic latency in network
links (DummyNet can be used instead in FreeBSD). SELENA con-
figures such qdiscs on the egress queues of the guests, in order to
maintain a common time reference between experimental nodes.
In recent Linux kernels with high resolution timer support, netem
choice provides SELENA with high precision latency control, in
the order of sub-milisecond.

In terms of throughput, the process to ensure fidelity is more
complex, as throughput can be either CPU or IO bound. SELENA
follows a two step empirical method, presented in greater detail
in Section 4.4. Firstly, the user tries different TDF values to dis-
cover the minimum value which can effectively support the re-
quired throughput. Secondly, SELENA applies rate limiting at in-
dividual VIFs to match the link speed specifications, defined by the
experiment description. Rate limiting uses the QoS primitive of the
Xen network driver (qos_algorithm_type:ratelimit). To ensure ac-
curate network resource scaling, the rate limit of a link is divided
by the TDF value of the experiment. For example, a 1 Gbps link
translates into a rate limit of 100 Mbps for TDF = 10.

The Xen network driver provides additional control on the trade-
off between fidelity and resource scalability. Currently the driver
provides multiple network offloading functions which can improve
link throughput (e.g. TSO, UFO, TX/RX checksum offload) both
on the guests and Dom0 VIFs. When these settings are enabled,
we observe that guests can use very large packet sizes (64KB pack-
ets), thus improving DomU-to-DomU throughput. Nonetheless,
such large packet MTU reduce the packet-level and queue multi-
plexing fidelity. In the experiments of section 4 we have disabled
all these optimization features. Finally, in order for SELENA to
support large port-count hosts/switches, we modified the Xen hy-
pervisor source code to increase the size of the page grant table,
enabling support up to 48-ports. While raw-throughput is sufficient
in this first version of SELENA, opportunities for improvement by
bypassing Dom0-constraints are made clear by related work such
as VALE [28].

3.5 Data plane emulation
Control planes with programmatic interfaces have redefined the

role of network functionalities. The SDN paradigm and its predom-
inant realization, the OpenFlow protocol, define a set of flow-level
abstraction primitives, exposed to external entities via a unified pro-

gramming interface. This has made possible the instantiation of
previously complex or impractical network-control ideas.

The growing interest in the SDN paradigm has been a core moti-
vation in recent experimentation platform efforts like Mininet [13].
SELENA supports any software switch implementation which can
run in a guest domain. This includes kernel-level bridges, Open
vSwitch and other popular software switches (e.g. Click [20]).
Nonetheless, recent measurement studies of switch devices [12,30]
have highlighted a significant variability on the performance of the
control plane, especially in available hardware OpenFlow switch
implementations. This performance variability can be explained by
a number of design choices, like the scalability of the communi-
cation channel between the switch silicon, the switch co-processor
and the firmware architecture. However, existing solutions are not
easy to reflect these performance properties and can only replicate
simplified network device models, considering only per-packet pro-
cessing latency and buffer sizes.

SELENA provides a tunable switch model that takes account of
the tight coupling between the flow and management timescales
of the network [24]. This allows users to study how traditional
and new control plane performance characteristics affect the over-
all network performance. More specifically, we include a cus-
tomizable switch implementation which supports OpenFlow [29]
and builds on the Mirage framework [23]. This switch emulation
model provides a simple and extensible packet processing pipeline,
to which we add a rate adjustment mechanism for the different
control plane functionalities. Our model exposes currently perfor-
mance emulation primitives for the flow table management mech-
anism, the packet interception and injection mechanism and the
counters extraction functionality of the switch. Section 4.5 de-
scribes a methodology to calibrate a switch model in a SELENA
experiment in order to match the performance characteristics of a
production switch.

4. EVALUATION
In this section we present an in-depth evaluation of SELENA’s

performance and scalability. Initially, we introduce the reader to the
measurement apparatus of our evaluation (§ 4.1). We compare the
experimental fidelity provided by SELENA against a real system
and two established experimentation platforms, Mininet and ns-3.
Our evaluation considers fidelity both in terms of high-throughput
links (§ 4.2), as well as larger networks (§ 4.3). Finally, we present
a limit analysis of our time virtualization technique (§ 4.4) and eval-
uate the performance realism of real applications in SELENA (§ 4.5).

4.1 Experimental Setup
In order to evaluate the performance of SELENA, we use two

popular network topologies: a star topology (Figure 3(a)) and a

1 Gbps

10 Gbps

(a) Star topology, 10 clients
pushing traffic to a data
sink.

(b) Fat-tree topology, 4-port
switches, 2 pods and 8
hosts.

Figure 3: Experimental topologies.

1 3 5 10 15 20
Time dilation factor (TDF)

0

200

400

600

800

1000
Th

ro
ug

hp
ut

 p
er

 c
lie

nt
 (M

bp
s)

Per-client throughput

Figure 4: Per-host throughput samples for various TDF values

special case of a CLOS, a fat-tree topology with 4-port switches
and 2 pods (Figure 3(b))4. We employ these two distinct topologies
as they provide a simple mechanism to test both throughput and
scalability of the system for high-density setups. We replicate the
experiments of each topology four times: in SELENA, in a real
setup, in Mininet and in ns-3.

In the real setup, the star topology consists of a quad-core server
(Intel Xeon E5-2643, 128GB RAM), 10 data generating hosts (In-
tel Core 2 Q6600, 4GB) and a network switch (Pica8 P-3290). The
server is equipped with a 10GbE card (Solarflare SFC9020) and
acts as the data-sink. The clients are equiped with 1 GbE cards
(Intel 82571EB) and the switch offers both 1 and 10 GbE inter-
faces. We monitor the link to the data sink using a DAG card and
an optical splitter. For the fat-tree topology we run the end-host
logic on the clients of the previous setup, and use 10 NetFPGA-1G
equipped hosts with OpenFlow functionality [25], to replicate the
switching fabric. For ns-3 we use the CSMA link model and build a
simple switching host type, to replicate switch behaviour. For the
equivalent SELENA experimental setups we use Linux VMs with
stock 3.13 kernel and Open vSwitch (v1.11) for switch emulation.
SELENA, Mininet and ns-3 are executed on the same quad core
server (Intel Xeon E5-2643, 128GB RAM) for fair comparison.

4.2 Data-Plane fidelity
In this section we use the star topology to evaluate the capa-

bility of the tested experimentation platforms to support 10 Gbps
traffic. For this scenario we use steady-state long-running TCP
flows, generated by the netperf application in the real, SELENA
and Mininet experiments and a TCP BulkSendTraffic applica-
tion in ns-3. Starting at t=0, a new full-rate TCP-flow is initiated
every 10 seconds from a previously idle host, resulting in 10 Gbps
throughput at time t=90 sec.

Firstly, we analyse the impact of TDF on the per-client through-
put. Figure 4 presents boxplots of the network throughput measure-
ments from all clients, using a monitoring window of 100 msec. We
notice that TDF= 5 provides a median throughput of 940Mbps, the
maximum achievable TCP rate for a host in this setup. However,
this TDF value exhibits a non-negligible variance with a few out-
liers (grey-colored marks), occurring due to Xen scheduling effects
and the inability of the CPU to handle the offered load. This effect
is more evident for lower values of TDF (e.g. TDF = 1 achieves a
4we employ half of the nodes in a k=4 fat-tree topology, due to luck
of physical resources to replicate the real experiment

0 20 40 60 80 100 120
Time lapse (sec)

0

2

4

6

8

10

To
ta

l T
hr

ou
gh

pu
t (

Gb
ps

) real
mininet
ns3
Selena (tdf 10)

Figure 5: Aggregate achieved throughput between real, SE-
LENA, Mininet and ns-3 (star topology).

median throughput of 210 Mbps). We conclude that TDF = 10 pro-
vides sufficient accuracy and throughput stability for the complete
duration of the experiment.

Figure 5 presents the achievable throughput on the 10 Gbps link
for the duration of the experiment, using 100 msec observation
window. We used TDF = 10 for SELENA which, based on the
previous findings, is sufficient to emulate accurately the through-
put of the real system. Mininet is able to achieve a maximum of
2.3 Gbps throughput, with non-negligible variance, primarily due
to poor scalability of CPU resources. Despite the extensive opti-
mization of Mininet, the platform cannot mitigate CPU and mem-
ory bottlenecks in high throughput emulations. ns-3 exhibits higher
performance than Mininet achieving a maximum throughput of 4-5
Gbps, but still significantly lower than the real. After analyzing the
source code of the ns-3 platform, we concluded that the low aggre-
gate performance is due to poor scalability of the CSMA link model
at high rate, which doesn’t support full-duplex links. Furthermore,
ns-3 provides an MPI-based distributed event engine. Nonetheless,
this event engine supports only Point-to-Point layer-3 links and its
distribution model is restricted by the requirement for clock syn-
chronization.

4.3 Flow-level fidelity
This section evaluates the flow-level fidelity of SELENA using

the fat-tree topology. For this experiment we use short-lived TCP
flow completion times to assess the accuracy of our platform, a met-
ric which is widely used to characterize both the performance and
fairness of TCP in the context of datacenter networks [7]. On each
host we run both a data-generation and data-sink service and traffic
is flowing in both directions between four pre-defined client pairs
(8 Gbps aggregate bandwidth). The data-sink service of each-client
receives data from 10 concurrent TCP flows (all form the same
source). When a flow transfers 10 MB worth of data it is terminated
and a new transfer request is initiated immediately, thus maintaing
constantly 10 concurrent flows per host. We implemented this traf-
fic generation model in C using the POSIX API and the async epoll-
based libev API. The generator model is used in SELENA, real
and Mininet experiments, while for ns-3 we build a similar appli-
cation using the TCP abstraction.

Figure 6 presents the empirical cumulative distribution (CDF) of
the flow completion times for a wide range of TDF values using SE-
LENA, including also the results collected from the real, Mininet

0 1 2 3 4 5 6 7 8
Completion time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n
of

 to
ta

l f
lo

w
s

real
mininet
ns3
Selena (tdf 1)
Selena (tdf 10)
Selena (tdf 20)

Figure 6: Comparison of flow completion time CDF between
SELENA, real, Mininet and ns-3 (fat-tree topology).

and ns-3 platforms. Additionally, Table 2 presents the number of
completed flows for the duration of the experiment and the mean
and variance of flow completion times for each experiment. For
SELENA, we notice that TDF = 1 is highly unrealistic, introducing
6 times higher delay than the real system and significant variance.
Nonetheless, as we increase TDF values, the distribution of com-
pletion times starts to approximate the behavior of the real system.
A TDF = 5 reduces 4.8 times the mean latency, while higher TDF
values improve further the experimental fidelity. For TDF = 20
the mean completion time is only 10 msec different from the real
system, while the variance is equally reduced.

Mininet increases the mean flow completion times by a factor of
3 and exhibits significant variance, also visible by the longer tail of
the cummulative distribution. Note that the majority of the flows
in Mininet exhibit completion times between 2.5 and 4.5 seconds.
There are also many outliers with a maximum delay of 7 seconds.
Mininet clearly cannot support the required aggregate throughput
of 8 Gbps using the fat-tree topology and therefore with a lower
available bisection capacity flows require more time to complete.
ns-3 on the other hand, has an extremely low variance with a me-
dian completion time of 2.5 seconds.

Table 3 presents the time scalability properties of the tested plat-
forms, by comparing the wall-clock execution duration of Mininet,

Platform Flows Mean std
Real 10071 0.956 0.074
Mininet 2957 3.271 0.787
SELENA TDF = 1 1512 6.469 3.236
SELENA TDF = 5 7161 1.344 1.144
SELENA TDF = 10 9285 1.036 1.035
SELENA TDF = 20 9935 0.966 0.16

Table 2: Comparison of flow-completion time statistics.

Star Fat-tree
Platform Topology Topology
Mininet 120s 120s
ns-3 175m 24s 172m 51s
SELENA TDF = 1 120s 120s
SELENA TDF = 20 40m 40m

Table 3: Comparison of wall-clock execution times.

SELENA and ns-3 for both experiments. Mininet runs in real-time
and experiment duration is not affected by the complexity of the
scenario, it simply sacrifices accuracy. In contrast, ns-3 was con-
siderably slower than SELENA (≈ 4.4x times), despite its poor
scaling. This slow-down in execution time stems primarily from
its single threaded design and the requirement for total ordering of
events. Effectively, the execution speed of an ns-3 experiment is
primarily affected by the rate of network events.

4.4 Time-dilation limit analysis
The use of Xen by SELENA, provides high scalability, support-

ing hundreds of guests [22]. Nonetheless, resource virtualization in
Xen uses complex mechanisms to schedule guest vCPU, manage
memory, process event channel interrupts, control access to physi-
cal hardware (e.g. disk I/O), all of which can significantly affect the
accuracy of an experiment. Depending on the emulated network
topology and the employed workloads, the impact of system-level
effects can vary.

In the star topology (Figure 3(a)), although Dom0 is allocated
with 4-cores to relay packets between guests, it can use a maximum
of 2.5 cores. To explain this behavior, we need to look into the
implementation details of Xen’s control domain which maps one
kernel-thread per Dom0 core. The 10 Gbps virtual link between
the switch and the server has the highest processing demands but
its workload cannot be parallelized as it is served from a single
netback kernel thread (for one direction) and therefore can utilize
only one core. The traffic from the client-nodes to the switch (via
Dom0) consumes roughly the same aggregate CPU resources with
the 10 Gbps link. Some extra processing takes place also in the
network stack and software bridges of the control domain.

In order to present the scalability limits of our time virtualization
mechanism, we revisit the star topology experiment (Figure 3(a))
and study the limits of aggregate throughput using TDF = 20. We
generate two variations of the experiment: i) 4 clients with variable
link speeds and ii) an increasing number of clients each connected
through a 1 Gbps link. Figure 7 uses boxplots with outliers (red
crosses) to present the measured client throughput (1 second moni-
toring window) as we increase the capacity of the client links. This
figure also illustrates the aggregate CPU utilization for the Dom0
and the nodes of the experiment. We observe that SELENA copes
well with client link speeds up to 10Gbps (aggregate sink-server
link speed of 40Gbps), evident by the low number of outliers. For
client link speeds higher than 10 Gbps, the fidelity degrades as
hardware resources do not suffice to serve the offered load. As
discussed, the bottleneck of this topology is the sink-server link.

Figure 8, presents a throughput analysis, similar to the previous
example, but in this scenario we vary the number of client hosts,
keeping link capacity limited to 1 Gbps. For this experiment, SE-
LENA can faithfully emulate network of up to 40 clients with low
variance, using TDF= 20. Beyond this number of nodes, per-client
median throughput is reduced and the variance increases. Similar to
before, the aggregate throughput of the 40 clients is 40Gbps, but we
observe more outliers; 2.5% of client throughput observations drop
below 750Mbps. This effect can be attributed to Xen’s scheduling
effects which cause more buffering during the time a guest is not
scheduled and therefore more packet losses occur.

In order to provide further evidence on the scalability of SE-
LENA, we evaluate the star topology in terms of throughput and
node count for a variety of TDF values. We present the results in
Figures 9 and 10, respectively. Each data point represents the max-
imum throughput or node count which can be reliably supported by
a specific TDF value. We consider an experimental result as reli-

0
50
100
150
200
250
300
350
400

%
 C

PU
 u

til
iz

at
io

n

0
1
2
3
4
5
6
7
8
9

10
11
12
13

Th
ro

ug
hp

ut
 p

er
 c

lie
nt

 (G
bp

s)

1 2 3 4 5 6 7 8 9 10 11 12 15
Link speed per client (Gbps)

Per-client throughput (TDF 20)
Dom-0 (cpu util)
Switch (cpu util)
Server (cpu util)
4x Clients (cpu util)

Figure 7: Link speed scalability analysis: per-client throughput
and CPU utilisation (star topology, 4x clients)

0
50
100
150
200
250
300
350
400
450
500

%
 C

PU
 u

til
iz

at
io

n

0
100
200
300
400
500
600
700
800
900

1000

Th
ro

ug
hp

ut
 p

er
 c

lie
nt

 (M
bp

s)

4 10 20 30 40 50 60
Number of nodes

Per-client throughput (TDF 20)
Dom-0 (cpu util)
Switch (cpu util)
Server (cpu util)
All clients (cpu util)

Figure 8: Node-count scalability analysis: per-client through-
put and CPU utilisation (star topology, 1 Gbps links)

1 3 5 10 15 20
Time dilation value (TDF)

0
1
2
3
4
5
6
7
8
9

10

Th
ro

ug
hp

ut
 p

er
 c

lie
nt

 (G
bp

s)

ideal (proportionaly linear)
per-client maximum
consistent throughput

Figure 9: Overall link speed scalability vs TDF

1 3 5 10 15 20
Time dilation value (TDF)

0

5

10

15

20

25

30

35

40

Nu
m

be
r o

f c
lie

nt
s

ideal (proportionaly linear)
maximum clients
consistent 1 Gbps each

Figure 10: Overall network size scalability vs TDF

able, when the per-host throughput observation achieves the target
value for the majority of measurement samples (97.5% of all sam-
ples). In both cases we observe that the experiment can achieve
close to linear scalability. We should clarify that while we expect
SELENA to exhibit a near-linear scalability trend for a wide range
of experiments, the user is strongly encouraged to verify this as-
sumption for different virtual topologies individually.

4.5 SELENA applications
In this section we evaluate the ability of SELENA to emulate

data plane network behaviors and run real unmodified applications,
using a web server deployment.

Control-Plane fidelity

In order to evaluate the data plane fidelity of our switch model,
we assess its precision in replicating the performance behavior of a
real OpenFlow switch. We calibrate our switch emulation model by
measuring the data and control plane performance profile of a pro-
duction switch (Pica8 P-3290 switch5) using the OFLOPS Open-
Flow switch evaluation framework. OFLOPS runs on a Quad Core
Intel PC (Q6600) equipped with a NetFPGA-1G card directly con-

5http://www.pica8.com/

nected to 4 switch ports and uses the high-precision NetFPGA-1G
traffic generation backend.

Our characterization effort focuses on the behavior of a reactive
control scheme. In this approach, the controller exercises per-flow
forwarding decisions, thus achieving fine level of control. In de-
tail, each newly arriving flow generates a packet exception which
is propagated to the controller using a Pkt_in message. The con-
troller then is responsible to install an appropriate entry in the flow
table, which defines a forwarding policy for all matching packets.
In order to measure each elementary interaction in this control ar-
chitecture, we use the OFLOPS measurement modules to evaluate:
(1) the delay to install a new flow in the flow table, and (2) the delay
and loss rate of Pkt_in messages.

Based on the OFLOPS results we observed a median flow in-
sertion delay of 6msec, a Pkt_in processing delay of 2msec and a
maximum rate of 50 Pkt_in messages per second. Using these set-
tings, we configure our switch model and compare its performance
with the Pica8 switch and Mininet. We setup a simple topology
with two hosts, a data-sink and data generation host replicating
the application behavior described in Section 4.3, interconnected
through an OpenFlow switch. The data-sink host generates flow
requests to the data generator host following an exponential distri-
bution with λ = 0.02 and a constant request size of 1 MB resulting

100ms 1s 10s 100s
Flow Completion Time

0.0

0.2

0.4

0.6

0.8

1.0
Cu

m
m

ul
at

iv
e

Ds
itr

ib
ut

io
n

Real
Selena (TDF 1)
mininet

Figure 11: Comparing flow completion times between a real
system, Mininet and SELENA

to an average 400 Mbps traffic rate. We run our experiment for
120 seconds, ensuring that the resulting number of flows is below
the flow table size limits. For all experiments we used the learning
switch application of NOX [9] to control the switch.

In Figure 11 we present the cumulative distribution of flow com-
pletion times for the real, SELENA and Mininet experiments. The
performance observed with the real switch highlights the impact of
the switch control plane design on network performance. In the
real experiment, 20% of flows have a completion time higher than
10sec. The predominant cause of this effect is the rate-limiting be-
havior of the switch in pkt_in messages transmissions. This intro-
duces TCP SYN and SYNACK packet drop during bursty periods.
As a result, the completion time distribution exhibits a stepping be-
havior, aligned with the back-off delay mechanism of TCP in the
SYN_SENT SYN_RCVD states 6. The adoption of Open vSwitch
by Mininet, allows optimized data-plane performance but it cannot
express such device-specific behaviors and thus over-estimates the
overall performance of this experiment. Our choice to introduce a
customizable model in SELENA enables higher fidelity in Open-
Flow experimentation. Our model is able to capture the macro-
scopic behavior of the switch. Nonetheless, our switch model ex-
hibits a minor over-estimation in completion times. We attribute
this behavior to the high load that the reactive control scheme in-
troduces to the communication channel between the co-processor
of the switch and the ASIC, which skews the obtained model.

Web server benchmarking

In this section, we evaluate the ability of SELENA to faithfully
emulate network examples using a widely-used web application
and compare its fidelity against an identical real-world deployment.
In this experiment, we reuse the fat-tree topology (Figure 3(b),
Section 4.3) and configure the four hosts of the second pod as
web-servers, serving a popular dynamic web-application (Word-
press 3.6). Each web service node hosts an Apache web-server
(v2.4.6) and a key-value cache (REDIS 2.6.13). We also run a sin-
gle MySQL (v5.5) database for all Wordpress instances on one of
the four hosts. The Wordpress application uses Redis as a tempo-
rary cache for generated pages (through the WP-Redis-Cache plu-
gin) in order to reduce the processing load on the web servers. On

6We use Linux hosts with kernel 3.13, which support TCP Fast
Open [6].

0
50
100
150
200
250
300
350
400

%
 C

PU
 u

til
iz

at
io

n

0
25
50
75

100
125
150
175
200
225

Re
qu

es
ts

 /
se

c
(p

er
 c

lie
nt

)

1 2 3 4
Time Dilation Factor (TDF)

Selena
Real
Sum guest (cpu %)
Dom-0 (cpu %)
Switches (cpu %)
4xWeb-Servers (cpu %)
4xClients (cpu %)

(a) Requests throughput: Real vs Selena for various TDF values

0.00 0.03
0.06

0.09 0.12
0.15

0.18 0.21
0.24 0.27

0.30
HTTP request completion time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 to

ta
l r

eq
ue

st
s

real
Selena (tdf 1)
Selena (tdf 2)
Selena (tdf 3)

(b) Requests completion times:Real vs Selena for various TDF
values .

Figure 12: Web application benchmarks: 4x clients, 4x
Apache/PHP/Redis (fat-tree)

the first pod, we used the four hosts as clients, each generating
25 parallel web-page requests to a specific web-server, picking a
hosted page uniformly at random (approx. size 430-530KB each).
The experiment recreation in Selena was identical, precisely repli-
cating application configuration, network topology, link speeds,
ram sizes and OS.

Figure 12(a) presents the rate of successfully completed HTTP
requests per-client, measured on a per-second basis. The total dura-
tion of our experiment is 30 seconds, and for the real deployment,
each client manages to achieve a near-uniform rate of ≈ 230 re-
quests/sec (red-colored line). This is close to the theoretical limit
of the network speed, implying that our experiment is network-
bound. All web-server hosts handled effortlessly the offered load,
filling the 1 Gbps pipe (with less than 40% CPU utilization). When
running in real-time (TDF = 1), SELENA could not match the ob-
served throughput behavior of the real testbed. In this particular
example, Dom0 was not the bottleneck as the CPUs were not fully
utilized (≈ 325%) and the packet-forwarding load could be fully
parallelized over the four netback kernel threads (one per core).
The aggregate processing load of guests, however, fully utilized
the four assigned to them cores (we run SELENA on an 8-core Intel
Xeon server). Once we used higher TDF values, we start observing
almost identical throughput results with the real deployment. The
higher the time was dilated in guests, the less were utilized the re-

sources of our hosting server, and the more time was required to
complete the emulation experiment.

Figure 12(b) illustrates a latency-related aspect of SELENA’s fi-
delity against the real deployment, for various TDF values. In real-
ity, the application performance is bounded by the capacity of the
network link, and therefore, the CDF of HTTP-request completion
times follows a deterministic trend, adhering to the properties of
fair bandwidth-sharing. Using TDF = 1 we observe a big deviation
in latencies from the real network. This is because computing re-
sources were not enough to cope with the high event rate and Xen
also introduced system-level effects (e.g. non-uniform scheduling
at a micro-scale), common under high loads. Another interesting
observation is that while a value of TDF = 2 gives precise enough
throughput fidelity, it can not perfectly replicate extremely accurate
latency properties, like the value of TDF = 3 does.

5. DISCUSSION
In the previous section, we highlighted the achievable fidelity

and scalability of the SELENA platform. We now cover a number
of important concerns, that we have not covered.

Choosing time dilation factor

SELENA, like all emulation experimentation platforms, provides
reproducibility and fidelity on a statistical level. When an experi-
ment is executed multiple times on the same or on heterogeneous
platforms, the obtained results should be statistically equivalent. In
other words, the distributions of the resulting performance metrics
should have high similarity (e.g. using a a test like Kolmogorov
- Smirnov). As a result, the design of each experiment must an-
swer two questions: “what is the observed behavior that the ex-
periment replicates” and “what is the required degree of statistical
equivalence with a real system”. For example, our evaluation con-
sidered network latency, throughput and CPU resource availability
as behavioral aspects. For the topology in Figure 3(a) (10x clients,
1 GbE links), when emulated using TDF = 5 the vast majority of
throughput samples are very close (with a few outliers) to the the-
oretical maximum of 1 GbE for each client. If, however, the user
expects 99.9% of throughput measurements to be within a 0.5%
error margin (≈±4.7Mbps), this requires even higher TDF values
(15 or more).

From a practical point of view, users must choose a TDF value
which provides the desired level of fidelity and also minimize ex-
ecution time. A useful rule of thumb is to choose a TDF that
minimizes the maximum per-CPU utilization. Effectively, experi-
mental fidelity degrades significantly when the experimenter under-
provisions computational resources. We currently explore Xen’s
capabilities, in an effort to automate the process of resource usage
monitoring. This will allow SELENA to identify bottlenecks occur-
ring spontaneously by bursty workloads. Handigol el al. [13] pro-
pose a different approach towards fidelity characterization, moni-
toring during run-time a set of invariants for network link proper-
ties (e.g. inter-packet spacing for non-empty queues). We believe
that such an approach is effective for high fidelity biases, capable
to detect persistent long-running resource starvation, but it is not
clear how it relates to the resulting overall system behavior.

Beyond network emulation

SELENA provides a scalable emulation framework to test net-
work architectures, protocols and modern SDN applications and
is best suited for experimental scenarios where system behavior is
mandated by network resources. Nonetheless, replicating the be-

havior of real system can be quite convoluted, especially when its
behaviour is significantly affected by minor hardware architecture
functional properties of the host. Disk throughput and latency, CPU
cache behaviour, per-core lock contention and hardware features,
like Intel DDIO [1] are only a few examples which are not eas-
ily reproducible in software. Effectively, the design of SELENA
is primarily concerned to maximize network fidelity and may not
be optimal for experiments that heavily rely on platform-specific
characteristics. Furthermore, it is important to highlight that time
dilation is not a panacea for high throughput experiments. For ex-
ample, in order for applications to exploit high capacity links, the
experimenter must optimize their configuration (e.g. increase TCP
buffers and employ TCP window scaling), while in certain cases
the architecture of a service may not be possible to scale for high
throughput.

Scaling SELENA

SELENA is based on the Xen Cloud Platform, which can cur-
rently scale to a few hundreds of nodes on a server-grade machine
[22] 7. Driven by the observation of the poor performing VIF bridg-
ing via Dom0, we explore zero-copy inter-guest network connec-
tivity, similar to [28]. Furthermore, SELENA design can support
high density network experiments by distributing the experiment
across multiple execution hosts. There are two main challenges for
multi-host SELENA execution. Firstly, the experiment must reduce
measurement noise incurred by inter-host links and the variable os-
cillation between the clock sources of the CPUs. Nonetheless, such
noise can be minimized using high TDF values. Secondly, the de-
ployment of the experimental nodes between the available execu-
tion hosts can be optimized based on the topology and workload of
the experiment. Roy el al. [31] presented an effective algorithm for
the problem, targeting multi-host Mininet execution.

6. CONCLUSIONS
Despite the plethora of available network experimentation tools,

the research community is still in the need for solutions which can
simplify the testing of new ideas and still provide the necessary
level of realism. Common simulation frameworks use simplifying
abstraction models, trading accuracy for scalability, and network
emulation tools support execution of unmodified code, at the cost
of scalability. Motivated by this gap, we have designed and im-
plemented SELENA, a network emulation platform which simpli-
fies experimentation and allows users to trade execution speed for
better fidelity as the scale of the experiment increases. Our so-
lution builds on the Xen Cloud Platform and fully-automates the
process of deploying and running experiments through an easy to
use script-based interface. We have experimentally evaluated the
accuracy of SELENA to recreate large and fast network scenarios
and compared its fidelity against real deployments and similar ex-
perimentation tools. SELENA is open-source and freely available
(http://selena-project.github.io), hoping that the research com-
munity will benefit from our work.

Acknowledgements
This work was jointly supported by the EPSRC INTERNET Project
EP/H040536/1 and the Defense Advanced Research Projects Agency
(DARPA) and the Air Force Research Laboratory (AFRL), under
contract FA8750-11-C-0249. The views, opinions, and/or findings

7Our evaluation employs medium sized networks, primarily due to
our restrictions in host resources, required to compare with a real
system.

contained in this article/presentation are those of the author/ presen-
ter and should not be interpreted as representing the official views
or policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the Department of Defense.

We would also like to thank Ilias Marinos for his useful com-
ments and his critical views that helped us improve our work.

7. REFERENCES
[1] Intel data direct i/o technology,

http://www.intel.co.uk/content/www/uk/en/io/direct-data-i-
o.html.

[2] Xen credit scheduler.
http://wiki.xen.org/wiki/Credit Scheduler, 2013.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and the
art of virtualization. ACM SIGOPS Operating Systems
Review, 37, 2003.

[4] S. Bhatia, M. Motiwala, W. Muhlbauer, Y. Mundada,
V. Valancius, A. Bavier, N. Feamster, L. Peterson, and
J. Rexford. Trellis: A platform for building flexible, fast
virtual networks on commodity hardware. In CoNEXT.
ACM, 2008.

[5] M. Carbone and L. Rizzo. Dummynet revisited. SIGCOMM
Comput. Commun. Rev., 40(2), Apr. 2010.

[6] Y. Cheng, J. Chu, S. Radhakrishnan, and A. Jain. TCP Fast
Open. Internet-Draft draft-ietf-tcpm-fastopen-05.txt, IETF,
Oct. 2013.

[7] N. Dukkipati and N. McKeown. Why flow-completion time
is the right metric for congestion control. SIGCOMM
Comput. Commun. Rev., 36(1), Jan. 2006.

[8] A. Grau, S. Maier, K. Herrmann, and K. Rothermel. Time
jails:a hybrid approach to scalable network emulation. In
PADS. IEEE, 2008.

[9] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,
N. McKeown, and S. Shenker. Nox: Towards an operating
system for networks. SIGCOMM Comput. Commun. Rev.,
38(3):105–110, July 2008.

[10] D. Gupta, K. V. Vishwanath, M. McNett, A. Vahdat,
K. Yocum, A. Snoeren, and G. M. Voelker. Diecast: Testing
distributed systems with an accurate scale model. ACM
Trans. Comp. Syst., 29(2), 2011.

[11] D. Gupta, K. Yocum, M. McNett, A. C. Snoeren, A. Vahdat,
and G. M. Voelker. To infinity and beyond: time-warped
network emulation. In NSDI. USENIX, 2006.

[12] M. Gupta, J. Sommers, and P. Barford. Fast, accurate
simulation for sdn prototyping. In HotSDN. ACM, 2013.

[13] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and
N. McKeown. Reproducible network experiments using
container-based emulation. In CoNEXT. ACM, 2012.

[14] S. Hemminger. Netem-emulating real networks in the lab. In
LCA, Canberra, Australia, 2005.

[15] T. R. Henderson, S. Roy, S. Floyd, and G. F. Riley. Ns-3
project goals. In WNS2. ACM, 2006.

[16] T. Issariyakul and E. Hossain. Introduction to network
simulator NS2. Springer, 2011.

[17] S. Jansen and A. McGregor. Simulation with real world
network stacks. In Simulation Conference, 2005 Winter Proc.
IEEE, 2005.

[18] S. Jansen and A. McGregor. Validation of simulated real
world tcp stacks. In WSC. IEEE, 2007.

[19] W. Kim, A. Roopakalu, K. Y. Li, and V. S. Pai.
Understanding and Characterizing PlanetLab Resource
Usage for Federated Network Testbeds. In IMC. ACM, 2011.

[20] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The click modular router. ACM Transactions on
Computer Systems (TOCS), 18(3):263–297, 2000.

[21] A. Köpsel and H. Woesner. Ofelia: Pan-european test facility
for openflow experimentation. In ServiceWave.
Springer-Verlag, 2011.

[22] W. Liu. Improving scalability of xen: The 3000 domains
experiment. http://goo.gl/Bt0Gz5, Apr. 2013.

[23] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh,
T. Gazagnaire, S. Smith, S. Hand, and J. Crowcroft.
Unikernels: Library operating systems for the cloud. In
ASPLOS. ACM, 2013.

[24] R. M. Mortier. Multi-timescale internet traffic engineering.
Comm. Mag., 40(10), Oct. 2002.

[25] J. Naous, D. Erickson, G. A. Covington, G. Appenzeller, and
N. McKeown. Implementing an OpenFlow Switch on the
NetFPGA Platform. In ANCS. ACM, 2008.

[26] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A
blueprint for introducing disruptive technology into the
internet. ACM SIGCOMM Computer Communication
Review, 33(1):59–64, 2003.

[27] Z. Puljiz and M. Mikuc. Imunes based distributed network
emulator. In SoftCOM, pages 198–203, 2006.

[28] L. Rizzo and G. Lettieri. Vale, a switched ethernet for virtual
machines. In CoNEXT. ACM, 2012.

[29] C. Rotsos, R. Mortier, A. Madhavapeddy, B. Singh, and
A. W. Moore. Cost, performance & flexibility in openflow:
Pick three. In ICC. IEEE, 2012.

[30] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W.
Moore. OFLOPS: An Open Framework for OpenFlow
Switch Evaluation. In PAM, volume 7192. Springer, 2012.

[31] A. R. Roy, M. F. Bari, M. F. Zhani, R. Ahmed, and
R. Boutaba. Design and management of dot: A distributed
openflow testbed. In 14th IEEE/IFIP Network Operations
and Management Symposium (NOMS), 2014.

[32] H. Tazaki, F. Urbani, E. Mancini, M. Lacage, D. Câmara,
T. Turletti, W. Dabbous, et al. Direct code execution:
revisiting library os architecture for reproducible network
experiments. In CoNEXT. ACM, 2013.

[33] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostić,
J. Chase, and D. Becker. Scalability and accuracy in a
large-scale network emulator. SIGOPS Oper. Syst. Rev.,
36(SI), Dec. 2002.

[34] A. Varga and R. Hornig. An Overview of the OMNeT++
Simulation Environment. In Simutools, 2008.

[35] E. Weingärtner, F. Schmidt, H. V. Lehn, T. Heer, and
K. Wehrle. SliceTime: a platform for scalable and accurate
network emulation. In NSDI. USENIX, 2011.

[36] N. Willis. Seven problems with linux containers,
http://lwn.net/articles/588309/, Feb. 2014.

[37] Y. Zheng and D. M. Nicol. A virtual time system for
openvz-based network emulations. In PADS. IEEE, 2011.

