
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A Paradigm for Learning Queries on Big Data

Citation for published version:
Bonifati, A, Ciucanu, R, Lemay, A & Staworko, S 2014, A Paradigm for Learning Queries on Big Data. in
Proceedings of the First International Workshop on Bringing the Value of "Big Data" to Users,
Data4U@VLDB 2014, Hangzhou, China, September 1, 2014. ACM, pp. 7.
https://doi.org/10.1145/2658840.2658842

Digital Object Identifier (DOI):
10.1145/2658840.2658842

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the First International Workshop on Bringing the Value of "Big Data" to Users, Data4U@VLDB
2014, Hangzhou, China, September 1, 2014

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 27. Apr. 2024

https://doi.org/10.1145/2658840.2658842
https://doi.org/10.1145/2658840.2658842
https://www.research.ed.ac.uk/en/publications/8efedb48-cc0a-4a16-80a6-4820ea71d349


A Paradigm for Learning Queries on Big Data

Angela Bonifati Radu Ciucanu Aurélien Lemay Sławek Staworko
University of Lille & INRIA, France

{angela.bonifati, radu.ciucanu, aurelien.lemay, slawomir.staworko}@inria.fr

ABSTRACT
Specifying a database query using a formal query language
is typically a challenging task for non-expert users. In the
context of big data, this problem becomes even harder as
it requires the users to deal with database instances of big
sizes and hence difficult to visualize. Such instances usu-
ally lack a schema to help the users specify their queries,
or have an incomplete schema as they come from disparate
data sources. In this paper, we propose a novel paradigm for
interactive learning of queries on big data, without assuming
any knowledge of the database schema. The paradigm can
be applied to different database models and a class of queries
adequate to the database model. In particular, in this paper
we present two instantiations that validated the proposed
paradigm for learning relational join queries and for learn-
ing path queries on graph databases. Finally, we discuss
the challenges of employing the paradigm for further data
models and for learning cross-model schema mappings.

Categories and Subject Descriptors
H.2.3 [Database Management]: Languages—Query Lan-
guages; I.2.6 [Artificial Intelligence]: Learning—Concept
Learning

Keywords
Query inference, user interactions, learning, big data.

1. INTRODUCTION
Specifying a database query using a formal query language

is typically a challenging task for non-expert users. In the
context of big data, this problem becomes even harder as it
requires the users to deal with database instances of big sizes
and hence difficult to visualize. Such instances usually lack a
schema to help the users specify their queries, or have an in-
complete schema as they come from disparate data sources.
Consequently, the important size of the database instances

and the absence of proper metadata make unfeasible tra-
ditional query specification paradigms for non-expert users,
such as query by example [40].

In this paper, we propose a novel paradigm for interactive
query learning on big data, without assuming any knowledge
of the database schema. This paradigm can be applied to
different database models (e.g., relational, semi-structured,
graph) and a class of queries adequate to the database model
(e.g., join queries for the relational data model, regular path
queries for the graph data model).

An important part of the paradigm is a function that iden-
tifies in the input database instance a set of small, easy to
visualize fragments, from which we ask the user to label el-
ements of interest, depending on whether or not she would
like them as part of the query result. Such labeled fragments
are then given as input to a query learning algorithm that
returns a query that ideally expresses the information need
of the user. We iterate the learning process by proposing
to the user to label new fragments until her goal query is
learned.

Another important aspect of the proposed paradigm is
measuring the potential information that labeling a given
fragment may have on the learning process: maximizing this
measure has the purpose of minimizing the number of user
interactions necessary to reach her goal query. Choosing
the fragment that maximizes this measure may introduce
significant computational and combinatorial obstacles, and
to overcome them we have to investigate diligent strategies.

The main contribution of this paper is the formalization
of the aforementioned paradigm (Section 2). Then, we point
out that we have validated two instantiations of the paradigm
for learning relational join queries [11, 12] and for learning
graph queries [10]; we briefly present our results on these
two application settings in Section 3 and Section 4, respec-
tively. We discuss related work in Section 5. Finally, in
Section 6 we state some future challenges related to employ-
ing the paradigm for semi-structured data (such as XML
or NoSQL data stores) and for learning schema mappings
between heterogeneous data models.

2. PARADIGM
Let us assume a large database instance I expressed in

a given data model. Let us also suppose that we have no
knowledge on whether or not the instance complies to a
database schema. As an example, I can be a relational table
with millions of tuples or a graph database with millions of
nodes, and in either case we do not assume any knowledge of
the integrity constraints. Furthermore, we do not necessarily



assume that the instance I is normalized since it often occurs
in practice that users have to deal with denormalized data
coming from multiple sources (e.g., obtained after some data
integration scenario [20]).

If a non-expert user is willing to query such a large in-
stance, she would not be able to formulate her query with
a formal query language. Luckily, what the user is akin to
do is to visualize and label fragments of this large instance
depending on whether or not she would like the fragments
as part of the query result. Therefore, our goal is to ex-
ploit these labeled fragments and to construct the user’s
goal query, which in particular satisfies the labels provided
by the user. We assume that the goal query that the user
has in mind belongs to a class of queries Q that is adequate
to the model of the instance that she wants to query. In the
remainder, we refer to the class of queries Q that contains
the user’s goal query as the goal query class. For example, in
the relational case, Q may be the class of join queries or, in
the graph case, Q may be the class of regular path queries.

Furthermore, for each database model, we assume a func-
tion that maps an instance of that model to the set of all its
fragments. A fragment F is a small part of the instance that
the user can visualize and label. For the relational model, a
fragment may be a tuple or a set of tuples, depending on the
actual goal relational query class. For the graph data model,
a fragment may be just a node in the graph, or a small sub-
graph including the surroundings of the node to let the user
seek the paths of interest starting in that node. The simplest
possible labeling that the user can provide is a Boolean la-
beling (positive or negative), to indicate whether a fragment
should or should not be selected by the query that she has in
mind. However, our paradigm is generic enough to accom-
modate other kind of input, such as more complex labeling
(e.g., the user may indicate whether a fragment should be
selected with a certain confidence). For ease of exposition,
in the rest of the paper we focus on the simplest user in-
put using as positive and negative examples the fragments
selected or unselected by the user’s query, respectively.

A natural question that arises is how we choose the frag-
ments that are proposed to the user for labeling. This
question leads to describe a desirable requirement of our
paradigm: we would like to minimize the amount of effort
provided by the user or, in other words, we would like that
the user only labels a small number of fragments in order to
learn her goal query.

The fundamental steps of our paradigm are depicted in
Figure 1. Before discussing each step in details, we would
like to spend a few words on the following interactive sce-
nario of query learning, which constitutes the core of our
paradigm. Let us consider an instance and an empty set of
examples S. We may also refer to a set of examples as a sam-
ple. We say that a query q is consistent with S if q selects all
positive examples and none of the negative ones. Initially,
since we have an empty sample S, all queries in Q are con-
sistent with S. Then, we reiterate the following process: we
choose a fragment F , the user labels F , and we update the
set of queries consistent with S. We stop the interactions
when a sufficient knowledge of the goal query has been accu-
mulated i.e., there exists exactly one query consistent with
the examples that ideally is the user’s goal query. Since we
assume that the user labels the given fragments consistently
with some query q that she has in mind, q always belongs
to the current set of consistent queries. Moreover, since we

1

2

3

4

5

6

7

Input : a large database instance I.

Preprocess I to a smaller I 1.

Is the halt condition satisfied?

Choose fragment F
w.r.t. a strategy.

Output : learned query.

Get environment for F .

Ask label for F .

I 1

I

No Yes

fragment F

environment of F

visualize environment of F
label F with + or –

p
ro

pa
ga

te
la

be
l

fo
r
F

le
a

rn
a

qu
er

y
fr

o
m

a
ll

la
be

ls

Figure 1: Workflow of the paradigm.

want to get quickly from an initial empty sample to a sam-
ple S s.t. only the goal query is consistent with it, we have
to choose at each iteration the fragment F that maximizes
the potential impact i.e., when the user labels F , we are
able to eliminate a maximal number of candidate queries
from the set of all queries consistent with S. To this pur-
pose, it is important to ask the user to label only fragments
that contribute to the learning process. To be able to define
such fragments, we formalize first the notion of uninforma-
tive fragments. Given a sample S, we say that a fragment is
uninformative if labeling it explicitly as a positive or a neg-
ative example does not eliminate any query consistent with
S. Then, a fragment is informative if it has not been labeled
by the user nor it is uninformative. Computing the set of
informative fragments actually corresponds to propagating
every label given by the user to the fragments that are still
unlabeled and removing those that become uninformative
because of that label.

What we have described above is the interactive scenario,
which is the core of our paradigm. This helps us detail the
steps of the paradigm, depicted in Figure 1, in the rest of
this section.

1 2 The paradigm takes as input a large database in-
stance I. Unfortunately, working on the initial instance I is
unfeasible due to the fact that all the instance would have
to be inspected to seek relevant fragments that we propose
to the user to label. Therefore, a first important step of our
paradigm is the preprocessing, which produces an instance
I 1 that is considerably smaller than the initial I. We point
out that I 1 should ideally contain sufficiently diverse frag-
ments to permit learning all queries from the targeted class



Q. As such, the size of I 1 depends more on the class of
queries Q than on the initial instance I. A simple way to
obtain I 1 from I is to remove all redundant fragments. For
example, if we want to assist a user to learn a relational join
query, the preprocessing could consist of simply removing
the tuples that are equivalent in the sense that they are se-
lected exactly by the same set of joins. Similarly, if we want
to learn a regular path query on graphs, the preprocessing
could consist of taking a subgraph of the initial large graph
on which we can find the same paths as in the entire graph.

3 The interactions with the user continue until a halt
condition is satisfied. A natural halt condition is to stop
the interactions when there is exactly one consistent query
with the current sample. In practice, we can imagine weaker
conditions e.g., the user may stop the process earlier if she
is satisfied by some candidate query proposed at some in-
termediary stage during the interactions.

4 The fragments shown to the user are chosen according
to a strategy i.e., a function that takes as input an instance
I 1 and a sample S, and returns a fragment from I 1. Since we
want to minimize the amount of examples needed to learn
the user’s goal query, an intelligent strategy should propose
to the user only informative fragments. We point out that
while it is possible to design an optimal strategy (i.e., that
is guaranteed to propose to the user a minimal number of
fragments), such a strategy is usually based on a minimax
algorithm, thus being exponential and unfortunately unfea-
sible in practice. This motivates us to investigate practical
strategies (i.e., that efficiently compute the next fragment
to propose to the user) also because we do not want make
the user wait too long between two consecutive interactions.
This approach leads to defining the entropy of a fragment,
which intuitively is a measure of the quantity of information
that labeling that fragment brings to the learning process.
The computation of the entropy of a fragment is related
to the actual data model and to the goal query class. We
have already defined such measures for learning relational
joins [11] and for learning path queries on graphs [10]. In
any case, an intelligent strategy proposes to the user a frag-
ment that maximizes the entropy.

5 A fragment by itself does not always carry enough
information to allow the user understand whether the frag-
ment is part of the query result or not. Therefore, it may
happen that we have to enhance the information of a frag-
ment by zooming out on the environment of a such fragment
before actually showing it to the user. This step is rather
trivial in the case of relational joins, where the fragment is
a tuple and the user has to visualize it entirely before de-
ciding if this tuple should be selected. However, there may
be the case that the instance consists of a denormalized ta-
ble having a large number of attributes and consequently
we may need to select the most relevant ones to not over-
whelm the user. Moreover, the step of constructing the en-
vironment of a fragment may become cumbersome in the
case of queries on less structured databases (such as trees or
graphs). Hence, a challenge of the algorithm is to compute
a small environment of a node that is easy to visualize by
the user and rich enough to permit labeling.

6 7 The user visualizes the environment of a given
fragment F and labels F w.r.t. the goal query that she has
in mind. In Figure 1, we have depicted the simplest frag-
ment labeling i.e., as positive “+” or negative “–” examples.
Then, we propagate the label given by the user for F in the
rest of the instance to prune the fragments that become un-
informative. Moreover, we run a learning algorithm (i.e.,
a function that takes as input an instance and a sample,
and outputs a query consistent with the sample) to propose
the “best” query that is consistent with all labels provided
until this point. When the halt condition is satisfied, we re-
turn the latest learned query to the user. In particular, the
halt condition may take into account such an intermediary
learned query q e.g., when the user is satisfied by the output
of q on the instance and wants to stop the interactions.

3. LEARNING RELATIONAL QUERIES
In this section, we present an instantiation that validated

the proposed paradigm in the context of relational databases,
in particular for learning join queries. In our work [11, 12],
we have studied the following setting: the input instance
consists of a collection of relations (that can be viewed as a
unique denormalized table corresponding to their Cartesian
product), the fragments are individual tuples from that in-
stance, and the goal query class consists of the set of all join
predicates that can be formulated over it.

For example, assume a scenario where a user working for
a travel agency wants to build a list of flight&hotel pack-
ages. The user is not acquainted with querying languages
and can only access the information on flights and hotels
in a denormalized table, such as the one in Figure 2. We

From To Airline City Discount
Paris Lille AF NYC AA (1)
Paris Lille AF Paris None (2)

+ Paris Lille AF Lille AF (3)
+ Lille NYC AA NYC AA (4)

Lille NYC AA Paris None (5)
Lille NYC AA Lille AF (6)
NYC Paris AA NYC AA (7)

– NYC Paris AA Paris None (8)
NYC Paris AA Lille AF (9)
Paris NYC AF NYC AA (10)
Paris NYC AF Paris None (11)
Paris NYC AF Lille AF (12)

Figure 2: A set of tuples.

assume no knowledge of the schema and of the provenance
of the data. Assuming that the user has labeled the tuple
(3) as a positive example, note that tuple (4) becomes unin-
formative. Moreover, if we assume that the user has labeled
(8) as a negative example, the only consistent join predicate
is tpTo,Cityq, pAirline,Discountqu, defining a query that in-
tuitively selects packages consisting of a flight and a stay in
a hotel combined in a way allowing a discount.

We show next a simple but effective way to preprocess
such an instance for the purpose of learning join queries on
it. Given a tuple t, by T ptq we denote the most specific join
predicate selecting t. The set of all such predicates together
with the � relation form a lattice of join predicates having
as bottom-most element the most general join predicate H
and as top-most element the most specific join predicate Ω
(that possibly selects no tuple on the instance). In Figure 3
we present the lattice obtained for the instance in Figure 2.



H

tpFrom,Cityqu tpTo,Cityqu tpAirline,Discountqu

tpFrom,City),(Airline,Discount)u tpTo,City),(Airline,Discountqu

Ω

tpFrom,Cityqu tpTo,Cityqu tpAirline,Discountqu

tpFrom,Cityq, pAirline,Discountqu tpTo,Cityq, pAirline,Discountqu

Figure 3: Lattice of join predicates for Figure 2.

From To Airline City Discount T ptq
Paris Lille AF NYC AA H
Paris Lille AF Paris None tpFrom,Cityqu

Paris Lille AF Lille AF
{(To,City),

(Airline,Discount)}

NYC Paris AA NYC AA
{(From,City),

(Airline,Discount)}
NYC Paris AA Paris None tpTo,Cityqu
Paris NYC AF Lille AF tpAirline,Discountqu

Figure 4: Preprocessed instance for Figure 2.

Then, for each predicate θ that selects at least one tuple
in the instance in Figure 2 (i.e., those represented in a box in
Figure 3), we take one tuple t from the instance s.t. T ptq � θ
and we add t in the preprocessed instance. For the instance
in Figure 2, we obtain the preprocessed instance in Figure 4
(where we present on the last column the corresponding T ptq
for each tuple). Notice that with this simple preprocessing
procedure we have eliminated half of the tuples from the
initial set, without altering the set of queries that can be
learned on this instance.

In [11], we have employed this preprocessing technique
and shown that it scales for instances of millions of tuples.
Moreover, we have developed a set of efficient strategies of
proposing tuples to the user and we have characterized in
which cases different classes of strategies are expected to per-
form better than other ones. Here, we only give the intuition
behind these strategies and we point out that they are based
on reasoning on the lattice of join predicates. As we have
already shown, there is a correspondence between the tuples
in the preprocessed instance and the elements of the lattice.
Thus, eliminating uninformative tuples can be seen as a label
propagation in the lattice. For example, assume an empty
sample and that we ask the user to label the tuple corre-
sponding to the join predicate tpAirline,Discountqu. If the
user labels it as a positive example, we are able to eliminate
the tuples corresponding to predicates above it in the lat-
tice (i.e., tpFrom,Cityq, pAirline,Discountqu and tpTo,Cityq,
pAirline,Discountqu); conversely, if the user labels it as a neg-
ative example, we eliminate the tuples corresponding to tu-
ples below it in the lattice (i.e., H). Intuitively, the question
“Which is the next tuple to present to the user?” becomes
“Labeling which tuple allows us to eliminate as many ele-
ments of the lattice as possible?” Finally, we point out that
we have implemented the proposed strategies in Jim (Join
Inference Machine) [12], a system that can learn arbitrary
n-ary join predicates, spanning from relational tables to sets
of tagged images.

4. LEARNING GRAPH QUERIES
In this section, we present an instantiation of our paradigm

in the context of graph databases. In our work [10], we have
studied the following setting: the input instance consists
of a graph database, the fragments are nodes of the graph,
and we have focused on a goal query class for graphs that
we detail later in this section.

A graph database instance is essentially a directed, edge-
labeled graph [7, 36]. As an example, take in Figure 5 a
geographical graph database having as nodes cities (C1 to
C6), hospitals (H1 and H2), and schools (S1 and S2). The
edges represent transportation facilities between cities (us-
ing labels train and bus) or other kind of facilities (using
labels hospital and school). For instance, the edge “(C2,
bus, C3)” means that one can travel by bus between C2

and C3, while the edge “(C4, hospital, H1)” means that the
hospital H1 is situated in the city C4.

C1 C2 C3

C4 C5 C6

H1 S1 S2 H2

bustrain

bus bus

hospital

train

school

bus train

school

train

bus

hospital

Figure 5: A geographical graph database.

We have focused on the class of monadic regular path
queries that intuitively select nodes having at least one node
in the language of a given regular expression. For example,
the following query selects the cities from which one can
reach hospitals in the graph database from Figure 5:

q � ptrain� busq� � hospital.

This query selects the nodes C1, C2, C4, and C6 because
there exist the following paths in the graph:

C1 trainÝÝÑ C4 hospital
ÝÝÝÝÝÑ

H1, C4 hospital
ÝÝÝÝÝÑ

H1,

C2 busÝÑ C1 trainÝÝÑ C4 hospital
ÝÝÝÝÝÑ

H1, C6 hospital
ÝÝÝÝÝÑ

H2.

Although the fragments that the user labels are individual
nodes, for visualization purposes we also show to the user
the immediate environment of the candidate nodes to let
her identify the paths starting from those nodes. This envi-
ronment intuitively consists of all nodes reachable from the
proposed node, with paths of a certain length (in [10], we
have characterized theoretically and empirically this length).
Assuming that the user visualizes the graph in Figure 5 and
that she labels the node C2 as a positive example and the
node C5 as a negative example, notice that the above q is
clearly consistent with these labels. Furthermore, all nodes
without any outgoing edge (i.e., H1,H2, S1, S2,C3) are un-
informative with –, and C1, C4, C6 are informative nodes.

We have shown in [10] that applying our paradigm for
learning this kind of queries is much more difficult than for
relational joins, for the following two reasons: (i) given a
set of positive and negative node examples, there may exist
an infinite number of queries consistent with the labels, and



(ii) deciding whether a consistent query does even exist is an
intractable problem. Therefore, since the problem of finding
a consistent query implies high computational costs, we may
not propose a candidate “best” query after each new label
provided by the user, but we may go directly to asking her to
label a new fragment. We have precisely characterized in [10]
the conditions that a given set of examples should satisfy
to permit learning of the goal query in polynomial time.
As for the preprocessing of large graph databases, we point
out that this problem reduces to large graph sampling [26]
i.e., computing a representative subgraph of the initial large
graph that permits learning of any monadic regular path
query over the set of labels used in the initial graph.

5. RELATED WORK
First, we discuss related work w.r.t. the general aspect

of our paradigm and then the related work w.r.t. learning
relational and graph queries, respectively.

General aspect of our paradigm. For the validation of
our paradigm [10, 11, 12], we have considered the simplest
possible user input by requiring the user only to answer Yes
or No to simple fragment labeling. This type of interactions
is inspired by the well-known framework of learning with
membership queries proposed by Angluin [6]. Nonetheless,
our paradigm is generic enough to allow other kind of user
feedback. For example, existing researches on exploratory
querying big data collections (e.g., [29]) can be seen as in-
stantiations of our paradigm with an expert user that pro-
vides more complex input. Additionally, our notion of en-
tropy is related to a similar notion used in [29].

Our notion of uninformative fragments is inspired by pos-
sible world semantics and certain answers [22]. In particular,
a similar notion has been already employed in the context of
XML querying for non-expert users [17]. The idea of mea-
suring the entropy (i.e., the information gain of labeling a
given fragment) is strongly connected to the notion of active
learning [30]. Active learning have been already used in the
context of learning to repair constraint violations from user
feedback [37] and in the context of keyword search-based
data integration [32, 38].

Moreover, the idea of our paradigm to minimize the num-
ber of user interactions is related to crowdsourcing applica-
tions, where minimizing the number of interactions entails
lower financial costs. A difference is that a crowd scenario
considers multiple users providing the answers. However,
one can assume in a black-box the steps of drawing the crowd
users and of corroborating their answers (in the spirit of [5])
and then employ our paradigm for efficiently learning a goal
query while minimizing the number of crowd interactions.

Learning relational queries. The instantiation of our para-
digm for learning relational queries [11, 12] follows a very re-
cent line of research [39, 34, 18] from which we differ in two
ways: (i) we assume no knowledge of the database schema,
and (ii) we do not have an initial query output to start with
and we discover it from user interactions. Another work
strongly related to ours is [1, 2], which focuses on learn-
ing quantified Boolean queries and also uses the framework
of learning with membership queries [6]. The goal of their
system is somewhat different from our paradigm, in that
their goal is to disambiguate a natural language specifica-

tion of the query, whereas we focus on raw data to guess
the “unknown” query that the user has in mind. Addi-
tionally, our work on learning relational joins is connected
to join processing using the crowd. However, crowdsourced
joins have been mainly defined in terms of entity resolution,
where joining two datasets means finding all pairs of tuples
that refer to the same entity [27, 35]. Conversely, we have
handled arbitrary n-ary join predicates in our instantiation,
thus targeting a quite different and more intricate goal for
the crowd i.e., learning such join predicates from a set of
positive and negative labels.

Learning graph queries. The learnability definition that
we have used in [10] is inspired by grammatical inference [19]
i.e., the branch of machine learning that aims at construct-
ing a formal grammar by generalizing a set of examples.
Grammatical inference techniques have been recently em-
ployed in the context of XML for learning queries [13, 25,
31], schemas [8, 9, 16], and transformations [23, 24]. More
precisely, in [10] we have used a variant of the classical gram-
matical inference framework (i.e., language identification in
the limit with polynomial time and data [21]) that takes
into account the intractability of deciding the consistency of
a set of examples (in the spirit of [23]).

6. CHALLENGES AND PERSPECTIVES
We have proposed a paradigm for learning queries on

large database instances, for any database model and an
adequate class of queries. We have shown two instantia-
tions that validated our approach: for learning relational
join queries [11, 12] and for learning monadic regular path
queries for graphs [10]. We end this paper with two chal-
lenges of applying our paradigm in different settings that we
would like to investigate in the future.

Learning queries for semi-structured databases. Learn-
ing XML queries have been studied already either without
user interactions [31] or in an interactive setting without
having as goal to minimize the number of examples needed
for learning the goal query [13, 25]. We would like to in-
vestigate in the future the problem of learning queries for
semi-structured databases in an interactive scenario in the
spirit of our paradigm. For this purpose, we would have to
base ourselves on the algorithms from [13, 25, 31] for learn-
ing a query from a set of examples and on the algorithms
from [17] for pruning the uninformative fragments. Addi-
tionally, we would like to apply our paradigm for learning
queries for NoSQL document data stores [14] that are struc-
tured as trees, similarly to the XML databases.

Learning cross-model schema mappings. A more chal-
lenging task would be to apply our interactive paradigm to
learning cross-model schema mappings. A schema mapping
is essentially a logical assertion between two queries, one
on a source database and the other on the target database.
Designing a schema mapping via data examples has been
investigated in [3, 4, 28], but using more expert users than
in our paradigm. Moreover, the problem of learning schema
mappings from simple user interactions has been studied
in [33], but only in the relation-to-relational case. Interac-
tive query learning on heterogeneous data models is a fun-
damental step towards interactive learning of cross-model



schema mappings [15]. We believe that designing efficient al-
gorithms for mapping big data instances to any other model
that is easier to manipulate by the non-expert user (e.g., a
common schema that the user feels confident to query) can
bring the most value of the big data to the users. Hence,
our immediate objective is to thoroughly investigate the ap-
plication of the proposed interactive paradigm to efficiently
learning queries on different data models before proposing
interactive learning of cross-model schema mappings.

7. REFERENCES

[1] A. Abouzied, D. Angluin, C. H. Papadimitriou, J. M.
Hellerstein, and A. Silberschatz. Learning and
verifying quantified boolean queries by example. In
PODS, pages 49–60, 2013.

[2] A. Abouzied, J. M. Hellerstein, and A. Silberschatz.
Playful query specification with DataPlay. PVLDB,
5(12):1938–1941, 2012.

[3] B. Alexe, B. ten Cate, P. G. Kolaitis, and W. C. Tan.
Designing and refining schema mappings via data
examples. In SIGMOD Conference, pages 133–144,
2011.

[4] B. Alexe, B. ten Cate, P. G. Kolaitis, and W. C. Tan.
EIRENE: Interactive design and refinement of schema
mappings via data examples. PVLDB,
4(12):1414–1417, 2011.

[5] A. Amarilli, Y. Amsterdamer, and T. Milo. On the
complexity of mining itemsets from the crowd using
taxonomies. In ICDT, pages 15–25, 2014.

[6] D. Angluin. Queries and concept learning. Machine
Learning, 2(4):319–342, 1988.

[7] P. Barceló. Querying graph databases. In PODS,
pages 175–188, 2013.

[8] G. J. Bex, W. Gelade, F. Neven, and
S. Vansummeren. Learning deterministic regular
expressions for the inference of schemas from XML
data. TWEB, 4(4), 2010.

[9] I. Boneva, R. Ciucanu, and S. Staworko. Simple
schemas for unordered XML. In WebDB, pages 13–18,
2013.

[10] A. Bonifati, R. Ciucanu, and A. Lemay. Learning path
queries on graph databases, 2014. Under submission.

[11] A. Bonifati, R. Ciucanu, and S. Staworko. Interactive
inference of join queries. In EDBT, pages 451–462,
2014.

[12] A. Bonifati, R. Ciucanu, and S. Staworko. Interactive
join query inference with JIM. PVLDB, 7(13), 2014.

[13] J. Carme, R. Gilleron, A. Lemay, and J. Niehren.
Interactive learning of node selecting tree transducer.
Machine Learning, 66(1):33–67, 2007.

[14] R. Cattell. Scalable SQL and NoSQL data stores.
SIGMOD Record, 39(4):12–27, 2010.

[15] R. Ciucanu. Learning queries for relational,
semi-structured, and graph databases. In SIGMOD/
PODS Ph.D. Symposium, pages 19–24, 2013.

[16] R. Ciucanu and S. Staworko. Learning schemas for
unordered XML. In DBPL, 2013.

[17] S. Cohen and Y. Weiss. Certain and possible XPath
answers. In ICDT, pages 237–248, 2013.

[18] A. Das Sarma, A. Parameswaran, H. Garcia-Molina,
and J. Widom. Synthesizing view definitions from
data. In ICDT, pages 89–103, 2010.

[19] C. de la Higuera. Grammatical Inference: Learning
Automata and Grammars. Cambridge University
Press, 2010.

[20] X. L. Dong and D. Srivastava. Big data integration.
PVLDB, 6(11):1188–1189, 2013.

[21] E. M. Gold. Complexity of automaton identification
from given data. Information and Control,
37(3):302–320, 1978.

[22] T. Imielinski and W. Lipski Jr. Incomplete
information in relational databases. J. ACM,
31(4):761–791, 1984.

[23] G. Laurence, A. Lemay, J. Niehren, S. Staworko, and
M. Tommasi. Learning sequential tree-to-word
transducers. In LATA, pages 490–502, 2014.

[24] A. Lemay, S. Maneth, and J. Niehren. A learning
algorithm for top-down XML transformations. In
PODS, pages 285–296, 2010.

[25] A. Lemay, J. Niehren, and R. Gilleron. Learning n-ary
node selecting tree transducers from completely
annotated examples. In ICGI, pages 253–267, 2006.

[26] J. Leskovec and C. Faloutsos. Sampling from large
graphs. In KDD, pages 631–636, 2006.

[27] A. Marcus, E. Wu, D. R. Karger, S. Madden, and
R. C. Miller. Human-powered sorts and joins.
PVLDB, 5(1):13–24, 2011.

[28] L. Qian, M. J. Cafarella, and H. V. Jagadish.
Sample-driven schema mapping. In SIGMOD
Conference, pages 73–84, 2012.

[29] T. Sellam and M. L. Kersten. Meet Charles, big data
query advisor. In CIDR, 2013.

[30] B. Settles. Active Learning. Synthesis Lectures on
Artificial Intelligence and Machine Learning. Morgan
& Claypool Publishers, 2012.

[31] S. Staworko and P. Wieczorek. Learning twig and
path queries. In ICDT, pages 140–154, 2012.

[32] P. P. Talukdar, M. Jacob, M. S. Mehmood,
K. Crammer, Z. G. Ives, F. Pereira, and S. Guha.
Learning to create data-integrating queries. PVLDB,
1(1):785–796, 2008.

[33] B. ten Cate, V. Dalmau, and P. G. Kolaitis. Learning
schema mappings. ACM Trans. Database Syst.,
38(4):28, 2013.

[34] Q. T. Tran, C.-Y. Chan, and S. Parthasarathy. Query
by output. In SIGMOD Conference, pages 535–548,
2009.

[35] J. Wang, G. Li, T. Kraska, M. J. Franklin, and
J. Feng. Leveraging transitive relations for
crowdsourced joins. In SIGMOD Conference, pages
229–240, 2013.

[36] P. T. Wood. Query languages for graph databases.
SIGMOD Record, 41(1):50–60, 2012.

[37] M. Yakout, A. K. Elmagarmid, J. Neville,
M. Ouzzani, and I. F. Ilyas. Guided data repair.
PVLDB, 4(5):279–289, 2011.

[38] Z. Yan, N. Zheng, Z. G. Ives, P. P. Talukdar, and
C. Yu. Actively soliciting feedback for query answers
in keyword search-based data integration. PVLDB,
6(3):205–216, 2013.

[39] M. Zhang, H. Elmeleegy, C. M. Procopiuc, and
D. Srivastava. Reverse engineering complex join
queries. In SIGMOD Conference, pages 809–820, 2013.

[40] M. M. Zloof. Query by example. In AFIPS National
Computer Conference, pages 431–438, 1975.


