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ABSTRACT
Large industrial systems that combine services and appli-
cations, have become targets for cyber criminals and are
challenging from the security, monitoring and auditing per-
spectives. Security log analysis is a key step for uncover-
ing anomalies, detecting intrusion, and enabling incident re-
sponse. The constant increase of link speeds, threats and
users, produce large volumes of log data and become in-
creasingly difficult to analyse on a Central Processing Unit
(CPU). This paper presents a massively parallel Graphics
Processing Unit (GPU) Log Processing (GLoP) library and
can also be used for Deep Packet Inspection (DPI), using a
prefix matching technique, harvesting the full power of off-
the-shelf technologies. GLoP implements two different algo-
rithm using different GPU memory and is compared against
CPU counterpart implementations. The library can be used
for processing nodes with single or multiple GPUs as well as
GPU cloud farms. The results show throughput of 20 Gbps
and demonstrate that modern GPUs can be utilised to in-
crease the operational speed of large scale log processing
scenarios, saving precious time before and after an intrusion
has occurred.

Categories and Subject Descriptors
D.4.6 [Security and protection ]: [Information flow con-
trols]; K.6.5 [Management of Computing and Infor-
mation Systems]: Security and Protection

Keywords
Security, GPU, CUDA, Pattern Matching

1. INTRODUCTION
Incident Response and threat detection play a key role in
industrial system security. With the increased dependence
of users on information gathering, e-commerce, social net-
working, and the Internet of Things (IoT), the amount of
data to analyse before and after an intrusion has grown ex-
ponentially. This large data volume, in combination with
the expanding number of malicious exploits from attackers,
make it challenging for system administrators and incident
response teams to analyse the logs. Existing frameworks
and tools utilise modern search algorithms, however, most
of these run sequentially on CPUs.

Research in malware detection [1], [2], Intrusion Detection
Systems (IDS) [3], [4], and pattern matching [5], [6] demon-
strate significant speed increases utilising parallelised hard-
ware architectures such as Field Programmable Gate Arrays
(FPGA) and Graphical Processing Units (GPU). These ap-
proaches effectively scale processing vertically and maximise
speed from a single device. Cloud based research [7], [8],
attempts to parallelise log-processing horizontally, by dis-
tributing workload to multiple nodes with services such as
the Amazon EC2, GPU G2 instances. These two approaches,
are by no means competing but rather complementary. Com-
bining GPU processing in the cloud has the potential of
massive speed increases.

This paper addresses the analysis of large scale log process-
ing in a fast and cost-effective fashion using a single off-
the-shelf GPU. The performance increase is not limited to a
single GPU and can be utilised to enhance both multi-GPU
nodes as well as GPU Cloud farms.

The typical use case scenario of the library is illustrated in
Figure 1. Network equipment record events using the syslog
protocol [9] on a server. The incident response team would
periodically push the syslog traces for the last period, to a
GPU processing server along with rules describing malicious
activity. The GPU server will search through the logs and
identify patterns that match any of the malicious rules gen-
erating alerts containing the number of suspected malicious
activities and their location in the logs.
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Figure 1: Typical use case scenario

The contributions of the paper are threefold. It proposes and
implements a generic log processing library, called GLoP
(GPU Log Processing). The library utilises the single-
pattern matching algorithm Knut-Morris-Pratt (KMP) and
the multi-pattern algorithm of Failureless Tries. Both al-
gorithms are implemented for CPU and GPU and the per-
formance of the implementations is quantified, for various
number of search patterns. The library truncates the pat-
terns to 8 characters reducing thread divergance and mem-
ory requirments on the GPU; a technique known as pre-
fix or partial matching. Finally, GLoP contains two GPU
implementations of Parallel Failureless Aho-Corasick algo-
rithm that use global or texture memory. It is shown, that
the implementation using the texture memory achieves dou-
ble throughput compared to the implementation that uses
global memory.

The remainder of this paper is organised as follows: Sec-
tion 2 presents the related work, Section 3 introduces the
GPU architecture and programming model. Sections 4 and 5
describe the Aho-Corasick algorithm and optimisation for
its implementation in GLoP. The experimental environment
and methodology are presented in Section 6. Section 7 de-
scribes and discusses the results obtained from multiple al-
gorithm variants within GLoP. Finally, Section 8 presents
the conclusions and future work.

2. RELATED WORK
Large scale log processing research has extensively studied
the use of large scale data mining and big data scenarios
using distributed frameworks analysis. Shu et al. have pro-
posed a lightweight framework based on the Amazon Cloud
Environment (EC2 and S3), using multiple nodes to speed
up the log analysis processing, and harvesting the results
using a map reduce implementation [7]. Yang et al. demon-
strated that by using Hadoop MapReduce, it was possible to
decrease the processing time of log files by 89% for intrusion
detection purposes [8]. Marty et al. proposed a theoretical
logging framework dedicated to cloud infrastructures and
software as a service (SaaS) running on a third party public
cloud service [10].

Cheng et al. described a fast filter virus detection engine
running on GPUs based on eigenvalues with good perfor-
mances [1]. Our previous work [11] has shown that a mas-
sively parallel pattern matching algorithm based on the Knuth-
Morris-Pratt algorithm [12] can achieve a 29 fold increase in

processing speed over CPU counterparts. From the output
of these works, it is clear that the processing capabilities
of off-the-shelf hardware have a great potential not only to
increase the speed on a single stand-alone processing server
but also on GPU cloud deployments [13].

String searching algorithms can be classified to single-pattern
and multi-pattern matching. Single pattern matching algo-
rithms search the complete string for a single pattern sequen-
tially. The naive approach to search for a single pattern is to
iteratively walk through the text string and every time there
is a mismatch or a complete match, the algorithm rewinds
back. Optimised algorithms such as the Knuth-Morris-Pratt
(KMP) and Boyer-Moore (BM) avoid rewinding by intro-
ducing failure and backtracking tables respectively [14].

On the other hand multi-pattern matching algorithms search
simultaneously for multiple patterns in the text string. The
most common multi-pattern algorithm is the Aho-Corasick
(AC) [15], [16] which has been implemented in a variety of
hardware architectures such as FPGAs [4][17] and GPUs [18].

For cases where the cross-correlation between pattern pre-
fixes is low, a two staged searching approach can be utilised
to improve parsing speeds. In these scenarios, the patterns
are truncated to create a set of prefixes. The first search-
ing stage filters the text locations where the prefixes match.
Subsequently the identified locations are passed to a sec-
ondary process where the patterns beyond the prefix are
searched. This completes the searching for the full pat-
tern. Such techniques are known as prefix or partial pat-
tern matching [19, 20]. In this work, only the first searching
stage is considered as the prefix cross-correlation is low and
patterns share the same prefix for 0.0001% of the time [21].
Therefore the additional overhead to complete the full pat-
tern search is negligible.

3. CUDA PROGRAMMING MODEL
The Compute Unified Device Architecture (CUDA) frame-
work offers the possibility to researchers to use GPUs for
General Purpose Graphics Processing. The framework al-
lows researchers to access hardware features using an exten-
sion of the C99/C++ language from the host.

The present implementation of the library is implemented
for the Tesla graphics card. The device consists of differ-
ent multiprocessors each one of them containing streaming
processors (SP). Each SP executing thousands of threads.
Threads running on the GPU are organised in thread blocks.
Within each block, the threads are organised in warps, each
warp contains the same number of threads (32 for the Tesla
K20 GPU). Each wrap executes in a Single Instruction Mul-
tiple Thread (SIMT) fashion and the multiprocessor peri-
odically switches between warps maximising the resources,
and hiding latencies [22].

The GPU contains different types of memory, Global, Tex-
ture, Constant, Shared which need to be managed explic-
itly at compilation time, by the programmer. The global
memory is the largest memory on the device, and requires
the more clock cycles to be accessed. The texture and con-
stant memories are cached, and require less clock cycles to
be accessed. Finally the shared memory is shared between



threads within a block and requires even fewer clock cycles
but is a very scarce resource [23].

4. AHO-CORASICK
The AC algorithm is a multi-pattern matching algorithm
and is able to identify multiple patterns in the text string on
a single pass. The AC algorithm consists of two phases: the
first phase constructs a state machine from a set of patterns,
while the second phase searches for the patterns in the text.

A typical state machine diagram constructed during the first
phase of the algorithm is shown in Figure 2. The state ma-
chine shown, consists of two patterns P = {HIS, SHE}.
The straight arrows represent the“regular”transitions which
occur when the text is matching, while the dashed arrows
represent the “failure” transitions, when a mismatch occurs
but the prefix of another pattern is matched. This allows
single threaded implementation of the AC algorithm to avoid
rewinding and back-track matches of multiple patterns on a
single pass.

For example, for the text T = “SHIS′′ and the state ma-
chine of Figure 2, the algorithm will start with two consec-
utive regular transitions from the initial state $ to S and
from S to H when comparing the first two characters of
the text T . On the third comparison, the character I from
the text string T does not result to a regular transition and
consequently the failure transition is activated followed by
a regular transition from H to I. Finally, for the last com-
parison results to a regular transition from I to S.

The most common modification to adopt the AC algorithm
in a multi-threaded environment is to split the text T in mul-
tiple chunks and assign one chunk per thread. However, this
creates problems when the text contains patterns across two
chunks. For example, when the state machine of Figure 2 is
considered, for the text string shown in Figure 3, it is clear
that the character sequence “HIS’’ exists on the boundary
between the chunks assigned to Thread 0 and Thread 1 and
neither of these threads will match it. That can be avoided
if the text string is split in chunks that overlap each other
by at least the length of the longest pattern minus 1. The
implication of the minimum chunk overlap is that it lim-

Figure 2: Aho-Corasick

Figure 3: Aho-Corasick Boundary Problem

its the number of chunks especially for scenarios where the
maximum pattern length is long. Consequently the number
of threads used to process the input text are also limited
and this could become a bottleneck considering the massive
number of threads that can be launched in the GPU (tens
of thousands) [24].

Another drawback of the AC algorithm in a multi-threaded
environment is that the failure links create thread diver-
gence. Thread divergence occurs when threads of the same
wrap branch to different sections of the code. As described
in Section 3, the GPU executes the wraps in a Single In-
struction Multiple Thread manner and the GPU scheduler
will allocate an execution slice to every branch. Threads on
the same branch execute concurrently, while all the threads
on a different branch are waiting for an execution slice. The
scheduling within the wrap occurs in a Round Robin fash-
ion. Thread divergence does not only consume more execu-
tion slices, but also increases memory access time as each
branch makes memory transfers at different execution slices
making access non-coalesced.

5. PARALLEL FAILURELESS TRIE AND
PREFIX MATCHING

An alternative method to parallelise the AC algorithm that
avoids the problem of patterns splitting over boundaries and
reduces thread divergence is the Parallel Failureless Aho-
Corasick (PFAC) [25]. With this method, “failure” transi-
tions are removed from the state machine and one thread is
instantiated for every character in the text string as shown
in Figure 5. In the case of a match, the current thread will
overlap the succeeding thread, allowing the state machine
to change state. In the case of a mismatch, the current
thread will terminate, releasing the resources and reducing
divergence.

The failureless trie mechanism exploits effectively the large



Figure 4: Texture Memory Architecture

number of threads that are available in massively parallelised
off-the-shelve GPU devices, however further optimisation
can be achieved.

Observe that the first memory transfer of text string to
the threads occurs in a coalesced manner. Subsequently,
each thread will transition to separate branches of the trie,
leading to non-coalesced memory access and thread diver-
gence. As the algorithm progresses deeper in the trie more

Figure 5: One Thread per Byte

threads will terminate due to mismatches leaving only a
small number of threads continuing to match while the bulk
of the threads terminate. This reduces the throughput sig-
nificantly and can be avoided if the trie is truncated and
all the threads terminate beyond a certain trie depth. The
approach of truncating the trie is known as prefix or partial
pattern matching [26, 21] and assumes that a secondary pro-
cess takes over to complete the search; for example a CPU
thread is lunched to complete the search.

In practise this approach is effective as the prefix length of
a malicious activity pattern has a low probability being a
false positive (i.e. the prefix exist in the text followed by
a suffix that does not match that pattern). Vasiliadis et
al. [21] has shown that a prefix length of 8 is adequate to
achieve a false positive rate below 0.0001%. In this work
this has been verified independently.

The prefix matching does not only reduce divergence, but
also reduces memory footprint due to the reduced number
of states in the trie. Memory reduction in itself may not be
of significant benefit, but when texture memory is used the
caching hit rate is increases leading to significantly reduced
memory access times.

6. EXPERIMENTAL ENVIRONMENT
GLoP was implemented on a Nvidia Tesla K20m graphic
card. The card consists of a single Printed Circuit Board
(PCB), composed of 192 CUDA Cores distributed over 19
multiprocessors. The card is also composed 5 GB of global
memory,and permits up to 26,624 active threads.

The base systems, is supplied with two Intel Xeon E5-2620
six core CPUs running at 2.0 GHz. The rig has a total of
64 GB ram. The server is running Ubuntu Server 11.10 (ker-
nel version 3.0.0-12-server). The algorithm has been com-
piled with the optimisation brought by the latest version of
CUDA 6.0, using C99.
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Figure 6: Throughput of the KMP Algorithm over
5MB chunk of log files

The GLoP library is executed using unified memory, allow-
ing the users to access variables stored in global memory
from the CPU and the GPU at any given time, and to facil-
itate the execution of streamed kernels. Each stream sends
logs to GPU to be analysed, and matched against the fail-
ureless trie. During the launch of a kernel, the CPU is free
to stream the next batch of logs to the GPU.

Two implementations of the algorithm are evaluated using
global and texture memory. For the texture memory ver-
sions, the trie must be represented in memory using int

types which are subsequently matched to ASCII values (e.g.
“A”=65). The texture memory allows transactions to be
cached, requiring fewer clock cycles to complete transfers
compared to global memory accesses. The caching proce-
dure is illustrated in Figure 4 where CUDA Cores (within
a Streaming Multiprocessor) have access to texture memory
via the cache, potentially speeding up significantly memory
access.

During the evaluation, the algorithm is run 100 times and
the results presented are the average of the total runs. This
allows to mitigate the sources of jitter; such as background
processes running competing for resources available. The
patterns searched are also generated randomly against each
log files.

The log files used during the trials have been automati-
cally generated, using the Mersenne Twister (MT) uniform
pseudo-random number generator [27]. Each synthetic log
has an exact file size of 100 MB, and its uniqueness is en-
sured by computing the SHA256 hash.

In all comparison the throughput is calculated as follows:

• Let N be the size of the log data sent to the GPU.

• Let T imegpu be the time elapsed during with the al-
gorithm is running.

8 ∗N
Timegpu

= Throughput (1)

Figure 7: Throughput of the GLoP CPU-GPU Li-
brary over 100MB log files

7. EVALUATION
GLoP implements the multi-pattern failureless trie algorithm
using global and texture memory as well as the single pattern
algorithm Knuth-Morris-Pratt for comparison purposes. The
KMP algorithm performance on CPU and GPU for vary-
ing number of patterns is shown in Figure 6. As the num-
ber of pattern increase, the throughput decreases linearly
as the algorithm performs a single pattern search at time.
The single threaded CPU version of the KMP algorithm
achieves throughput of 50 Mbps when matching a log file
of 5 MB against 10 patterns. On the CPU, the through-
put is 10 times less when matching the same log file against
100 patterns. Despite the fact that the GPU version of the
algorithm achieves throughput nearly 2,000 Mbps when 10
patterns at searched while the throughput decrease linearly
to 15 Mbps for 1,000 patterns.

The KMP algorithm does not have sufficient throughput to
cope with large scale log analysis, even with the boosted
performance on the GPU. Its main shortcoming is that the
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Figure 8: Throughput of the GLoP Library over
100MB log files



single pattern searching does not scale well for multiple pat-
terns. GLoP shows that the multi-pattern algorithms such
as the failureless trie are able to maintain a constant through-
put independent of the number of patterns. This is demon-
strated on Figure 7 where the performance of the Paral-
lel Failureless Aho-Corasick algorithm is shown to sustain
throughput for both the CPU and GPU. The performance
of the failureless trie algorithm on the GPU when global
memory is used is 11 Gbps for the 10 patterns and 100 MB
file, while the corresponding CPU version achieves through-
put of 1.7 Mbps.

Implementation of the failureless trie can be further im-
proved when texture memory is used. The operation of the
algorithm in this case is identical with the only different be-
ing that the state transition table being stored in texture
memory. The performance comparison between the two al-
gorithm using the global and texture memory respectively is
shown in Figure 8. The texture implementation is shown to
achieve double the throughput and this can be attributed to
the caching capabilities which significantly reduce the cycles
required to retrieve data from memory. The global memory
implementation culminates at 11 Gbps for a 100 MB log
file whereas the texture implementation reaches an overall
throughput of 20 Gbps.

8. CONCLUSION AND FUTURE WORK
This paper presented GLoP, a massively parallel incident re-
sponse engine offloading the large scale log processing, and
pattern matching to the GPU allowing the CPU to concen-
trate on other tasks.

In this work GLoP has been evaluated against the single
pattern matching algorithm Knuth-Morris-Pratt, and has
demonstrated a throughput of 11 Gbps with the failure-less
global memory implementation and an overall throughput
of 20 Gbps for the failure-less texture memory implementa-
tion. Various synthetic log files have been used proving its
efficacy, and in particular its ability to considerably speed up
incident response processes, while remaining cost-effective.
This work also highlighted the high performances demon-
strated by the engine, as a single node, but also its possible
and complementary use to cloud based log processing frame-
works, such as Hadoop, to increase the processing power.

In future work, it is planned to reduce the memory foot-
print of the failure-less trie when using larger state machines,
and improve the library by using Message Passing Interface
(MPI) technique to allow the library to run on an HPC as
well as investigating real-time operations.
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