skip to main content
10.1145/2660129.2660147acmconferencesArticle/Chapter ViewAbstractPublication PagescommConference Proceedingsconference-collections
research-article

Exploiting ICN for flexible management of software-defined networks

Published:24 September 2014Publication History

ABSTRACT

Networks are becoming increasingly complex and service providers incorporate additional functionality in the network to protect, manage and improve service performance. Software Defined Networking (SDN) seeks to manage the network with the help of a (logically) centralized control plane. We observe that current SDN solutions pre-translate policy (what) into forwarding rules at specific switches (where). We argue that this choice limits the dynamicity, flexibility and reliability that a software based network could provide. Information Centric Networking (ICN) shifts the focus of networks away from being predominantly location oriented communication environments. We believe ICN can significantly improve the flexibility for network management. In this paper, we focus on one of the problems of network management -- service chaining -- the steering of flows through the different network functions needed, before it is delivered to the destination. We propose Function-Centric Service Chaining (FCSC), a solution that exploits ICN to provide flexibility in managing networks that utilize virtualization to dynamically place functions in the network as required. We use a real-world topology to compare the performance of FCSC and a more ``traditional'' SDN solution. We show that FCSC reacts to failures with fewer packet drops, adapts to new middleboxes more quickly, and maintains less state in the network.

References

  1. http://blog.streamingmedia.com/2010/10/how-dynamic-site-acceleration-works-what-akamai-and-cotendo-offer.html.Google ScholarGoogle Scholar
  2. http://blog.streamingmedia.com/2011/12/its-official-akamai-to-acquire-content-good-for-akamai-bad-for-customers.html.Google ScholarGoogle Scholar
  3. J. Abley and K. E. Lindqvist. Operation of anycast services. In IETF, RFC, number 4786, 2006.Google ScholarGoogle Scholar
  4. B. Ahlgren, M. D'Ambrosio, M. Marchisio, I. Marsh, C. Dannewitz, B. Ohlman, K. Pentikousis, O. Strandberg, R. Rembarz, and V. Vercellone. Design considerations for a network of information. In Conext, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. S. Arianfar, P. Nikander, and J. Ott. On Content-centric Router Design and Implications. In Re-Arch, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamy, S. Shenker, I. Stoica, and M. Walfish. A layered naming architecture for the internet. In SIGCOMM, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifier (URI): Generic Syntax . In IETF, RFC, number 3986, 2005.Google ScholarGoogle Scholar
  8. R. Callon. Use of OSI IS-IS for Routing in TCP/IP and Dual Environments. In IETF, RFC, number 1195, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. B. E. Carpenter and S. Brim. Middleboxes: Taxonomy and Issues. In IETF, RFC, number 3234, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. I. Castineyra and M. Steenstrup. The Nimrod routing architecture. In IETF, RFC, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. J. Chen, M. Arumaithurai, X. Fu, and K. K. Ramakrishnan. G-COPSS: A Content Centric Communication Infrastructure for Gaming Applications. In ICDCS, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. J. Chen, M. Arumaithurai, L. Jiao, X. Fu, and K. K. Ramakrishnan. COPSS: An Efficient Content Oriented Publish/Subscribe System. In ANCS, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. CISCO. Policy-based routing. Technical report.Google ScholarGoogle Scholar
  14. C. Cui, H. Deng, D. Telekom, U. Michel, H. Damker, I. Guardini, E. Demaria, R. Minerva, and A. Manzalini. Network Functions Virtualisation. In SDN and OpenFlow World Congress, 2012.Google ScholarGoogle Scholar
  15. J. Erman, A. Gerber, K. K. Ramakrishnan, S. Sen, and O. Spatscheck. Over the Top Video: The Gorilla in Cellular Networks. In IMC, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. J. Erman and K. Ramakrishnan. Understanding the Super-sized Traffic of the Super Bowl. In IMC, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. B. Ford. Unmanaged Internet Protocol: taming the edge network management crisis. arXiv preprint, 2006.Google ScholarGoogle Scholar
  18. B. Heller, R. Sherwood, and N. McKeown. The Controller Placement Problem. SIGCOMM CCR, pages 473--478, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. Handley, and H. Tokuda. Is it still possible to extend TCP? In IMC, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. J. Hwang, K. Ramakrishnan, and T. Wood. NetVM: high performance and flexible networking using virtualization on commodity platforms. In NSDI, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and R. L. Braynard. Networking Named Content. In CoNEXT, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat. B4: experience with a globally-deployed software defined wan. In SIGCOMM, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, et al. Onix: A Distributed Control Platform for Large-scale Production Networks. In OSDI, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim, S. Shenker, and I. Stoica. A data-oriented (and beyond) network architecture. SIGCOMM CCR, pages 181--192, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann. Logically centralized?: state distribution trade-offs in software defined networks. In HotSDN, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. R. Mahajan, N. Spring, D. Wetherall, and T. Anderson. Inferring link weights using end-to-end measurements. In IMW, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and J. Turner. OpenFlow: Enabling Innovation in Campus Networks. SIGCOMM CCR, pages 69--74, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and J. Turner. Openflow: enabling innovation in campus networks. SIGCOMM CCR, pages 69--74, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. N. B. Melazzi, A. Detti, G. Mazza, G. Morabito, S. Salsano, and L. Veltri. An openflow-based testbed for information centric networking. In FutureNetw, 2012.Google ScholarGoogle Scholar
  30. R. Moskowitz and P. Nikander. Host Identity Protocol (HIP) Architecture. In IETF, RFC, number 4423, 2006.Google ScholarGoogle Scholar
  31. A. Myles, D. B. Johnson, and C. Perkins. Mobile host protocol supporting route optimization and authentication. JSAC, pages 839--849, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. P. Pan, G. Swallow, A. Atlas, et al. Fast reroute extensions to RSVP-TE for LSP tunnels. In IETF, RFC, number 4090, 2005.Google ScholarGoogle Scholar
  33. Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu. SIMPLE-fying middlebox policy enforcement using SDN. In SIGCOMM, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. R. Ravindran, X. Liu, A. Chakraborti, X. Zhang, and G. Wang. Towards software defined ICN based edge-cloud services. In CloudNet, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  35. J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and V. Sekar. Making middleboxes someone else's problem: network processing as a cloud service. In SIGCOMM, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. W. So, A. Narayanan, and D. Oran. Named data networking on a router: fast and dos-resistant forwarding with hash tables. In ANCS, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Stoica, Adkins, Ratnasamy, Shenker, Surana, and Zhuang. Internet Indirection Infrastructure. In SIGCOMM, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. M. Vahlenkamp, F. Schneider, D. Kutscher, and J. Seedorf. Enabling Information Centric Networking in IP Networks Using SDN. In SDN4FNS, 2013.Google ScholarGoogle Scholar
  39. M. Walfish and H. Balakrishnan. Untangling the Web from DNS. In NSDI, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. M. Walfish, J. Stribling, M. N. Krohn, H. Balakrishnan, R. Morris, and S. Shenker. Middleboxes No Longer Considered Harmful. In OSDI, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. L. Wang, A. Hoque, C. Yi, A. Alyyan, and B. Zhang. Ospfn: An ospf based routing protocol for named data networking. Tech. Rep, 2012.Google ScholarGoogle Scholar
  42. Y. Wang, Y. Zu, T. Zhang, K. Peng, Q. Dong, B. Liu, W. Meng, H. Dai, X. Tian, Z. Xu, et al. Wire speed name lookup: A gpu-based approach. In NSDI, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. M. Yu, J. Rexford, M. J. Freedman, and J. Wang. Scalable Flow-based Networking with DIFANE. In SIGCOMM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. D. Thornton, D. K. Smetters, B. Zhang, G. Tsudik, D. Massey, C. Papadopoulos, et al. Named data networking (ndn) project. Relatório Técnico NDN-0001, Xerox Palo Alto Research Center-PARC, 2010.Google ScholarGoogle Scholar
  45. Y. Zhang, N. Beheshti, L. Beliveau, G. Lefebvre, R. Manghirmalani, R. Mishra, R. Patney, R. Subrahmaniam, M. Shirazipour, C. Truchan, and M. Tatipamula. StEERING: A Software-Defined Networking for Inline Service Chaining. In ICNP, 2013.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Exploiting ICN for flexible management of software-defined networks

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      ACM-ICN '14: Proceedings of the 1st ACM Conference on Information-Centric Networking
      September 2014
      224 pages
      ISBN:9781450332064
      DOI:10.1145/2660129

      Copyright © 2014 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 24 September 2014

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      ACM-ICN '14 Paper Acceptance Rate17of97submissions,18%Overall Acceptance Rate133of482submissions,28%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader