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Abstract
Java programmers are faced with numerous choices in man-
aging concurrent execution on multicore platforms. These
choices often have different trade-offs (e.g., performance,
scalability, and correctness guarantees). This paper analyzes
an additional dimension, energy consumption. It presents
an empirical study aiming to illuminate the relationship be-
tween the choices and settings of thread management con-
structs and energy consumption. We consider three impor-
tant thread management constructs in concurrent program-
ming: explicit thread creation, fixed-size thread pooling, and
work stealing. We further shed light on the energy/perfor-
mance trade-off of three “tuning knobs” of these constructs:
the number of threads, the task division strategy, and the
characteristics of processed data. Through an extensive ex-
perimental space exploration over real-world Java programs,
we produce a list of findings about the energy behaviors of
concurrent programs, which are not always obvious. The
study serves as a first step toward improving energy effi-
ciency of concurrent programs on parallel architectures.

Categories and Subject Descriptors D.1.3 [Concurrent
Programming]: Parallel programming; C.4 [Performance
of Systems]: Design Studies

General Terms Performance and Measurement

Keywords Energy Consumption, Performance, Thread Man-
agement, Multi-threaded Programming, Java

1. Introduction
IT energy consumption keeps rising steeply in spite of ad-
vances in many areas [2], and energy-efficient solutions are
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highly sought after across the compute stack. Among them,
those on hardware/architecture [14–16, 19, 35, 37], oper-
ating systems [10, 25, 32, 41], and runtime systems [7,
33, 40] are more established. A number of solutions from
higher levels of the compute stack — such as program anal-
ysis [4, 13], programming models [3, 6, 18, 34, 36], and ap-
plications [31, 42] — are also proposed in recent years. A
higher-level study is often endowed with a broader applica-
tion space. For example, programming model solutions can
bring energy-aware programmers into energy optimization.
Despite their promise, few language-level or application-
level energy-efficient solutions address concurrent software
running on parallel architectures [4, 9, 33, 39]. This is unfor-
tunate for at least two reasons: (1) thanks to the proliferation
of multicore CPUs, concurrent programming is a standard
practice in modern software engineering [38]; (2) a CPU
with more cores (say 32) often consumes more power than
one with fewer cores (say 1 or 2). Energy optimization over
programs on such platforms has the potential to yield larger
savings, but may also face more challenges [15, 16].

We believe a first step to optimize energy consumption of
concurrent programs is to gain a comprehensive understand-
ing of their energy behaviors. This paper presents an empir-
ical study to illuminate and understand energy behaviors of
Java concurrent programs on multicore architectures. In par-
ticular, our study is unique in its focus on how programmer
decisions — the choices and settings of thread management
constructs — may impact energy consumption and its close
relative, performance. Our research is motivated by the fol-
lowing questions:

• RQ1. Do alternative thread management constructs have
different impacts on energy consumption?

• RQ2. What is the relationship between the number of
threads and energy consumption?

• RQ3. What is the relationship between task division
strategies and energy consumption?

• RQ4. What is the relationship between data volume/ac-
cess and energy consumption?



To answer RQ1, we select three thread management con-
structs influential in concurrent language design:

• Explicit threading (“the Thread style”): programmers
manually map logically independent units of work to
threads, i.e., the scheduling unit of the virtual machine
and/or the underlying operating system. Explicit thread-
ing is the most widely used approach in Java multi-
threaded programming [38].

• Thread pooling (“the Executor style”): programmers cre-
ate a pool of threads — often fixed in size — and further
submit logically independent units of work to the thread
pool. The relationship between threads and the units of
work is often 1:n. Threads select and execute submitted
units of work from a centralized buffer managed by the
language runtime. In Java, this mechanism is known as
executors and is part of the java.util.concurrent li-
brary.

• Work stealing (“the ForkJoin style”): similar to thread
pooling, programmers also create a pool of threads and
submit logically independent units of work to the pool.
What is unique to work stealing is that each thread main-
tains its own buffer of units of work. When one such
buffer becomes empty, its maintaining thread may “steal”
work from other threads. Its incarnation in Java is the
ForkJoin framework [22].

Given these constructs, our investigation is further aimed
at understanding how their settings —“tuning knobs” of con-
current programming for programmers — may impact en-
ergy consumption. Among them, the number of threads and
the size of data are two classic knobs, addressing the dual
control vs. data aspects of concurrency. Their respective im-
pacts on energy consumption are focuses of our study. Tasks,
i.e., logically independent units of work, have an intimate
relationship with both. Just as the Executor and ForkJoin
styles indicate, the ratio between the number of tasks and the
number of threads is a design consideration of concurrent
programmers. When the number of tasks increases while
the size of data remains the same, each task will process a
smaller “slice” of data, de facto tuning task granularity. We
call the programmer job of dividing work to achieve desir-
able task granularity task division. The impact of task divi-
sion strategies on energy consumption is another focus of
our study.

Our study produces a list of findings, many of which are
not obvious. We summarize them in Section 5, at the end of
each RQ’s discussion. We now highlight two of them.

First, our study reveals the context-dependent nature of
the energy behaviors of thread management constructs. Each
thread management construct has its own “15 minutes of
fame.” Despite the highly complex landscape, some patterns
do seem to recur. For example, as the number of threads
for running a concurrent program continues to increase, we
observe its energy consumption often increases first, and

then decreases later, a phenomenon we term the Λ curve.
The shape of the curve differs significantly from the one that
describes performance (execution time).

Second, our experiments further demonstrate that “faster”
is not a synonym with “greener” for concurrent programs,
and performance as an indicator to estimate energy con-
sumption is unreliable at best — incorrect in most cases
— for multi-threaded Java programs. We observed that a
(faster) multi-threaded program execution generally does not
consume less energy. In fact, the opposite is often true:
the sequential variants of the benchmarks (i.e., executing
a multi-threaded program with one thread) often exhibit
the lowest energy consumption. That being said, the (ef-
fective) use of multi-threading does have its benefit in pro-
moting energy efficiency: except for some embarrassingly
serial benchmarks, multi-threading often achieves the best
trade-off between energy consumption and performance. For
example, one benchmark achieved a speedup of 9.5x when
running with 32 threads, while its energy consumption only
grew 1.97x.

Throughout our exploration, a recurring theme is to illu-
minate the intricate relationship between energy consump-
tion and performance. There exists a rich literature on this
topic [4, 6, 15, 16, 33, 34]. We enrich existing work by of-
fering a programming-level perspective.

This paper makes the following contributions:

1. It describes an empirical study — the first of its kind
to the best of our knowledge — to correlate energy be-
haviors of concurrent programs with thread management
constructs and their knobs.

2. It conducts an extensive experimental exploration that
involves a combination of factors, ranging from thread
management constructs, the number of threads, task di-
vision strategies, task granularity choices, data sizes, and
data access characteristics. The exploration carves out a
landscape that involves thousands of distinct points in the
experiment space. In addition, the paper describes a pre-
liminary study on the stability and portability of our re-
sults under different settings of heap size, garbage collec-
tion, just-in-time compilation, and platforms.

3. It offers insights into energy behaviors of real-world con-
current Java programs, with a detailed list of often non-
obvious findings.

2. Related Work
Studying energy efficiency of concurrent programs at the
application/language level is an emerging direction. Most
of the existing work concentrates on energy behaviors in
the presence of synchronization. Under this backdrop, our
work is unique in its focus on the impact of programming
models for managing thread execution and program design
choices on energy consumption. Park et al. [28] developed
several synchronization-aware runtime techniques to bal-



ance the trade-off between energy and performance. Gau-
tham et al. [9] studied the relative energy efficiency of syn-
chronization implementation techniques (such as spin locks
and transactions). A recent short paper [23] called for en-
ergy management based on different synchronization pat-
terns, a concrete instance of which based on futures has been
formally defined [24]. Trefethen and Thiyagalingam [39]
surveyed energy-aware software, including multi-threaded
programs with different workload settings. Bartenstein and
Liu [4] designed a data-centric approach to improve en-
ergy efficiency for multi-threaded stream programs. Ribic
and Liu [33] designed an algorithm to improve the energy
efficiency of the work-stealing runtime of Intel Cilk Plus
through managing the relative speed of threads. Pinto and
Castor [29] recently conducted a preliminary study, paving
the way for the extended study we present here.

There are many approaches for energy management of
multi-threaded programs at the architecture- and OS-levels.
Examples in the former category include investigating the
impact of Dynamic Voltage and Frequency Scaling on multi-
core architectures [16], meeting power budget based on
hardware performance counters [15], and leveraging hard-
ware heterogeneity [19] and processor topology [35]. Ex-
amples in the latter include studying the impact of en-
ergy consumption based on workloads [10], thread sched-
ules [25, 41], and thread migration [32]. Our work and re-
lated work cited here are complementary. Together, they
attempt to understand energy behaviors of multi-threaded
programs through the perspectives of different levels of the
compute stack.

More broadly, there is a growing interest in understanding
and managing energy consumption from software-centric
approaches. Tiwari et al. [37] correlated energy consump-
tion with CPU instructions. Vijaykrishnan et al. [40] and
Farkas et al. [7] performed two early studies on the energy
consumption of the JVM. More recently, Hao et al. [13]
designed a dynamic analysis to estimate energy consump-
tion of Android bytecode. They also observed that there
is no strong correlation between performance and energy
consumption. Within the programming language commu-
nity, it is an active area of research to design energy-aware
programming languages, with examples such as Eon [36],
Green [3], EnerJ [34], Energy Types [6], and LAB [18].
None of these software-centric energy management ap-
proaches focuses on multi-threaded programs.

Performance analysis of multi-threaded Java programs
has a long history, leading to a rich literature we cannot cite
in full. In recent years, there are numerous results based on
the DaCapo benchmark suite [5] for this purpose. Kalibera
et al. [17] conducted a comprehensive study on the bench-
marks in Dacapo itself.

Lea [22] described the work stealing algorithm imple-
mented by Java’s ForkJoin framework. Work stealing was
popularized by the Cilk language [8], and there is a growing

class Main {

int coords[DATAN];

void main() {

for(int i=0; i<THREADN; i++)

(new Bucket()).start();

}

class Bucket extends Thread {

static int d = 0;

public void run() {

int start;

while(d<DATAN){

synchronized (this) {

if (d >= DATAN) return;

start=d; d+=DATAN/TASKN;

}

dowork(start, DATAN/TASKN);

}

}

public void dowork(int start, int size) {

for (int j=start; j<DATAN && size>0; j++,

size--)

render(coords[j]);

}

}

}

Figure 1. Concurrent Programming in Thread Style

class Main {

int coords[DATAN];

void main() {

ExecutorService es = Executors.

newFixedThreadPool(THREADN);

for (int i = 0; i < TASKN; i++)

es.execute(new Bucket(i));

}

class Bucket extends Thread {

...

int t;

Bucket(int t) {this.t = t;}

public void run()

{dowork(t * DATAN/TASKN, DATAN/TASKN); }

}

}

Figure 2. Concurrent Programming in Executor Style

interest in designing multi-threaded language runtimes with
work-stealing thread management [12, 20, 33].

Earlier versions of Java use green threads [27]. The term
is unrelated to energy consumption; it refers to VM-managed
threads. After Java 1.3, green threads have been replaced
by native threads, where programmer-created threads are
directly mapped to OS threads.



class Main {

int coords[DATAN];

void main() {

(new ForkJoinPool(THREADN)).submit(new

Bucket(0));

}

class Bucket extends RecursiveAction {

...

int t;

Bucket(int t) {this.t = t;}

public void compute() {

if (t < TASKN) {

(new Bucket(t+1)).fork();

dowork(t * DATAN/TASKN, DATAN/TASKN);

}

}

}

}

Figure 3. Concurrent Programming in Task-Centric
ForkJoin Style

class Main {

int coords[DATAN];

void main() {

(new ForkJoinPool(THREADN))

.submit(new Bucket(0, DATAN));

}

class Bucket extends RecursiveAction {

...

int start, size;

Bucket(int start, int size) {

this.start = start; this.size = size;

}

public void compute() {

if(size < SEQUENTIAL_CUTOFF) dowork(start,

size);

else {

int half = size / 2;

new Bucket(start, half).fork();

new Bucket(start + half, size - half).fork

();

}

}

}

}

Figure 4. Concurrent Programming in Data-Centric
ForkJoin Style

3. Programming Patterns for Thread
Management

We use an (overly) simplified version of the sunflow bench-
mark [5] to illustrate the distinct programming patterns of
the three thread management constructs. Figure 1 and Fig-
ure 2 demonstrate the Thread style and the Executor style,
respectively. Figure 3 and Figure 4 both demonstrate the
ForkJoin style, with a difference we will explain shortly. The

three parameters related to RQ2-RQ4 are THREADN for the
number of threads (RQ2), and TASKN for the number of tasks
(RQ3), and DATAN for the data size (RQ4), respectively.

The sunflow benchmark centers around a rendering al-
gorithm (ray tracing) where coordinates are stored in array
coords and method render takes one coordinate to ren-
der. The rendering logic is encompassed in a method called
dowork. The coordinates to be processed by a dowork invo-
cation are a range of size number of consecutive elements
beginning at index start. For brevity, the code snippets here
omit the body of the render method, and further omit pro-
gram logic unrelated to our discussion here, such as post-
rendering processing (typically performed through placing a
barrier at the end of the main function).

In the Thread style, the program explicitly bootstraps
THREADN threads, through messaging the start method of
a Bucket object, whose class is a subclass of the JDK
Thread class. The run method of the Bucket class (an in-
ner class of Main in the example) is executed by each boot-
strapped thread. Here, each thread continuously processes
tasks through a busy while loop, and each task is defined
as executing an instance of dowork. Since there are TASKN

tasks, each task will work on a “slice” of coordinates of size
DATAN/TASKN. A global counter d is used to track the size
of data that has been processed, and the counter is accessed
from within a synchronized block.

In the Executor style, THREADN threads are created in
a fixed-size thread pool, managed by an instance of the
ExecutorService class of the JDK. The inner class Bucket
now only encompasses a task and its run method only ex-
ecutes the dowork method (definition identical to that in
Figure 1) once. Each task is identified by a counter t. In the
main method, TASKN tasks will be managed by the pool
of THREADN threads. The submission for management is
achieved through the use of the execute method of the
ExecutorService object.

The ForkJoin style is similar to the Executor style in that
a fix-sized pool – the ForkJoinPool object – will man-
age THREADN threads. Unlike Executor however, ForkJoin
adopts a work stealing algorithm to manage threads. Instead
of submitting all tasks to a centralized service such as in Ex-
ecutor, each thread under a work-stealing scheduler main-
tains its own localized queue-like structure, called a deque,
for tasks. A thread running out of tasks (a thief ) will “steal”
a task from the deque of another randomly selected thread
(a victim). The runtime behavior of work stealing is defined
through a classic yet sophisticated algorithm, with subtleties
detailed in prior work [8, 22].

From a programming perspective, the thread pool for
work stealing is initially only submit’ed with one task, an
object subclassed from the JDK class RecursiveAction. A
thread in the pool will pick up the task, i.e., run its compute
method. The compute method may further fork new tasks
“on the go,” where forking can be viewed as placing the task



on the thread’s own deque. Such a task in turn may either
be picked up by the current thread, or be stolen and picked
up by other threads in the pool. Both Figure 3 and Figure 4
follow this common pattern.

Recursively dividing work into smaller tasks is a distinct
programming pattern for programs written in work-stealing
languages or language frameworks. As it turns out, differ-
ent task division strategies exist, with Fig. 3 highlighting a
task-centric task division strategy, and Fig. 4 demonstrating
a data-centric task division strategy. In the task-centric ap-
proach, we directly fix the number of tasks (through TASKN),
and keep a counter to track how many tasks have been forked
so far. In contrast, the data-centric approach sets a sequential
cutoff threshold to data, i.e., the size of data a task will work
on, instead of explicitly setting and tracking the number of
tasks. The two strategies lead to different programming pat-
terns, and the choice is largely dependent on what is consid-
ered more natural to specific programs. It however should be
pointed out that they are indeed two sides of the same coin
for task granularity: given the overall data, fixing the num-
ber of tasks will implicitly set the data size per task, whereas
fixing (sequential cutoff) data size will implicitly determine
the number of tasks.

In the rest of the paper, we manually refactor each bench-
mark into the four programming patterns. Figures 1, 2, 3,
and 4 serve as examples of what we view as “comparable”
programs in our benchmarking process. We routinely fix two
of the three parameters — THREADN, DATAN, TASKN (or its
counterpart of sequential cutoff threshold) — and observe
the impact on energy/performance when the 3rd parameter
varies. For example, when THREADN and DATAN remain the
same but TASKN increases, it is aligned with our intuition that
tasks become more “fine-grained.”

4. Experiment Setup
In this section we describe the benchmarks that we analyzed,
the infrastructure and the methodology that we used to per-
form the experiments.

4.1 Benchmarks
We use a variety of benchmarks for evaluation, listed as
follows. Benchmarks 1-3 are from a Debian-based lan-
guage benchmark suite 1. Benchmark 4 was developed by
us. Benchmark 5 is a modification of a program originally
developed for a work-stealing language system [20]. The
rest of the benchmarks are from the well-known DaCapo
suite [5].

1. knucleotide: This benchmark takes a DNA sequence,
and counts the occurrences and their frequencies of nu-
cleotide patterns. The memory-intensive benchmark em-
ploys string manipulation intensively. There is no syn-

1 http://benchmarksgame.alioth.debian.org

chronization point in the program, but one atomic vari-
able is used.

2. mandelbrot: A mandelbrot is a mathematical set of
points whose boundary is a distinctive and easily rec-
ognizable two-dimensional fractal shape. Mandelbrot set
images are created by sampling complex numbers and
determining for each one whether the result tends toward
infinity when a particular mathematical operation is it-
erated on it. According to its website, this benchmark
spends 99% of the time using CPU, and uses I/O only
to print the results. There is no synchronization point in
the program, but one atomic variable is used.

3. spectralnorm: The spectral norm is the maximum sin-
gular value of a matrix. The benchmark is CPU-intensive,
and scales up well in multicore machines. This bench-
mark synchronizes threads using a barrier, and uses one
atomic variable.

4. largestimage: This benchmark performs a recursive
search into the file system, looking for image files. Dur-
ing traversal, it keeps track of the number of image files
it encountered and the largest among them. This bench-
mark has two synchronization points and is strongly I/O-
bound.

5. n-queens: This benchmark is the classic N-queens
chessboard game, placing N chess queens on an NxN
chessboard so that no two queens attack each other. It is
a computationally intensive, CPU-bound problem. This
benchmark does not have synchronization points, but
uses one atomic variable.

6. sunflow: renders a set of images using ray tracing2.

7. xalan: transforms XML documents into HTML.

8. h2: executes a number of transactions against a model of
a banking application, in a style similar to JDBCbench.

9. tomcat: runs a set of queries against a Tomcat server
retrieving and verifying the resulting webpages.

We selected the benchmarks based on their diverse char-
acteristics. For instance, according to a recent study [17],
sunflow scales well when the number of CPU cores in-
creases, h2 scales rather poorly, and xalan is the middle-
of-the-road benchmark in terms of scalability. Benchmark
largestimage is I/O-intensive, knucleotide is memory-
intensive, and benchmarks mandelbrot, n-queens, and
spectralnorm are CPU-intensive.

For the benchmarks, DATAN represents the number of
patterns for knucleotide, the size of the vector for both
mandelbrot and spectralnorm, the size of a matrix for
n-queens, the number of directories for largestimage,
the size of the image for sunflow, the number of converted

2 The description for the DaCapo benchmarks was taken directly from the
DaCapo website: http://www.dacapobench.org/



files for xalan, and the number of database transactions for
h2.

4.2 Experimental Environment
Unless noted otherwise, all experiments were conducted on
a machine with 2×16-core AMD Opteron 6378 processors
(Piledriver microarchitecture) running Debian 3.2.46-1 x86-
64 Linux (kernel 3.2.0-4-amd64) and 64GB of DDR3 1600
memory and Oracle HotSpot 64-Bit server VM, JDK version
1.7.0 11, build 21. All experiments were performed with no
other load on the OS. We conform to the default settings of
both the OS and the JVM. Several default settings are rele-
vant to this context: (1) the power management of Linux is
the default ondemand governor, which dynamically adjusts
CPU core frequencies based on system workloads. (2) For
the JVM, the parallel garbage collector is used, and just-in-
time (JIT) compilation is enabled. The initial heap size and
maximum heap size are set to be 1GB and 16GB respec-
tively. We run each benchmark 10 times within the same
JVM; this is implemented by a top-level 10-iteration loop
over each benchmark. The reported data is the average of
the last 3 runs. We justify this decision in Section 6.

Energy consumption is measured through current meters
over power supply lines to the CPU module. Data is con-
verted through an NI DAQ and collected by NI LabVIEW
SignalExpress with 100 samples per second and the unit
of the current sample is deca-ampere (10 ampere). Since
the supply voltage is stable at 12V, energy consumption
is computed as the sum of current samples multiplied by
12×0.01×10. We measured the “base” power consumption
of the OS when there is no JVM (or other applications) run-
ning. The reported results are the measured results modulo
the “base” energy consumption.

5. Study Results
In this section, we report the results of our experiments. Re-
sults for RQ1 and RQ2 are presented in Section 5.1, which
describes the impact of different thread management con-
structs in the presence of varying numbers of threads. In
Section 5.2 we attempt to answer RQ3 by investigating the
impact of different task division strategies. Finally, in Sec-
tion 5.3 we present answers to RQ4 by exploring different
data characteristics.

5.1 Energy Behaviors with Alternative Programming
Abstractions and Varying Numbers of Threads

In this group of experiments, we fix the number of tasks and
the size of the data, and study how variations on the number
of threads and the choice of different thread management
constructs impact energy consumption. The results of our
experiments are presented in Figure 5. Here, the odd rows
are energy consumption results, whereas the even rows are
the corresponding performance results.

The Λ Curve. One interesting observation throughout our
study is that energy consumption typically increases as the
number of threads increases, and then gradually decreases as
the number of threads approaches the number of CPU cores.
In the energy consumption figures, the curves typically dis-
play a Λ shape, which is why we term it Λ curve. Nearly all
benchmarks display the Λ curve.

We believe the Λ curve results from a combination of
multicore processor characteristics and program perfor-
mance traits. Under the default setting of the ondemand gov-
ernor, power management modules of multicore CPUs work
in an “adaptive” fashion: when a particular core stays idle,
the operating frequency of the core will be dynamically ad-
justed to a lower level. When a 32-core CPU is only loaded
with 4 threads for instance, a large number of cores will op-
erate on the lowest frequency (the specific number of cores is
likely to be slightly more than 4, because of the execution of
VM/OS threads). It is standard knowledge that power con-
sumption is reduced when the operating frequency is lower.
For that reason, a program running 4 threads is likely to con-
sume less power than one running 8 threads. This helps us
explain the / part of the Λ curve.

To see why energy consumption often decreases after the
initial increase, note that energy consumption, by definition,
is the multiplication of power and time. As more threads are
used, program execution time tends to shorten. The extent
of the drop — the \ part of the Λ curve — is determined
by the increase in performance (and thus decrease in time)
and the increase in power consumption. The greater the ratio
between speedup and increase in power, the steeper the \
part of the curve will be.

The specific shape details of the Λ curve, including the
“peaking” point and the slope of the increase/decrease, are
application-specific. Take sunflow and h2 (in the Thread
style) for example. Power consumption for the two bench-
marks is 8.54 W and 6.87 W on average, respectively, when
using 1 thread, and 88.05 W and 14.27 W when using 32
threads. Execution time is 17.74 and 9.92 seconds, respec-
tively, when using 1 thread, and 1.34 and 10.38 seconds
when using 32 threads. Since the power consumption for
sunflow increases about 10x and performance improves
13x, energy consumption in fact decreases. For h2 however
— a benchmark known to scale rather poorly as the number
of cores increases — power consumption increases 2.07x but
execution time also increases 1.04x, yielding 2.17x energy
consumption. Thus, in this extreme case, the \ part of the
curve does not exist.

Embarrassingly Parallel vs. Embarrassingly Serial. Our
selection of benchmarks range from “embarrassingly paral-
lel” ones ( sunflow, tomcat, spectralnorm, and n-queens),
to middle-of-the-road ones (xalan, knucleotide, and
mandelbrot), to “embarrassingly serial” ones (h2, and to
some extent largestimage)). The performance results of
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Figure 5. Energy/Performance with Alternative Programming Abstractions and Varying Numbers of Threads



four Dacapo benchmarks — Figure 5(d)(e)(f)(r) — are con-
sistent with recent studies (e.g., [17]).

We find the (more) embarrassingly parallel benchmarks
are likely to “peak” earlier on the Λ curve, i.e., reaching
the highest energy consumption with the smallest number of
threads. For example, sunflow’s Λ curve peaks at 4 threads,
whereas xalan peaks at 16. We think this is reasonable:
the speed-up of sunflow is almost 8x when the number
of threads increases from 1 to 8 (linear speedup), so the
reduction in execution time can quickly offset the increase
in power consumption early on. In comparison, xalan pro-
duces a 5x speedup with the same variation in threads and
its performance does not improve with more threads. Hence,
its Λ curve peaks later.

Faster 6= Greener. In most of our benchmarks, additional
threads would initially lead to improved performance; see
Figure 5(d)(e) for example. Following the / part of the Λ
curve however, the energy consumption increases as the
number of threads increases initially. Furthermore, for 6
of our 9 benchmarks, the lowest energy consumption was
achieved by the sequential (1 thread) version. Being “faster”
clearly has little correlation with being “greener” for concur-
rent programs on multicore architectures.

Moreover, since benchmarks “peak” at different parts of
the Λ curve, it is not possible to generalize that an improve-
ment in time could be seen as an improvement in energy, and
vice versa.

Which Programming Style Should I Use? As Figure 5
shows, it is possible to detect differences in the amount
of energy used when different concurrent programming ab-
stractions are employed. For some benchmarks, this differ-
ence is small, e.g., xalan in Figure 5(b)(e). However, the
difference is more noticeable in others. Every programming
abstraction may have its “15 minutes of fame.” In one config-
uration of sunflow, ForkJoin outperforms Thread and Ex-
ecutor by reducing energy consumption by 30%, as shown
in Figure 5(a). In one configuration of h2 however, ForkJoin
underperforms Thread and Executor by increasing energy
consumption by 50%, as shown in in Figure 5(c). Our exper-
iments do show that there are scenarios where one style is
more likely to outperform the others, which we summarize
now.

First, the Thread style performs well in I/O-bound (such
as largestimage) benchmarks. One possible explanation is
that in I/O-bound benchmarks, the instruction pipeline has
a higher likelihood to stall. In such a scenario, the Thread
style defers context switching and/or load balancing to the
OS, which appears to be efficient. The Executor style and
the ForkJoin style build an additional layer of thread man-
agement on top. Unfortunately, this higher layer of decision
making may disagree with the OS, missing some opportuni-
ties for context switching in the presence of long-latency I/O
operations.

Second, the energy consumption of ForkJoin-style pro-
gramming is sensitive to the degree of parallelism latent
in the benchmarks. It outperforms the other two strategies
when the benchmarks are embarrassingly parallel (e.g., Fig-
ures 5(a)(h)(m)(o)), but underperforms the other two strate-
gies in the presence of more serial benchmarks, such as h2.
We believe this can be explained through the nature of the
work stealing algorithm: it excels through balancing the de-
ques of individual threads. For benchmarks involving signif-
icant serial portions, synchronization (such as a barrier) is
often used during the execution of a task. The work stealing
algorithm is oblivious to such intra-task synchronizations,
preventing tasks from being stolen and thus suppressing load
balancing. In other words, the impacts of stealing a task with
long synchronization delays and one without are clearly dif-
ferent, and the natural strength of work stealing in balanc-
ing tasks among threads is broken when long intra-task syn-
chronization delays are present. Along this line, the Execu-
tor style performs slightly better, but still not as efficiently
as the Thread style. One possible reason is that an Executor
needs to manage a queue of worker threads. Updates to the
queue are protected from clients by a lock, thus increasing
synchronization costs when a new task is submitted. Such
overhead does not exist in the Thread style.

Energy-Performance Trade-offs. An energy-related ques-
tion arises when we move from single-threaded program-
ming to multi-threaded programming, or from 16 threads
to 32 threads: what is the relationship between energy con-
sumption and performance? One well-known metric to eval-
uate the energy/performance trade-off is the Energy-Delay
Product (EDP): the product of energy consumption and exe-
cution time [21]. We compute the EDP for the benchmarks,
with results presented in Fig. 6, where a smaller EDP value
indicates the more favorable trade-off.

We observed that a parallel execution is generally more
favorable for energy-performance trade-offs than its single-
threaded counterpart. This is particularly true for embar-
rassingly parallel programs: the EDP for sunflow with 32
threads is only 5.8% of its single-threaded execution. The
degree of improvement on EDP appears to be in sync with
the potential of parallelism in applications, and for specific
benchmarks, increasing the number of threads is most likely
not aligned with the improvement of EDP. For instance,
when the number of threads increases for xalan from 8 to
16, EDP for all three programming constructs deteriorates,
since there is very little performance improvement and an
average growth of more than 30% in energy consumption.
The most unfortunate case among our benchmarks is per-
haps h2. As the number of threads increases, the benchmark
produces no gain in performance, but its energy consump-
tion triples. As a result, EDP degrades as we move from se-
quential to parallel execution.

Overpopulating Cores with Threads. For the Thread style
of thread management, we have also constructed experi-



0
1

0
0

0
2

0
0

0
3

0
0

0

Number of Threads

E
D

P

Sunflow EDP

1 2 4 8 16 32 64 128

Thread

ForkJoin

Executors

0
5

0
1

0
0

2
0

0

Number of Threads

E
D

P

Xalan EDP

1 2 4 8 16 32 64 128

Thread

ForkJoin

Executors

0
5

0
0

1
5

0
0

Number of Threads

E
D

P

H2 EDP

1 2 4 8 16 32 64 128

Thread

ForkJoin

Executors

0
1

0
0

0
3

0
0

0

Number of Threads

E
D

P

Mandelbrot EDP

1 2 4 8 16 32 64 128

Thread

ForkJoin

Executors

0
2

0
0

0
0

4
0

0
0

0

Number of Threads
E

D
P

Spectralnorm EDP

1 2 4 8 16 32 64 128

Thread

ForkJoin

Executors

0
2

0
0

0
0

4
0

0
0

0

Number of Threads

E
D

P

LargestImage EDP

1 2 4 8 16 32 64 128

Thread

ForkJoin

Executors

0
1

0
0

0
0

0
2

5
0

0
0

0

Number of Threads

E
D

P

N−Queens EDP

1 2 4 8 16 32 64 128

Thread

ForkJoin

Executors

0
5

0
0

0
1

5
0

0
0

Number of Threads

E
D

P

K−Nucleotide EDP

1 2 4 8 16 32 64 128

Thread

ForkJoin

Executors

0
2

0
0

0
6

0
0

0

Number of Threads

E
D

P

Tomcat EDP

1 2 4 8 16 32 64 128

Figure 6. EDP (a smaller value is better)

ments where the number of threads goes beyond the num-
ber of cores. In all experiments, we did not notice significant
change in energy consumption. This suggests that the JVM
and the OS are well-versed in handling cases where threads
outnumber cores. Make no mistake: the number of context
switches does increase as the cores become more overpopu-
lated with threads. For instance, in the sunflow benchmark,
the number of context switches increases 3.57x when the
number of threads varies from 32 to 128 threads, as Figure 7
shows.

We choose not to perform experiments over the cases
where there are more threads than CPU cores for Executor
and ForkJoin styles. The “comparable” (Section 3) imple-
mentation would create a thread pool that outnumbers the
number of cores. We do not believe that is the intended use
for these thread management constructs.
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RQ1 Summary: Different thread management con-
structs have different impacts on energy consumption.
For I/O-bound programs, the Thread style incurs the
least energy consumption, whereas the ForkJoin style
has the most. For embarrassingly parallel benchmarks,
the opposite holds.

RQ2 Summary: The relationship between energy
consumption and the number of threads often forms
the Λ curve. Being faster is not synonymous with being
greener. Sequential execution often leads to the least
energy consumption, whereas parallel execution leads
to improved energy/performance trade-off for non-
embarassingly-serial programs.

5.2 Energy Behaviors and Task Division Strategies
In this section, we fix the number of threads and the size of
data, and study how the variations on the number of tasks
have effects on energy consumption. To thoroughly explore
the experimental space, we further refine our benchmarks
into two versions: a task-centric division strategy and a data-
centric division strategy as we first introduced in Section 3.

Task Granularity with Task-Centric Division. In this
style, we divide the work based on TASKN. Figure 8 demon-
strates the effect of task granularity on xalan benchmark 3.
We observed a similar energy consumption behavior in the

3 Throughout the rest of the paper, we select a subset of benchmarking
results to illustrate ideas. Additional graphs can be found in the technical
report [30].



other benchmarks. Here the data exhibit remarkable uni-
formity: the number of tasks submitted/executed as logi-
cally independent units of work has little impact on energy
consumption, independently of the thread management con-
struct.
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Figure 8. Energy/Performance and Task-Centric Division

At first glance, the results may be disappointingly “bor-
ing.” We believe, however, that no news is news. The data
reveal that task granularity matters little to energy consump-
tion of concurrent programs. For instance, we have at a point
increased the number of tasks to 1024, for a benchmark
whose overall DATAN is 2048. In other words, every task
only takes 2 pieces of data. In this case, no noticeable en-
ergy consumption increase was observed. Its version in the
Executor style submits 1024 tasks to the ExecutorService
and its version in the ForkJoin style recursively creates 1024
RecursiveAction objects. Though such programming pat-
terns may appear to be “extreme,” our experiments show
they place little burden on energy consumption.

Task Granularity with Data-Centric Division. Under a
data-centric approach, ForkJoin can also be seen as a divide-
and-conquer algorithm, where in each recursive call new
tasks are spawned until a certain threshold is reached. Us-
ing this approach, Figure 9 shows the energy/performance
behavior of different sequential threshold configurations for
the sunflow benchmark, where each recursive call spawns
two tasks to divide work into halves. We choose not to per-
form experiments for the Thread and Executor styles be-
cause their programming patterns do not naturally fall into
the divide-and-conquer style as ForkJoin does.

There are three observations from this set of experiments.
First, energy consumption and execution time both increase
when the sequential threshold changes from 135 to 405, a
2.66x increase in energy consumption and a 2.64x increase
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Figure 9. Energy/Performance and Data-Centric Division

in execution time. In this example, the benchmark operates
over an array of 2048 positions. Thus, when we use 405 as
the sequential cutoff threshold, the benchmark creates less
than 10 tasks and operates on at most as many CPU cores.
With the majority of the cores idle, the benchmark is not able
to take advantage of the multiprocessors. As the sequential
threshold reduces to 135, the program operates on more
cores. As the Λ curve suggests, both the energy consumption
and the execution time reduce for sunflow.

Second, the overhead of scheduling a high number of
tasks does not seem to impact energy consumption. This
phenomenon appears to recur in all benchmarks, and it is
consistent with our findings for the task-centric experiments.

Third, energy consumption and execution time do not al-
ways increase in sync. For example, there is a small energy
consumption variation (7.85%) when the sequential thresh-
old changes from 45 to 135. Performance, on the other hand,
degrades 23.8%. One possible reason is that, when tasks be-
come more coarse-grained, it is less likely that a ForkJoin
thief will steal a task, because the total number of available
tasks decreases. Thus, after few unsuccessful attempts, the
processor goes idle and the average power consumption de-
creases.

Asymmetric Workload. So far, we have created tasks
where the data is divided uniformly. Another important char-
acteristic to take into consideration is the use of asymmetric
workloads. With different amounts of work, some ForkJoin
workers will finish their work faster than others. Hence, the
likelihood of steals may increase. Figure 10 shows the aver-
age number of steals per task granularity in the presence of
symmetric load, a random asymmetric work division, and an
80-20 asymmetric work division.
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The figure shows that the number of steals is strongly
correlated to the symmetric vs. asymmetric nature of task
workloads. Further, the number of steals is also correlated to
task granularity: the smaller the tasks, the greater the number
of steals. We observed an average energy savings of 3.26%
using asymmetric workloads. We have experienced similar
results in CPU-bound benchmarks, as Figure 11 shows.
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Figure 11. Energy/Performance with Asymmetric Work-
load

The Width of Forking. The ForkJoin-style can be config-
ured to divide the work into n desirable tasks, instead of two
per recursive call, which we term the width of forking. We
have analyzed 4 different forking widths. For the sunflow

benchmark in Figure 12, we observed a negligible difference
of energy consumption from 2 to 4 forks, and from 4 to
8 forks per recursive call (about 0.96% and 1.21% respec-
tively). From 8 forks to 16 forks, however, we observed an
increase of 5.78% over the total energy consumption, and a
similar increase in the execution time of 5.67%. This result is
consistent with the other benchmarks. The experiment here
suggests that excessive forking width can lead to increased
energy consumption.
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Figure 12. Energy/Performance and Forking Width

RQ3 Summary: for task-centric division, the granular-
ity of tasks appears to matter little to energy consump-
tion. For data-centric division, asymmetric workloads in
ForkJoin are more energy-friendly, and excessive fork-
ing width can lead to increased energy consumption.

5.3 Energy Behaviors and Data
We now focus on RQ4, studying the impact of data — its
size and access patterns — on program energy behaviors.
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Figure 13. Energy/Performance and Data Size

Data Size. Fixing the number of threads and the number
of tasks, we now study how the variations on data size have
effect on energy consumption. Figure 13 shows the energy
behavior for the xalan benchmark, where the analogous



DATAN value (as used in examples Fig. 1/2/3/4) represents
the number of XML files to be converted. THREADN and
TASKN were fixed at 32 and 256, respectively.

As predicted, energy consumption increases when a
larger number of files are processed. Observe however, the
increase in energy consumption is not necessarily linear to
data size. Generally speaking, the precise relationship is
application-specific: it depends on the algorithm complex-
ity relative to the data size. In cases of data-parallel bench-
marks, one phenomenon we observe is that the curve is often
convex, especially for the part of the curve where the data
sizes are relatively small. Take xalan for instance. When
data size increases from 50 to 100, the energy consump-
tion and performance remain almost unchanged. We think
this has to do with the programming pattern itself. In data-
parallel programs, there is usually a barrier at the end of data
processing, and performance is determined by the slowest
processing thread. When overall data size is small, the ex-
ecution time of processing each data “slice” is also small.
Variations on processors and scheduling may contribute to
a larger proportion on the progress of individual threads,
and differences in data size may be masked. When data size
increases, the masking effect is reduced.

In xalan, the energy behaviors with the 3 thread man-
agement constructs are nearly identical, but there is a de-
tectable difference in performance for the three constructs,
with ForkJoin taking the least time and Executor taking the
most. Since energy is the accumulated effect of power over
time, this indicates ForkJoin is likely to have completed the
task faster with a higher power consumption. Work stealing
systems are most known for their ability for load balancing,
where CPU core idling is reduced, improving performance
while presenting fewer opportunities for cores to fall into
lower power modes. This phenomenon is reduced when data
size becomes larger, because data processing time would be
proportionally larger, reducing the relative effect of frequent
steals.

Data Sharing vs. Copying. We now study how memory-
intensive tasks may impact energy consumption. Many
ForkJoin benchmarks (in the style of data-centric division)
operate on an indexable data structure, with subtasks oper-
ating on partitions of this data structure. During recursion,
it is often necessary to split the data structure into smaller
pieces on which the newly forked tasks can work. One pos-
sible solution is to copy part of the data structure and use it
for the newly forked tasks. Given an array-based data struc-
ture, each recursive call in this scenario will create n new
arrays, where n is the width of forking. However, an alterna-
tive solution is to share this array, with newly forked tasks
operating on contiguous partitions of this data structure. In
all the experiments we have reported so far, sharing is the
default strategy for data use. In the next set of experiments,
we modify each benchmark to so that the forked tasks op-
erate on copies of the data structure, instead of working on
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Figure 14. Energy/Performance and Data Sharing Strate-
gies

in-place data. In Figure 14 we compare the two approaches
using the mandelbrot benchmark.

As the figure shows, we experienced an energy con-
sumption increase of 15.38% when copying is used. In
the meantime, performance degrades by 20.85%. In other
words, copying has severe impact on both energy and per-
formance. In cases where the newly forked tasks are unlikely
to lead to data races, this set of experiments demonstrate that
a ForkJoin programmer should use shared data structures as
much as possible. Furthermore, observe that copying has
a more severe impact on performance than energy. This is
indeed natural: when a long-latency main memory request
is issued, the issuing cores can often be reduced to a lower
frequency, and a lower level of power consumption. (Recall
again that energy is the multiplication of power and execu-
tion time.)

public void compute() {

...

Solver[] tasks = new Solver[size];

for (int i = 0; i < tasks.length; i++) {

int[] newElements = new int[depth + 1];

System.arraycopy(currentElements, 0,

newElements, 0, depth);

tasks[i] = new Solver(newElements);

tasks[i].fork();

}

...

for (int i = 0; i < tasks.length; i++) {

if(tasks[i] != null) tasks[i].join();

}

}

Figure 15. ForkJoin: Spreading Out Data Copying



public void compute() {

...

List<Solver> tasks = new ArrayList<>(size);

for (int i = 0; i < tasks.size(); i++) {

int[] newElements = new int[depth + 1];

System.arraycopy(currentElements, 0,

newElements, 0, depth);

tasks.add(new Solver(newElements));

}

...

invokeAll(tasks);

}

Figure 16. ForkJoin: Aggregating Data Copying

Data Locality. Next, we investigate the impact of data lo-
cality on energy consumption. We modify the (data copy-
ing flavor of the) n-queens benchmark into two versions:
Figure 15 and Figure 16. The two versions are functionally
identical. In the first version, the execution of a task follows
the sequence of ababababc where a is copying memory for
a subtask, b is forking the subtask, and c is computing the
current task. In the second version, the execution of a task
follows the sequence of aaaacbbbb4.

Which version should fare better? On the surface, the sec-
ond version indeed admits less parallelism on the execution
of the current task: it forks the subtasks only after the current
task has finished. Therefore, it cannot be executed in paral-
lel with any of the a steps or the c step. Our benchmark-
ing results on the other hand show the opposite: the second
version yields energy savings of 10.11% and a performance
improvement of 10.66%.

We hypothesize that data locality plays an important role.
Note that in the first version we interspersed data copying
with thread forking (together with other operations in a loop
iteration). Any of the latter operations may potentially pol-
lute the cache, increasing the chance of memory round-trips.
In the second version however, the same memory area is re-
peatedly requested, leading to better data locality.

To further strengthen our belief that data locality is the
main cause here, we also investigated the same two-version
approach, but using a data sharing strategy. There is no no-
ticeable difference in energy consumption and performance
for the two versions.

4 The invokeall method in the second version is part of the Java ForkJoin
API. It forks all tasks and then joins them all. Through inspecting its source
code, we find no “magic” that would otherwise skew the results.

RQ4 Summary: Data size has non-linear impact on en-
ergy consumption. In data-parallel programs, the curve
to demonstrate the relationship between data size (X-
axis) and energy consumption (Y-axis) is often convex.
Performance is closely related to energy consumption in
the presence of data size variations, but the two do not
follow identical trajectories. Significant data copying
leads to increased energy consumption, but its rela-
tive effect is often smaller than the performance loss it
imposes. Data locality plays an important role in the
energy consumption of multi-threaded programs.

6. Threats to Validity
In experimental systems research, a fundamental challenge
is the vast number of factors across the compute stack. For
instance, it is a valid question to ask whether different OS
scheduling policies [25, 41], different processor and inter-
connect layouts [19, 35], and different VLSI circuit de-
signs [1], have impact on results. They clearly all do. Our
study takes a route common in experimental programming
language research, by constructing experiments over repre-
sentative system software and hardware, and the results are
empirical by nature.

To take a step further, we seek to gain a preliminary
understanding of how variations in the underlying system
impact our results. In particular, we focus on configuration
variations of the language runtime. The primary goal is to
understand the stability and portability of our results.

Heap Size. Heap size settings are known to impact JVM
performance (e.g., [11]). Figure 17 shows the energy con-
sumption and performance under different settings of maxi-
mum heap sizes (to trigger GC) for sunflow; the rest of the
JVM settings are identical to those described in Section 4.
When maximum heap size is restricted to a very low level
– such as 20MB for sunflow – both energy consumption
and performance go higher significantly. We speculate the
additional overheads result from VM allocation and garbage
collection. Variations in energy consumption that stem from
heap size appear to be small if the maximum heap size is
higher. While examining this benchmark without setting a
fixed maximum heap size, we observed that its heap usage
reaches a peak of more than 50MB before GC is triggered.
Fixing the heap size at 20MB may have triggered signifi-
cantly more GC.
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Figure 17. Heap Size Effect (sunflow, 32 threads, 256
tasks, 256 as image data size)



Garbage Collection Strategy. To gain a preliminary under-
standing of how GC strategies may pose a threat to the va-
lidity of our results, we constructed experiments over 5 GC
options over Hotspot: (a) SerialGC: the stop-the-world se-
rial collector, (b) ParallelGC: the parallel collector, (c) Par-
allelOldGC: the parallel collector with data compression, (d)
ConcMarkSweepGC: concurrent mark sweep collector, and
(e) G1GC: the garbage-first collector. All have been specified
by Oracle [26]. Figure 18 shows the results for xalan.
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Figure 18. GC Effect (xalan, 32 threads, 64 tasks, 300
transformation files. GC strategies are: a: SerialGC, b: Paral-
lelGC, c: ParallelOldGC, d: ConcMarkSweepGC, e: G1GC)

As shown, GC strategies do have observable impact on
program energy consumption. In the context of this study,
the effect is relatively mild, within ±10%. A precise rela-
tionship between GC and energy consumption is a complex
topic beyond the scope of this paper.

Just-In-Time Compilation. Just-In-Time (JIT) compila-
tion dynamically optimizes the program and is known to
have significant impact on performance. Predictably, JIT
also has direct impact on energy consumption. Figure 19
shows the effect of JIT on sunflow.
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Figure 19. JIT Effect (sunflow, 32 threads, 256 tasks, 256
as image data size, 10 runs on X-axis)

Here, the X-axis represents 10 “hot” runs of sunflow,
i.e., a top-level loop that encompasses 10 executions within
one JVM. With JIT, early runs incur higher energy/time
overhead than later runs, as illustrated in Figure 19(a) and
Figure 19(b). Also note that energy/performance behaviors
do stabilize after a number of runs. With JIT disabled, both

energy consumption and performance are uniform, as shown
in Figure 19(c) and Figure 19(d). Both of them however are
also significantly worse than their JIT counterparts.

Moreover, the growth of energy and time is not propor-
tional. Execution time increases by 33x from using JIT to not
using JIT, whereas energy consumption increases more than
45x. For instance, for the 10th sunflow execution, the aver-
age power (not energy) consumption using JIT was 85.47W ,
and when not using it was 118.35W . After a more detailed
inspection of the data, we observed that although the JIT ex-
ecutions recorded the highest power consumption (175.3W
using JIT and 166.3W not using JIT), non-JIT dominates the
executions with higher power consumptions (3rd quartile:
163.2W ), that is, consuming more power, than the approach
using JIT (3rd quartile: 154.6W ). This result, combined with
the enormous difference in performance between JIT and
non-JIT yields the results from Figures 19(a) and 19(c).

In Section 4, we explained our data collection strategy
as averaging the last runs of JIT-enabled executions. This
decision stems from our observations here: (1) JIT-disabled
executions incur energy/performance overhead unrealistic to
common use of Java applications, and (2) later runs of JIT-
enabled executions do stablize in terms of energy consump-
tion and performance.

Platform Variations. As a final experiment, we ran some
of the benchmarks on a different machine: an 8-core AMD
FX-8150 processor (Bulldozer architecture) with 16GB of
DDR 1600 memory, running Debian 3.2.46-1 Linux (kernel
3.2.0-4-amd64) and Oracle HotSpot 64-Bit server VM, JDK
version 1.7.0 45, build 18. Figure 20 shows the results for
n-queens benchmark.
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The benchmarking results show similar trends. For in-
stance, the Λ curve recurs, peaking at 4 threads – the same
behavior for this benchmark when using 32 processors. The
thread management styles behave similarly when compared
to the 32-core machine: ForkJoin still outperforms Thread
and Executor.

7. Conclusion
In this paper, we present a study on how concurrent pro-
gramming practices may have impact on energy consump-
tion. Our results suggest that different constructs for man-
aging concurrent execution can impact energy consumption
in different ways, and energy consumption is determined by
the choice of thread management constructs, the number of
threads, the granularity of tasks, the size of the data, and the
nature of data access. This study is a step toward a better un-
derstanding of the interplay between energy efficiency and
performance.

In the future we intend to study the energy behaviors of
different data structures and their various implementations
within the Java language. We also plan to develop tools
to support developers in systematically alternating between
different parallel programming constructs while taking into
account their energy consumption characteristics.
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