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Abstract
A hierarchical two-dimensional field solution technique is
introduced for capacitance extraction for VLSI interconnect
modeling. As a basis for compromise between the efficiency
of Boolean rules-based extraction and the accuracy of flat
field solution, this hierarchical approach can handle
realistic conductor cross-sections and multiple conformal
and/or planarized dielectrics.

1. Introduction
As integrated circuit processing technology marches relent-
lessly down through deep submicron feature sizes, chip per-
formance limitations, such as system delay and signal integ-
rity, are coming to be determined more by interconnect ef-
fects than by active device characteristics [1]. To address the
issue in its entirety and obtain the overall chip interconnect
coupling capacitance matrix would require prohibitively ex-
pensive three-dimensional field solution. Because that is im-
practical for a VLSI circuit design, significant compromises
are effected in commercially available capacitance extrac-
tion tools: typically field solution is employeda priori to
tune rules-based extractors. Such rules-based extractors uti-
lize process parameter and field solution derivedmodels to-
gether with Boolean operations on two-dimensional mask
sets to determine capacitance values derived from features
such as overlap, lateral proximity, and so on.

Even accurate field solutions can incur severe perfor-
mance penalties when realistic irregular conductor cross-
sections and corresponding conformal dielectrics are intro-
duced (Fig. 1). These process features have an important ef-
fect on parasitic values [2]. Rules-based extraction may par-
tially correct for these effects during their full field solution
pre-processingtuning phase. But rules-based extractors ulti-
mately incur large errors due to their necessity to partition
any problem domain into very small pieces and then to reas-
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semble the results applying the rules to those several small
pieces.

As an attempt to overcome these limitations this paper
proposes a simple hierarchical partitioning approach to field
solution [7,8]. This scheme still entails detaileda priori field
solution, but on a smaller set of parameterized library mac-
romodeling elements. Such a physical macromodel is repre-
sented electrically in terms of a capacitance matrix that re-
lates the potential(s) and flux(es) at the artificial boundary of
the element to the total charge on the conductor surface. The
library element capacitance matrix macromodels can then be
combined at runtime to produce accurate field solutions of
entire interconnect cross-sections. While less efficient than
rules-based Boolean extraction, this approach is much more
efficient than flat field solution while maintaining or exceed-
ing its accuracy.

Another recently published approach to hierarchical
field solution [13] shares with this work roots in domain de-
composition (see, for instance, [12]). Both approaches solve
for the field in the non-overlapping subdomains and merge
the solutions using compatibility conditions at the interfaces.
Whereas [13] has focused more on spectral techniques and
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Figure 1. A realistic vertical cross-section of IC interconnect. We
see that conductors on layers 1-5 are trapezoidal. The top layer
metal has a completely irregular geometry. There are voids
between minimum-spaced conductors. There is a conformal layer
of dielectric on top of the top layer metal(passivation). SEM picture
courtesy of IBM Corp.  Copyright IBM Corp. 1994, 1996.
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limited itself mainly to regular geometries in 3-D, this work
has concentrated on the Finite Difference and Boundary El-
ement Method formulations in solving complex geometries
typical of IC vertical cross-sections.

The 2-D ideas we present here are useful as a basis for
developing a hierarchical 3-D field solution technique, and
also useful on their own in the so-called “2.5-D” extraction
context. In the confines of this paper, we have been able only
to cover the most basic elements of hierarchical 2-D solution
for capacitance extraction. Refinements and extensions, in-
cluding 3-D implications, are covered in detail in [7] and will
be elaborated in subsequent papers.

All the feasibility studies shown in this paper are conve-
niently implemented inMATLABTM [14].

The rest of this paper is organized as follows. In Section
2 we give an overview of the hierarchical 2-D capacitance
extraction method and its Finite Difference (FD) implemen-
tation. In Section 3, we discuss how we can build a library of
elements as a pre-processing step. Finally, we offer some
conclusions.

2. Hierarchical 2-D Capacitance Extraction
The 2-D capacitance extraction methodology to be described
here has the following features:

1. It uses hierarchical partitioning and library macromodel
preprocessing to attain chip extraction runtime efficiency.
2. It can provide total and coupling capacitances related to
a single net or the full capacitance matrix associated with a
group of nets.
3. It can deal accurately with arbitrary conductor vertical
cross-sections and multiple conformal and/or planarized di-
electrics.

Although the technique is best implemented in terms of
the Boundary Element Method (BEM), it is most easily ex-
plained in terms of a finite difference formulation, which we
will do here. The BEM formulation can be found in [7] and
will be published elsewhere.

The essence of the hierarchical field solution technique
can be captured by examining Figures 1, 2 and 3. The verti-
cal cross-section to be analyzed (Fig. 1) is partitioned into
distinct regions (Fig. 2 (a)). A library element (Fig. 2 (c)) is
formed by solving for a macromodel capacitance matrix for
a given partition (Fig. 2 (b)). The capacitance matrix for a
vertical cross-section is obtained by combining the appropri-
ate macromodels (Fig. 3).

The nature of the problem with which we are dealing ren-
ders the use of macromodels especially advantageous. We
can take advantage of the fact that the problem space, de-
fined by all possible geometries found on the interconnect
layers of a chip, is very limited. Although the geometry un-
der analysis is complicated by conductors with nontrivial
cross-sections and nonhomogeneous dielectric layers
(Fig. 1), there is much regularity to be exploited. The space
of possible 3-D geometries formed by a manufactured IC is
limited by the technology description and design rules. The
technology description is determined by the manufacturing
process. The design rules represent restrictions due to yield
concerns, the manufacturing process or design tools. There-
fore we do not need the generality of a generic field solver,
and we can avoid some of the inefficiencies that generality
imply. We can describe any vertical cross-section with rela-
tively few library elements using our method, as we shall see
in Section 3.

Finite Difference Macromodels
For capacitance computation purposes, we can represent the
finite difference discretization of an arbitrary domain (of di-
electric materials and conductors) as a mesh of capacitors
[9]. If we cut an arbitrary patch that includes the conductor
from the capacitive grid, we get the sub-mesh depicted in
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Figure 2. Partitioning and macromodeling: (a) The cross
section in Fig. 1 is partitioned; (b) Each partition can be
modeled as a capacitive mesh; (c) The internal nodes are
eliminated to form a macromodel represented by a capacitance
matrix.

(b)

(c)

(a)

Cm2

Cm1 Cm1

Cm3

Figure 3. Hierarchical field solution combines the individual
macromodels eliminating nodes at their common edges.
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Fig. 2. In order to get the same result when we put it back,
we assign half as much capacitance to the capacitors along
the boundary edges. The capacitor terminals that lie along
the surface of the internal conductor are all at the same po-
tential and are “shorted out”. We can now eliminate the inner
nodes from the capacitance formulation of the circuit

 via a partial LU decomposition, creating an N-
port Norton equivalent for this capacitive network. Here,
subscript1 refers to inner nodes, subscript2 refers to outer
nodes and nodes on the conductor;q is flux andv is potential.

, (1)

 (KCL). (2)

Eliminating internal nodes:

,

. (3)

Note that the macromodel capacitance matrix Cm is sin-
gular because we did not pick a datum node. We did this so
that Cm is in the form of a stencil [5] into a global matrix.
Note also that an irregular conductor geometry is still repre-
sented by only one terminal, although, in a flat field solution,
the conductor would have to be represented by many grid
points. Grid points on dielectric interfaces inside elements
are similarly eliminated. This reduces the number of vari-
ables to be considered at runtime. Throughout this paper, the
term runtime will be used to indicate the assembly and solu-
tion of the global capacitance matrix (see below), as opposed
to the “preprocessing” time that must be employed for mac-
romodel library creation.

Global Solution
We will now show how we can obtain the capacitance matrix
for a given geometry using macromodel parameters. We first
decompose each layer into geometries for which we have
macromodels in our library. The macromodels we choose
may include no, one or more conductors. We then stencil the
macromodel matrices (Cms) into a global nodal analysis ma-
trix [5], which we shall call the global capacitance matrix.
For inter-element boundaries, each node is shared by two
macromodels, and the corresponding matrix entries are add-
ed. The total flux for inter-element boundaries is set to zero
on the RHS of the equation. For the outside boundaries, we
need to impose a boundary condition. Setting the flux equal
to zero imposes a Neumann boundary condition. Eliminating
the columns and rows corresponding to a node is equivalent
to imposing a Dirichlet boundary condition (V=0). Or we
may use a terminating macromodel to emulate more realistic
boundary conditions (see [7]). In this case, there are no out-
side boundaries, and these nodes are treated as inter-element
nodes between the macromodel at the boundary and the ter-
minating macromodel which has the same format as a mac-

romodel. The boundary conditions imposed may have a
large impact on the results.

Once the global nodal analysis matrix,  is formed, we
may re-arrange it as:

(4)

where the subscriptcond denotes conductor nodes (one for
each conductor), andelim denotes all other nodes (at bound-
aries) to be eliminated (Fig. 4). A partial LU decomposition
is performed to obtain:

(5)

which is the capacitance matrix we have set out to compute.
We can also create new larger macromodels by combining
previously created ones and eliminating their common
boundaries. In this case:

(6)

and as in Eq. (4), a partial LU decomposition is performed to
eliminate this time only the inter-element boundary nodes,
denoted by the subscriptelim (Fig. 4). The new macromodel
may then be stored in the element library for future use. Ter-
mination macromodels are created in a similar manner. For
termination macromodels, certain boundary conditions are
assumed for some of the outside boundaries, and only a sub-
set of outside boundaries is retained.

We may not need the full capacitance matrix all the time.
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Figure 4. Once a global matrix is formed (a) with stencils from
macromodels, a macromodel can be obtained for the overall
configuration (b), or boundary conditions can be imposed and a
capacitance matrix can be obtained (c).
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When we want to compute the coupling capacitance to con-
ductork only, we apply 1 Volt to conductork, and 0 Volts to
all others:

(7)

We then solve forqcond in Eq. (4):

,

. (8)

Note that we do not actually invert  at any point.
One way to compute  is to perform an LU factorization
on  and solve for  by forward and backward
substitution of the column of  that  picked.
One of the major advantages of our method is that it yields a
block sparse matrix like the Finite Difference method, yet it
has few variables, like the Boundary Element Method
(Fig. 5). Special numerical methods have been developed to
perform the LU factorization of such block sparse matrices
efficiently [3]. Alternatively, we could use an iterative meth-
od, such as GMRES [4] to solve for , which is feasible
owing to the sparse nature of the global matrix.

The number of variables in the above matrix is deter-
mined by the number of nodes that are eliminated, i.e., inter-
face nodes and boundary nodes. We can decompose this into
horizontal nodes and vertical nodes. Nodes that are grounded
never enter the calculation; therefore the number of nodes is
(see Figure 6):

. (9)

The block-sparse matrix solution is typically ,
wherex is between 1.2 and 1.5. Note that  is not a func-

tion of process details such as the irregularity of the conduc-
tors and the number of dielectric layers.

Convergence
We present a simple example to show the convergence prop-
erties of our method. We examine the vertical cross-section
in Fig. 7. We shall assume Neumann boundary conditions at
the side and top boundaries.

We have simulated this configuration withRaphaelTM

[6], a general purpose Finite Difference Field solver, using
10,000 grid points and the result is taken as “exact”. The re-
sults obtained using our technique are compared to the
Raphael results in Fig. 8. The capacitance matrix for

 is tabulated in Table 1. But we can see that
even for the lowest level of discretization, the error is within
1.5%.

For this example, ignoring the top-layer dielectric and
the irregularity in the top-layer conductor cross-section
would give rise to 15% error in the total capacitance of con-
ductor 1. In our method, these effects are accounted for at the
pre-processing stage and incur no additional cost at runtime.

3. Library Building
We shall assume that conductors at each metallization layer
have a constant height from the substrate “to the first order.”

vcond 0 … 1 … 0
T

=

k

velim Celim,elim
1–

Celim,condvcond–=

qcond Ccond,elimvelim Ccond,condvcond+=

Celim,elim
velim

Celim,elim velim
Celim,cond vcond

velim

Figure 5. Sparsity graph for a typical global capacitance matrix
Cg. This matrix was formed in the solution of a 15 conductor
problem.
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Sparsity graph for the global capacitance matrix for a 15 conductor example
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Figure 6. Computing complexity. The variables used in Eq. (9)
are indicated for this example.
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Figure 7.The vertical cross-section for an imaginary process. The
dielectric constant is taken as 1. The top metal layer has an
irregular cross-section and there is a conformal dielectric with a
dielectric constant 1.5. Dashed lines indicate the element
boundaries used.
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By “constant to the first order”, we mean that the deviation
of the height from nominal due to process variations and to-
pography is a small portion of the nominal value. This is true
for processes that use advanced planarization techniques

such as chemical mechanical polishing (CMP) [11].

In addition to this basic assumption, we make an assump-
tion which is not essential to the operation of the method, but
increased efficiency is obtained when it holds: We will as-
sume that conductor vertical cross-sections (together with
conformal dielectrics) can be described in a scalable fashion,
i.e., the shape of a conductor with arbitrary width may be ob-
tained by slicing a minimum width conductor and extending
the middle (Fig. 9). With these assumptions, we construct a
library of macromodels that can be combined to describe any
vertical cross-section allowed for a given technology.

Assembling the macromodels, it appears that the physi-
cal locations of the terminals must match at the interfaces in
order to use Eq. (5) directly. In this limited sense, we must
have ‘universally matching’ elements (see Fig. 10) in the li-
brary, so that the representation of an element is independent
of the elements around it. This means that we must use the
same discretization for vertical sides of elements that can be
adjacent. Some elements cannot be adjacent by rule because
that would correspond to an impossible configuration. For
the horizontal sides, on the other hand, all segments must be
the same size. Fortunately, our method is not limited to ‘uni-
versally matching’ elements, since we can use interpolation
and extrapolation to bring together elements with different
discretizations in a single global solution using extensions to
Eq. (5) [7].

The elements need not have the conductor in the middle.
Fig. 11 shows some types of elements we can have. Type II
elements allow a smaller library size.

There are trade-offs between runtime extraction efficien-

Table 1.Capacitance values computed for the
configuration of Fig. 7

Cij 1 2 3 4

1 2.5991 1.3828 0.9661 0.1781

2 2.6251 0.2571 0.9407

3 4.5312 0.8135

4 4.2258

(a)

(b)

Figure 8. Convergence with improving discretization. n is the
number of variables in the global capacitance matrix formed. (a)
shows the convergence in absolute terms of C11, the total
capacitance of conductor 1, and C14, the coupling capacitance
between conductors 1 and 4. (b) shows the percentage error in
some capacitance values. The percentage error is computed as:
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Figure 9. Scalable vertical cross-section with a conformal
dielectric. (a) is the minimum-width metal. Left and right halves are
identical due to symmetry. The irregularity of the conductor is due
to the deposition and etching steps that affect mostly the sides. In
(b), the medium section is derived by connecting the end-points of
each side.

(a) (b)

Cm

∆h

∆v

Cm1

Cm2 Cm3

Figure 10.Universally matching elements.
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cy, accuracy and library size. We shall briefly mention some
of these trade-offs. A detailed study can be found in [7].

The discretization of the elements is a major determinant
of the accuracy of the global solution. Elements for the same
geometry with different levels of discretization can be stored
in the library to allow different points on the accuracy-effi-
ciency curve. The largest horizontal discretization (hence,
the highest efficiency) is determined by the feature size:

(10)

This choice of horizontal discretization makes sure that
we can “span” the technology with the minimum set of ele-
ments (Fig. 12) per layer. By spanning a technology, we
mean having a “sufficient variety of library elements to de-
scribe any vertical cross-section that is allowed in a certain
process technology. We cannot span a technology only with
the elements we have described so far, because they have
fixed dimensions. To maintain a compact library in the face
of a fine design grid requires parameterized elements [7].

On the other hand, we can create macromodels for more
complex elements (e.g., elements a and b in Fig. 11) in order
to increase the accuracy we obtain for a given runtime cost.
More complex elements increase the library size, but also in-
crease the efficiency at runtime by reducing the number of
variables to be eliminated from the global solution matrix.
These elements may be constructed from more those primi-
tive ones as shown in Eq. (6), or from scratch using Eq. (3).

4. Conclusion
We have introduced a theoretically founded hierarchical
two-dimensional field solution technique. The technique
uses preprocessing for runtime efficiency and can deal accu-
rately with realistic VLSI interconnect cross-section config-
urations. We are presently working on the extension of this
technique to 3-D.
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Figure 11.Types of elements and how they combine. Elements
with no conductors on the boundary, including “empty” elements
are of Type I. Elements with no conductors in the middle, but with
one or two conductors on the boundary, including “pass-through”
elements are of Type II. Elements with conductors on the
boundary as well as the middle are of Type I/II. (a) and (b) are
complex elements that can be used for runtime efficiency and
parameterization.
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Figure 12.The minimum set of three basic elements that span a
layer of a given technology.
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