
Potential-Driven Statistical Ordering of Transformations

Inki Hong, Darko Kirovski, and Miodrag Potkonjak
UCLA Computer Science Department, Los Angeles, CA 90095-1596 USA

Abstract

Successive, well organized application of transformations has been
widely recognized as an exceptionally effective, but complex and
difficult CAD task. We introduce a new potential-driven statistical
approach for ordering transformations. Two new synthesis ideas
are the backbone of the approach. The first idea is to quantify
the characteristics of all transformations and the relationship be-
tween them based on theirpotential to reorganize a computation
such that the complexity of the corresponding implementation is
reduced. The second one is based on the observation that transfor-
mations may disable each other not only because they prevent the
application of the other transformation, but also because both trans-
formations target the samepotentialof the computation. These two
observations drastically reduce the search space to find efficient and
effective scripts for ordering transformations. A key algorithmic
novelty is that both conceptual and optimization insights as well as
all optimization algorithms are automatically derived by organized
experimentation and statistical methods. On a large set of diverse
real-life examples improvements in throughput, area, and power by
large factors have been obtained. Both qualitative and quantitative
statistical analysis indicate effectiveness, high robustness, and con-
sistency of the new approach for ordering transformations.

1 Introduction

1.1 Motivation

Transformations are alternations in the structure of a computation
such that the initial input/output specification is completely main-
tained [1]. Transformations have been recognized as the high-level
synthesis and compilation step with the highest impact on design
metrics. It has been demonstrated that exceptionally high improve-
ments in all design metrics including area, throughput and latency,
power, transient and permanent fault-tolerance overhead, and testa-
bility are achievable on both ASIC and programmable platforms.

However, transformations have also acquired reputation as one
of the most difficult behavioral synthesis tasks. Transformations
are notorious for their ability to unpredictably alter the numerical
properties of a design and therefore its required word-length. Fur-
thermore, the implementation and maintenance of a large number

1This research is supported in part by California MICRO grant 96-182 and
Escalade.

Design Automation ConferenceR
Copyright c 1997 by the Association for Computing Machinery, Inc. Permission to
make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post
on servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or
permissions@acm.org.
0-89791-847-9/97/0006/$3.50 DAC 97 - 06/97 Anaheim, CA, USA

of transformations in compiler and behavioral synthesis environ-
ments is a formidable software task. Also, the accurate prediction
of effects of transformations has been rarely addressed and it is
widely considered infeasible. Finally, the objection which is most
often raised and quoted with respect to the application of transfor-
mations is that their full potential can be explored only with proper
orders of transformations. However, deriving such orders is mainly
an art practiced by experienced developers of compiler and CAD
tools, which often result in disappointing outcomes.

+ + +

***2

1

p q

r

x

(a) Initial CDFG

2

1

p

**

+

x

q rr

+ +

**

(b) Transformed CDFG

Figure 1: A motivational example for transformations in behavioral
synthesis.

In this paper we address the last issue: the development of fully
automatic, fast, and effective ordering of transformations for a vari-
ety of design metrics, such as throughput, area, and power. We have
three major objectives in this paper. The first goal is to gain new in-
sights on the transformations-based high-level synthesis optimiza-
tion process. The second goal is to develop efficient and effective
schemes for ordering transformations with respect to a variety of
design metrics under a variety of constraints. The final goal is to
demonstrate conceptual simplicity, effectiveness, and robustness of
statistical methods for the development of optimization algorithms
for complex CAD tasks.

1.2 Motivational Examples

We introduce the key ideas of the new approach for ordering trans-
formations using two small, but meaningful examples. We first
consider the example in Figure 1. Figure 1(a) shows the control-
data flow-graph (CDFG) of a computation which consists of three
additions and three multiplications. We assume that each operation
takes one clock cycle and the available time is two cycles. Note that
since the length of the critical path is also two cycles, all operations
are on the critical path. Obviously, regardless of the used schedul-
ing algorithm, the final implementation requires at least three mul-
tipliers and three adders. This design has relatively low, 50%, re-
source utilization for execution units.

An easy and effective way to improve this design is to apply
transformations. Figure 1(b) shows the same CDFG after the appli-
cation of distributivity on the isolated component which computes
outputx. Again, all operations are on the critical path. Therefore,
the only feasible schedule is one shown in Figure 1(b). It is easy to
see that only two multipliers and two adders are required.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F266021.266161&domain=pdf&date_stamp=1997-06-13

It is interesting and important to analyze why the CDFG in Fig-
ure 1(b) is more amenable for the implementation with high re-
source utilization. The transformed design has one more operation
than the initial design. So, one may expect that the transformed
CDFG is inferior. However, this design has more evenly distributed
operations of the same type along the time axis.

x y

* *

+ +
c3c2

* *

s

1

p c1 r

2

3

3 multipliers, 2 adders

*2

(a)

p s

x y

**3

+
c2

2 +

c3

* * * *

c1 r

1

4 multipliers, 2 adders

(b)

1

sp

x y

**3

**2

+ +

c3
c2

2 multipliers, 2 adders

r c1

(c)

1

s

x y

**3

**2

+ +

c3
c2

2 multipliers, 2 adders

c1

c1rp

(d)

1

s

y

*3

**2

+ +

c3

2 multipliers, 2 adders

c1rp

x

c4=c1c2

(e)

p r

c3

1

1 multiplier, 1 adder

x
y

*

*

D

s

D

++2

c1

*

D

1
2

3

c4=c1c2

(f)

Figure 2: A motivational example for ordering transformations:
Importance of considering enabling and disabling effects. All data
denoted byci are constants.

How can one generalize the just mentioned observations so that
they can be incorporated in a synthesis program? The essence of
the approach can be summarized in the following way. The initial
CDFG has a highpotentialto be improved with respect to the area
of the final implementation because it has data precedence con-
straints which force the low resource utilization of execution units.
This can be observed by comparing the current solution (or bounds
on the quality of the current solution) with the solution derived with
the assumption that all units can be used in all control steps. In this
example the bounds of the initial solution are three multipliers and
three adders, while the bounds for fully utilized units are two mul-
tipliers and two adders. To achieve improvement one needs such
transformation that will more evenly distribute operations of the
same type along the time axis, i.e., alter data dependencies in such
a way that some of multiplications can be moved in the second
control step, and some of additions in the first control step. It is
easy to deduct that distributivity is such transformation. As shown,
distributivity is indeed effective.

Another important observation is that when all execution units
are well utilized, no further improvement can be achieved using
transformations which only alter data and timing dependencies.
This is because allpotentialalong the dimension has already been
realized (as indicated by absolute bounds on the number of execu-
tion units assuming 100% utilization). Thus, for further improve-
ment, transformations which address some otherpotentialof the

computation are required. We conclude the discussion of our first
motivational example by noting that the substitution of constant
multiplications with shifts and additions is such transformation.

The second motivational example demonstrates the importance
of simultaneous consideration of the effects of more than one trans-
formation. It also illustrates the conceptual complexity of transfor-
mations ordering and provides initial hints about how this task can
be simplified while preserving the power of transformations.

The design goal is area optimization under throughput con-
straint. Figure 2(a) shows the initial CDFG which has five multipli-
cations and two additions. The available time is three clock cycles.
In the same fashion as in the first example, all operations are on
the critical path. Therefore the only feasible schedule is shown in
Figure 2(a). It is easy to see that three multipliers and two adders
are required. The resource utilization is low for an ASIC design,
for multipliers 55% and for adders 33%.

It is often required to apply one or more enabling transforma-
tions in order to eventually apply a transformation which will im-
prove a design. Following this direction, we observe that our goal is
to move some additions from the second control step to the first one
and to move some multiplications from the first control step to the
second one. It is easy to verify that distributivity can accomplish
this task. However, the application of distributivity is disabled, be-
cause the result of multiplication *2 is used in two places. We
first replicate multiplication *2 as shown in Figure 2(b). If we stop
the transformation process at this stage, it is easy to see that the
corresponding implementation requires 4 multipliers and 2 adders,
even more hardware than in the initial design. However, we can
now apply distributivity twice, as shown in Figures 2(c). We need
only 2 multipliers and 2 adders. More importantly, we can continue
the optimization process, by first replicating constant c1 and then
applying constant propagation, as shown in Figures 2(d) and 2(e).
Finally we can introduce a pipeline stage (if the computation is in
a loop, retiming is performed), and obtain the functionality equiv-
alent computation shown in Figure 2(f). The numbers next to the
nodes - operations, indicate the clock cycle in which a particular
operation is scheduled. We need only 1 multiplier and 1 adder.

This small example illustrates not only high effectiveness, but
also an exceptional richness of degrees of freedom during opti-
mization using sequences of transformations. Nevertheless, as it
is shown in the rest of the paper, once the obtained insights are
coupled with statistical methods, there is a conceptually simple, ef-
fective and efficient solution for ordering of transformations.

1.3 Potential-Driven Statistical Approach for Trans-
formations Ordering - Summary of Key Ideas

We use a macroscopic approach for transformations ordering. In
our approach, we use readily available transformation software rou-
tines as the smallest atomic optimization entities. All that is re-
quired is another layer of an optimization mechanism which in-
vokes individual transformations and realizes the optimization po-
tentials of the targeted computation. The global search is conducted
so that the full potential of a given computation is explored along
all relevant degrees of freedom.

The methodology behind the new approach can be summarized
in the following way. First, we analyze how one can make a compu-
tation more amenable for high quality implementation for a given
set of design goals and constraints. Using this information, we se-
lect transformations which are best suited for this task or which
enable transformations which are well suited for the optimization
goal. Next, we analyze the selected transformations and classify
them with respect to the degrees of freedom of computational po-
tentials it can address. All selected transformations are theoreti-
cally analyzed with respect to their mutual enabling impact.

All transformations are classified ink classes. Transformations
which belong to classi, enable all transformations which belong to
classj, i � j � k. The exact order for the application of trans-
formations for the optimization of a degree of freedom is derived
experimentally. All transformations are also classified into a num-
ber of groups according to which optimization degrees of freedom
they address. At most three transformations which target the same
potential are included in any of the experimental scripts.

An exhaustive set of all possible scripts which satisfy enabling
and potential criteria is applied on a set of learning examples. We
terminate the evaluation of longer sequences of transformations,
when it is recorded that the longer sequences do not perform bet-
ter on more than 5% of the examples or when the implementation
studies (scheduling and hardware mapping) show that further op-
timization along this degree of freedom does not have a potential
for improvement in comparison with the shorter sequence which
uses the same order of transformations. Usually, less than hundred
scripts are examined, and the whole experimentation for a given
design metric takes about one week. The experimental data gener-
ation and recording are fully automatic.

The performance of each script is recorded and best-performing
scripts are manually combined into a single script. The selected
script is statistically validated on a set of testing examples. The
technical details of the selection process are presented in Section 4.

The rest of the paper is organized in the following way. In the
next section we survey the related work. Next, after summarizing
relevant assumptions and targets, we introduce a notion of poten-
tial for both computations and transformations. The backbone of
the paper is presented in Section 4 where the connection between
potentials of computations and potentials of transformations is de-
veloped. Section 5 describes obtained scripts by the new method.
Finally, the effectiveness and efficiency of the scripts are validated
and analyzed on a large set of examples and conclusion and direc-
tions for future work are outlined.

2 Related Work

The approaches for transformation ordering can be classified in 7
groups: peephole optimization [9], manually-derived static scripts
[2], exhaustive search-based “generate and test” methods [8], al-
gebraic ordering of linear loop-control flow transformations [13],
probabilistic search techniques [3], bottleneck removal methods
[4], and microscopic and special-domain enabling-effect based tech-
niques [11]. This paper addresses several design metrics, estab-
lishes new insights in enabling-disabling effects with respect to the
design metrics, develops a method for quantifying these effects,
and provides a technique for automatic script development and val-
idation.

3 Preliminaries

3.1 Computational and Hardware Models

Our methodology assumes that a synthesis or compilation system
provides the complete implementation of transformations. The soft-
ware platform on which we tested our ideas was mainly the Hy-
per high level synthesis system [12] from University of California,
Berkeley. The selection was mainly due to the fact that the Hyper
system is well suited for our goals: it uses a number of modular
transformation subroutines and provides both complete implemen-
tation and means for measurement and/or prediction of a number of
design metrics, such as area and power. Therefore, we use the syn-
chronous data flow model of computations and the dedicated reg-
ister file model [12]. To eliminate coupling effects between trans-
formations and scheduling, we also use the BETS scheduler in the

mode that only area optimization is considered [5].

3.2 Transformations

We consider the following transformations: direct and inverse asso-
ciativity, direct and inverse distributivity, inverse element law, com-
mon subexpression replication, time loop unfolding by an arbitrary
factork, The Leiserson-Saxe retiming for critical path, pipelining
for critical path withk pipeline stages, maximal pipelining for crit-
ical path, and substitution of constant multiplications with shifts
and additions/subtractions.

The transformations are organized in the following optimiza-
tion software routines:

1. associativity for critical path (ACP)

2. associativity and common subexpression replication for crit-
ical path (ACSCP)

3. associativity for iteration bound (AI)

4. associativity and common subexpression replication for iter-
ation bound (ACSI)

5. retiming for critical path (R)

6. pipelining withk-pipeline stages for critical path (P)

7. loop unfolding by a factork (U)

8. constant multiplication substitution with additions/subtractions
and shift (CM)

All transformations subroutines which use associativity also use
integrated inverse element law transformation [11, 12].

The initial selection of transformations was mainly influenced
by the availability of robust software implementations capable of
handling numerous real-life designs. The final selection was mainly
dictated by their eventual effectiveness and run-time efficiency as
well as their power to fully realize transformation potentials of al-
most all the testing examples. One of the major points of the work
presented in this paper is that the limited subset of transformations
is most often sufficient to realize all available potentials of most
of the designs. This leads to a conclusion that the transformations
ordering is much simpler tasks than it was believed previously and
that more involved and complex methods for transformations or-
dering are rarely required.

3.3 Design Metrics

We applied the new approach for ordering transformations for a
number of design goals. In this paper, due to the space limitation,
we restrict our attention to throughput, area, and power optimiza-
tion. Development of transformations ordering for other design
metrics is strategically straightforward with varied difficulties.

We consider the following three, probably the most popular and
most widely used, design scenarios:

� Throughput optimization with no imposed constraints;

� Area optimization under throughput constraint;

� Power optimization under throughput constraint.

The metrics are measured in the following way. The critical
path is directly calculated using the dynamic programming-based
subroutine. The cycle length time is estimated using the cycle time
estimation program of the Hyper system [12] which takes into ac-
count both gate and interconnect delays. The area is estimated after

hardware mapping using the Hyper system. This estimator has been
statistically validated to produce results within less than 20% of er-
ror in more than 95% of the cases. Finally, the power is estimated
using the Hyper-LP [3] estimation tools which was also statistically
validated to be within 20% of the real power consumption in more
than 95% of the instances.

4 Development of Transformation Scripts

4.1 Potentials of Computations

Potentialsfor improvement of a computation using transformations
can be defined as a combination of the degrees of freedom along
which the computation can be altered so that the final implemen-
tation is optimized. ThePotentialsof computations are closely re-
lated to the targeted design goals and constraints.

The analysis indicates the following potentials for the selected
design scenarios:

� Throughput: the length of the critical path and the cycle time.

� Area: the number of cycles, the hardware cost of execution
units available for the implementation of operations of a par-
ticular type, the number of operations of a particular type,
the uniformity of distribution.

� Power: the cycle time, the length of the critical path, the
number and type of operations, the hardware cost of exe-
cution units available for implementation of operations of a
particular type, the number of operations of a particular type,
the uniformity of distribution.

The intuition behind the outlined degrees of freedom is the fol-
lowing. The throughput optimization is the best defined scenario
in the sense that it is feasible to accurately predict the cycle time
and to exactly obtain information about the required number of cy-
cles. Obviously, one wants to optimize both. For area optimization
the goal is to avoid hardware expensive operations, such as multi-
plications and to achieve uniformly distributed operations and data
transfers, and a large number of control cycles. A large number of
control steps for a given throughput corresponds to a short cycle
time. Finally, during power optimization the goal is to minimize
the number of switching events through the minimization of the
number of operations and data transfers and through minimizing
the length of interconnects as well as to minimize the critical path,
so that the throughput-voltage trade-off can be explored [3]. It has
been shown that there is a very strong correlation between the area
and the length of the interconnects. Therefore, power minimization
can be seen as simultaneous throughput and area optimization, with
additional degree of freedom for the minimization of the number of
operations. Since the voltage reduction is most effective for power
optimization, it is the primary goal to be addressed.

4.2 Transformations Potentials

The transformations potentials are classified in the following classes.
Note that a transformation can belong to more than one class.

1. Transformations for relaxation or elimination of timing and
data precedence constraints: Essentially this group of trans-
formations equalizes the distribution of operations of a par-
ticular type along time axis. Among the transformations con-
sidered the following are in this group: associativity for both
iteration bound reduction and critical path reduction with and
without common subexpression replication, retiming, pipelin-
ing, and loop unfolding.

2. Transformations which substitute expensive operations with
less expensive ones: Constant multiplication substitution with
shifts and additions is the most effective transformation from
this class. Theoretically, the inverse element law can sub-
stitute all subtractions with slightly less expensive additions,
but we did not find any single example that this was the case.

3. Transformations for control cycle time reduction: Constant
multiplication substitution with shifts and additions reduces
the clock cycle time in the cases that all multiplications are
by constants, by eliminating a need to accommodate multi-
plications within a cycle.

4. Enabling Transformations: Finally, in some cases transfor-
mations do not have optimization power, but can enable other
transformations. One such transformation is common subex-
pression replication. We also used loop unfolding almost ex-
clusively for this purpose.

4.3 Matching Transformations with Computations
and Design Metrics

The development of optimization scripts is done in the following
way. First all selected transformations are characterized according
to their optimization potential and enabling effectiveness. This is
done using exhaustive manual enumeration of all small computa-
tional structures. This step is explained at several references for a
variety of transformations (for example, see [11]). Figure 3 sum-
marizes this information for the selected set of transformations.

U

P

R ACP

ACSCP

AI

ACSI

Class 3Class 2Class 1

CM

(a)

Operation

Cost

Cycle Time

Reduction

ACP

ACSCP

AI

ACSI

R

P

U

CM

Precedence/Timing

Constraints

M

M

M

M

N

N

N

Y

M

M

M

M

N

N

N

Y

Y

Y

Y

Y

Y

Y

N

N

Y - yes, N - no, M - minimal, not detected during experiment

(b)

Figure 3: Optimization potential and enabling effectiveness of the
transformations considered.

Once the information about optimization potential and enabling
effectiveness of the transformations is obtained, a set of scripts is
generated using the procedure presented in Section 1.3. The results
are recorded and statistically processed.

Our goal is to select the smallest number of scripts which cover
all best results for a given metric. This problem can be solved di-
rectly in an optimal fashion by including all scripts which are win-
ners for at least one test example. Unfortunately, this results in in-
cluding too many scripts. The second option is to select the smallest
number of scripts, so that either the best or the second best script
is selected for each example. This combinatorial problem can be
solved in polynomial using the standard matching algorithms [10].
If the goal is to select as few scripts as possible, when it is suffi-
cient to include for each example at least one script which provides
at leastkth-best solution, the problem is NP-complete [10]. In this
case, we used simulated annealing [7] to select the smallest set of
scripts. We set k = 3 and used a geometric cooling schedule and
standard stopping criteria [7]. The experimental results presented
in the next section are obtained using this approach.

5 Potential-Driven Statistical Scripts

The final scripts for the throughput, area, and power optimization
are obtained by manually combining the selected winner scripts for
a given metric, and are given by the following pseudocodes:

ThroughputOptimization()f
k = 0;
while (there is throughput improvement)f

Unfold k-times starting from the initial specification;
Associativity for IterationBound;
Maximum Pipelining;
k ++;

g

g

Area Optimization()f
while (there is throughput improvement)f

ConstantMultiplication Substitution;
Associativity for IterationBound;
while (there is area reduction) Pipelineby adding1 stage;

g

g

PowerOptimization()f
k = �1;
while (there is power improvement)f

k ++;
Unfold k-times starting from the initial specification;
ConstantMultiplication Substitution;
Associativity for IterationBound;
while (there is power reduction)f

Pipelineby adding1 stage;
Reduce voltage using binary search to find
the minimal power solution;

g

g

g

Several important observations can be made about the devel-
oped scripts. Several very popular transformations did not show
enough potentials to be included in any of the three methods for
transformation ordering. In particular retiming, associativity, and
common subexpression replication were not very effective. Only
associativity for iteration bound was used, and it has relatively mi-
nor impact on most of the test examples. The explanation is that
all of them mainly target data dependencies and timing constraints,
which are also targeted by pipelining. However, pipelining is usu-
ally sufficient to realize all potentials along this dimension. Also,
unfolding by larger factors was very rarely beneficial and often re-
sulted in long run-times. The maximal unfolding factor was only
3. Maximal pipelining is a very powerful transformation, but of-
ten has negative impacts on both area and power. So, it was of-
ten important to add one pipeline stage at a time and evaluate the
achieved impact. Backtracking to the previous solution when the
impact was counterproductive was beneficial. Associativity should
be tried before pipelining for realization of the optimization goals,
since pipelining often disables the effectiveness of associativity. Fi-
nally, as the optimization goal is more complex, the more complex
and longer sequences of transformations are required.

6 Experimental Results

In this section, we present the experimental results obtained using
the potential-based transformational scripts on the following set of

benchmark designs. We used 55 small and 10 large (systems) de-
signs. Typical examples include a variety of one and two dimen-
sional FIR, IIR, nonlinear, and adaptive filters, various linear trans-
forms (e.g. FFT and DCT), linear and nonlinear controllers, error-
correction codes and systems such as modems, echo-cancellers,
digital-to-analog converters, video decoders, and ghost cancellers.
The specifications of designs were written by several authors. They
applied different levels of manual optimization. All designs, except
five large designs are public domain programs which can be elec-
tronically obtained from University of California, Berkeley.

Table 1 gives the statistics for throughput improvements us-
ing the potential-based script. During this experimentation we ex-
cluded the examples without feedback paths, although our script
produced exceptionally high improvements for them. It is inter-
esting to note that the implementation area grows at slower pace
than the throughput improvement for more than 80% of examples.
The median and average area increases for designs after the appli-
cation of the throughput transformation script were by factors of
1.37 and 2.02 respectively. It is interesting to note that no single
transformations were able to improve the critical path by a median
factor large than 2. Two most efficient individual transformations
were maximal functional pipelining and associativity respectively.
No improvement was registered in only 2 examples. The reason in
both cases was apparently extensive manual optimization applied
by the designer on the initial specifications.

Minimal Median Average Maximal
1.00 2.00 3.99 18.00

Table 1: Throughput improvement factors.

Available Time Minimal Median Average Maximal
ICP 1.00 3.41 4.93 15.78

1.5*ICP 1.00 2.36 3.22 11.22
5*ICP 1.00 1.67 2.37 9.01

Table 2: Area improvement factors. ICP - initial critical path length

The statistics for area improvements under initial throughput
constraints are given in Table 2. We tested the script for area op-
timization using three different levels of scheduling difficulty sce-
narios which correspond to three different ratios of the available
time and the critical path for the initial computation. The first in-
teresting observation is that improvements are significantly higher
when the initial available time is closer to the critical path. Ma-
jority of the results in high level synthesis literature belong to this
category. Again, no single transformation was able to achieve indi-
vidually more than half of the effectiveness of the script. The two
most effective transformations were constant multiplication con-
version (CM) and pipelining. In a number of design associativity
for critical path optimization was also very useful. It is also in-
teresting to notice that the CM transformation was crucial for area
reduction when the available time was much larger than the critical
path. Pipelining was instrumental to improve the design with the
strict timing constraints, and was mainly counterproductive when
the available time was much larger than the critical path.

Table 3 shows the power reduction obtained using our new or-
dering of transformations. Table 4 shows a subset of design exam-
ples that the least improvement was observed. The first and most
important observation is that the improvements for this metric were
by far most impressive. Even the application of individual transfor-
mations often resulted in high improvements, although no single

Minimal Median Average Maximal
1.34 15.1 33.7 207

Table 3: Power improvement factors.

Design Name IP FP IR
5th order wave digital filter 55.99 41.83 1.34

6 IIR - Gray Markel 153.06 52.60 2.91
6 IIR - Parallel 17.04 5.22 3.26

8 IIR - Avenhaus 39.33 4.81 8.18
large cascade filter 34.78 21.48 1.62
5 point convolution 19.54 7.38 2.65
7 point convolution 5.11 0.47 10.87
NEC DA converter 130.15 22.39 5.81

GE linear controller - 5 states 120.24 65.58 1.83
modem filter 100.33 53.30 1.88

Honda linear controller 172.35 16.01 10.77
GE linear controller - 3 states 407.45 61.32 6.64

adaptive modem 61.05 11.14 5.48
large modem 60.38 6.31 9.57
Volterra filter 14.36 4.71 3.05

Large Volterra filter 79.94 43.26 1.85
7th order wave digital filter 14.52 4.86 2.99
9th order wave digital filter 17.91 6.34 2.82

Table 4: A subset of benchmark designs where the approach
yielded the least amount of power reduction. IP - Initial power
in nJ/sample. FP - Final power. IR - Improvement ratio.

transformation had an average improvement higher than by a factor
of 10. The most effective transformations were CM and pipelining.

The results for throughput, area, and power improvements ob-
tained using the new transformations ordering approaches are sig-
nificantly, approximately by a factor of 2, higher than those achieved
by the corresponding default Hyper scripts for the optimization of
the same design objectives. The typical run times for throughput,
area, and power scripts were respectively 0.5, 3, and 10 minutes on
a SUN Sparcstation 5. All results have been statistically validated
using the bootstrap methods [6].

Our experiments also showed that the random ordering of trans-
formations has a very low benefit. For example, the average im-
provements for throughput, three area optimization scenarios and
power using randomly generated scripts were by factors 1.49, 1.74,
1.42, 1.27 and 2.43 respectively.

7 Conclusions and Future Efforts

We addressed the problem of transformations ordering for a variety
of design metrics, such as throughput, area, and power. A connec-
tion between suitability of a computation for improvement using
transformations and individual and compounded transformations is
established and statistically validated. We also developed an ap-
proach for analyzing enabling and disabling relationships between
transformations. The obtained insights and experimental data are
a basis for a new, potential-driven approach for transformations or-
dering. For the development of ordering of transformations a novel
statistical methodology has been employed.

The approach has low complexity from both conceptual and
software implementation points of view. The approach is fully
modular, easy to modify for new scenarios of design goals and

constraints, run-time efficient, and very effective. On comprehen-
sive real-life benchmark set, improvements in throughputs. area,
and power, by large factors have been obtained. The notion of po-
tential of a computation for optimization generalizes the notion of
structural bottlenecks and forms a basis for optimization of an ar-
bitrary set of design goals and constraints. We are currently devel-
oping several potential-based compilation and synthesis tools for
such tasks as template matching, code generation, partitioning and
several other metrics including testability and fault tolerance.

Acknowledgments

We would like to thank Anna Poplawski and Toshio Misawa for
their help in the first phase of the research presented in this paper.

REFERENCES

[1] D.F. Bacon, S.L. Graham, and O.J. Sharp. Compiler transfor-
mations for high performance computing.ACM Computing
Surveys, 26(4):345–420, 1994.

[2] R.K. Brayton, G.D. Hachtel, C.T. McMullen, and A.L.
Sangiovanni-Vincentelli.Logic Minimization Algorithms for
VLSI Synthesis. Kluwer, Boston, MA, 1984.

[3] A.P. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey, and
R. Brodersen. Optimizing power using transformations.IEEE
Transactions on CAD, 14(1):12, 1995.

[4] S. Dey, M. Potkonjak, and S. Rothweiler. Performance opti-
mization of sequential circuits by eliminating retiming bottle-
necks. InInternational Conference on Computer-Aided De-
sign, pages 504–509, 1992.

[5] S. Dey, M. Potkonjak, and R. Roy. Exploiting hardware-
sharing in high level synthesis for partial scan optimization. In
International Conference on Computer-Aided Design, pages
20–25, 1993.

[6] B. Efron and R.J. Tibashirani.An introduction to the boot-
strap. Chapman & Hall, New York, NY, 1993.

[7] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by
simulated annealing.Science, 220(4598):671–680, 1983.

[8] H. Massalin. Superoptimizer: A look at the smallest pro-
gram. InInternational Conference on Architectural Support
for Programming Languages and Operating Systems, pages
122–126, 1987.

[9] W.M. McKeeman. Peephole optimization.Communications
of the ACM, 8(7):443–444, 1965.

[10] C.H. Papadimitriou and K. Steiglitz.Combinatorial Opti-
mization: Algorithms and Complexity. Prentice-Hall, Engle-
wood Cliffs, NJ, 1982.

[11] M. Potkonjak and J. Rabaey. Maximally fast and arbitrar-
ily fast implementation of linear computations. InInterna-
tional Conference on Computer-Aided Design, pages 304–
308, 1992.

[12] J. Rabaey, C. Chu, P. Hoang, and M. Potkonjak. Fast proto-
typing of data path intensive architectures.IEEE Design &
Test of Computers, 8(2):40–51, 1991.

[13] M.E. Wolf and M.S. Lam. A loop transformation theory and
an algorithm to maximize parallelism.IEEE Transactions on
Parallel and Distributed Systems, 2(4):452–471, 1991.

	CD-ROM Home Page
	DAC97
	Front Matter
	Table of Contents
	Session Index
	Author Index

