
Dynamic Communication Models in Embedded System Co-Simulation

Ken Hines and Gaetano Borriello

Department of Computer Science & Engineering, Box 352350
University of Washington, Seattle, WA 98195-2350
fhineskj,gaetano g@cs.washington.edu

Abstract

Many co-simulation techniques either suffer from poor perfor-
mance when simulating communications intensive systems, or they
represent communications with a uniformly low level of detail.
This paper presents a technique which allows communication to
be represented at multiple levels of detail and which gives a de-
signer the ability to dynamically choose the appropriate level for
different parts of the system. This paper also presents a tool which
uses this technique and experiments which show relative simulation
speedups.

1 Introduction

Hardware-software co-simulation is used to validate both the hard-
ware and the software components of embedded systems, as well as
the interaction between them. Co-simulation can be used to gain in-
formation about an embedded system before a prototype is actually
built. Furthermore, co-simulation allows designers to perform ex-
periments that could be impractical in a prototyping environment.
For example, designers can perform comparative studies of a sin-
gle system using a variety of processors, or they can repartition
the hardware and software portions of the system, co-simulate and
evaluate the results.

To be practical, co-simulation needs both a high degree of detail
and good performance. Unfortunately, highly detailed simulation
tends to incur a large time cost. This means that designers should
simulate at a level of detail which provides only the required infor-
mation and does not waste time generating unnecessary detail.

Rowson lists several co-simulation techniques which illustrate
the tradeoff between performance and detail [10]:

� The nano-second accurate processor model.In this technique,
the processor is modeled with a great deal of accuracy. Typ-
ically, only 1 to 100 instructions can be executed per second.
This is probably much more detail than needed in embedded
systems.

� The cycle accurate processor model.This is likely to be the
highest level of detail needed in simulating an embedded pro-
cessor. The processor model has an internal structure much
like the real processor, including pipelines, interlocks and
functional units. Typically, between 50 and 1000 instructions
can be executed per second.

This work was supported by ARPA contract DAAH04-94-G-0272

Permission to make digital/hard copy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, the copyright notice, the title of the publication
and its date appear, and notice is given that copying is by permission of ACM, Inc. To
copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

DAC 97, Anaheim, California
c1997 ACM 0-89791-920-3/97/06..$3.50

� The instruction set accurate processor model.This model
matches the architecture of the target processor, but does not
attempt to match timing. Pipelines, caches and such are com-
pletely ignored. Performance with this technique can reach
10,000 - 100,000 instructions per second.

� The model-free synchronizing handshake.With this tech-
nique, the software is compiled for the host processor, and
is linked to a hardware simulator with a synchronizing hand-
shake for communication. Performance in this technique is
mostly limited by the performance of the hardware simulator.

� The virtual operating system.In this method, the hardware
and operating system of the embedded system are abstracted
away to avirtual operating system, which looks the same as
the actual system from the the software's perspective. This
technique has very good relative performance, but it also pro-
vides the lowest level of hardware detail.

� The bus functional processor model.In this technique, the
entire processor is abstracted to a set of test vectors. This
technique is good for validating the hardware, but doesn' t help
much with the software.

None of these are entirely satisfactory for our purposes. Cycle
accurate and nanosecond accurate techniques are not fast enough
to give the designer much insight into the complete interaction be-
tween hardware and software. The virtual operating system and the
bus functional models are unsatisfactory because they each look at
only half of the system (either hardware or software). Thesynchro-
nizing handshakemethod is interesting, because it gives a way to
simulate the complete system without a processor model.

In validating embedded systems, we often don' t care about the
internal details of a processor's operation. We are usually more
concerned withtiming, hardware and softwareinterfacesandfunc-
tionality. In other words, any processor model that executes the
code properly, and provides the right interface events at the right
times will be sufficient.

Wilson describes a co-simulation technique calledselected cy-
cle simulation[16] which essentially combines the synchronizing
handshake and the bus functional models of Rowson. In this tech-
nique, the system software is compiled for the host computer. For
communication, the software sends a message to a bus functional
unit in the hardware simulator. The bus functional unit performs the
requested functions and returns any results. Wilson suggests using
a Unix pipe for thesoftware -to- bus functional unitmessage link.
This technique is useful, but it unfortunately makes synchronization
expensive. To avoid invoking this cost unnecessarily, synchroniza-
tion is performed only when needed for correct communication.
This technique is well suited for applications where synchroniza-
tion and hardware-software communication are minimal.

Many groups have found it worthwhile to compile the system
software for the simulator host and run this software in a process
of its own using operating system based primitives for communica-
tion with a hardware simulator [1, 12, 11, 15, 14, 6]. Techniques

http://crossmark.crossref.org/dialog/?doi=10.1145%2F266021.266178&domain=pdf&date_stamp=1997-06-13

of this sort can yield very good performance when simulating com-
putationally intensive systems that don' t require much in the way
of fine grained communication. However, communication between
the hardware simulator and the software is expensive, and this lim-
its the amount of speedup possible. This is especially true when
simulating communication or synchronization intensive systems.

This paper presents a technique which permits communication
to be described at multiple levels and gives a designer the ability to
dynamically choose the appropriate level. Dynamic selection of ab-
straction level is not unique to our technique. For example, Mentor
Graphics' Miami/Seamless CVE allows both address based opti-
mization of processor-memory transactions through a Memory Im-
age Server (MIS) and time optimization, (turning off the simulator
clock) [7]. We believe, however, that our technique is unique in that
1) it gives a designer the ability to dynamically speedup any com-
munication between any components and 2) it allows a designer to
use a high level understanding of the simulated system to provide
optimal communication methods.

2 Our Approach

As we have inferred, it may not be enough to simply speed up the
simulation of the embedded processors. In many embedded sys-
tems, there is a great deal of communication between the hardware
and software portions of the system. This may be true, even if we
abstract out all trivial communication such as instruction fetches
and local data accesses. In many cases, it may be important to sim-
ulate all of the cycle level details of a set of transactions; but it is
often true that we just need the data to be transferred and we aren' t
overly concerned with collecting the details of how it gets done
each and every time.

This is similar to the debugging of a hardware prototype using a
logic analyzer. A designer working with these tools will not gen-
erally set up the bus analyzer to collect the details of all of the
transactions on all of the wires. This is because it would gener-
ate an unwieldy amount of potentially useless data and there aren' t
enough storage resources to collect it all at once. Normally, a de-
signer will methodically check the interfaces in a reasonable order,
to narrow down suspected bugs. Logic analyzers usually facilitate
this explicitly by allowing the designers to program filters, triggers,
and trigger windows - and implicitly by allowing the designer to
choose which wires to connect to.

1C C2 C3

C5

C6

C4

Bus

Fig. 1: Several components on a bus

Fig. 1 shows 5 components connected directly to a bus (C1

throughC5) and an additional component,C6, is connected through
C3. Suppose there is a bug somewhere in the system that causes the
data fromC5 to C6 to sporadically become corrupted. If we were
debugging the system with a hardware prototype, we might first
investigate the link betweenC3 andC6 with a data analyzer to de-
termine whether the data is corrupted when it arrives atC6. In this
case, we still need the rest of the system to behave correctly, but we
don' t need detailed representation of any communication besides
that between betweenC3 andC6. If we are debugging with a simu-
lator, we would also like to avoid representing all of the details that
cost time, but which we don' t use.

We would like to be able to tell the simulator which data transfers
it should represent in detail, without having to write separate system
specifications for each level of detail. We would also like to be able
to dynamically alter this information during a simulation run. This
was the primary motive behind the design of thePia co-simulation
tools. ThePia co-simulation tools include a simulator, as well as
some other tools for easing the use of the simulator.
ThePia tools

� provide a mechanism for specifying multiple communication
models for each interface, and dynamically switching be-
tween them during the simulation run,

� includeprocessor synchronizationin the simulator scheduler
so that the observable actions of each processor are synchro-
nized through the scheduler. This eliminates the need for syn-
chronizing through OS primitives, and finally

� provide a mechanism for processors and processor blocks to
be described at different levels of detail. This allows: Proces-
sor simulators, re-compiled object code (as in [13]) as well
as source code compiled for the simulator host to be used to
model a processor. In most cases, we expect that source code
compiled for the simulator host processor will be sufficient
(unlike communication models, processor models cannot be
changed during a simulation run.)

To simplify the design of the simulator itself, we chose to imple-
ment it as a Ptolemy domain. Ptolemy is a simulation environment
which provides a graphical interface, primitives and tools for writ-
ing new simulation domains, and primitives for matching commu-
nications semantics between domains. In general, Ptolemy domains
are distinguished by their simulation semantics.

As part of our simulation environment, we include a language for
component and interface specification. This language is designed
to allow but not constrain the user to specify communications at
multiple levels of detail.

2.1 Driver abstraction and fast communication

Software usually communicates with the hardware as well as soft-
ware components on other processors through driver. Drivers can
be, and often are often hierarchically layered. For example, network
applications may call into astreamlevel driver which calls apacket
level driver, and in turn calls other drivers which actually manipu-
late hardware state. Each driver essentially hides all of the layers
below it. For example, it doesn' t matter to the application how the
stream layers communicate with each other, as long as they transfer
the right data.

Speed of communication is dependent on bothunit of transfer
which is the amount of information transferred on a single transac-
tion andtransaction overheadwhich is the cost to perform a trans-
action. If we move up the hierarchy of drivers, we usually find that
the unit of transfer grows with each step up. We can use this infor-
mation to find reasonable fast communication models for this sort
of system.

Fig. 2 shows two devices on a network. ThePia tools allow the
designer to define multiple communications models foreachlayer
in the driver hierarchy. For example, the stream layers in simulation
can communicate with each other directly, or they can communicate
through their respective packet layers. Similarly, each of the lower
layers can have multiple communications methods.

2.2 Synchronization

In Pia, each component keeps its own local time (tci for each com-
ponent,Ci). The system scheduler keeps track of system time,ts,
which is always less than or equal to all local times and is mono-
tonically increasing. Each component periodically synchronizes its

Packet

Stream

Application Application

Hardware

Direct communication

Stream

Packet

Hardware

(in the simulator)

Fig. 2: Direct communication between drivers at different levels

local time with the system time, by essentially blocking until sys-
tem time catches up. This typically occurs on input events. Fig. 3

C1 C2 C3 Cn

 B
Region

Region
 A

3
tc

2
tc

1tc
n

tc

to

ts
Increasing

Time

...Scheduler

Fig. 3: ts “pushes” alltc
i
s

shows howts essentially “pushes” all of the local times forward.
What this means is that no component will ever run with a local time
less than system time. This is enforced in different ways forac-
tiveandreactivecomponents, where reactive components are those
that require stimuli to run. Every time anactivecomponent yields
to the scheduler, it also informs the scheduler that it needs to run
again when system time equals its local time. This local time will
already be greater than or equal to system time, since system time
will not have advanced while the component was running.Reac-
tive components don' t set wakeup calls when they yield, however
their local time is set equal to system time if ever system time is
greater. This can be performed lazily,i.e. if a component has no
work to do, system time can be advanced many times without up-
dating the component's local time. However, when the component
is activated, all of the increments in system time must be reflected.

Fig. 3 shows that there are two regions in time, labeled “region
A” and “regionB”. RegionA is all time less thants and represents
time fully passed. Components with local times in regionB are
allowed to performsends but gets are prohibited. If a component
needs to execute aget while operating in this region, it must block,
and let the system time catch up. Whenever a component executes
aget, its local time is exactly equal to the system time.

2.3 Pia objects

Systems simulated underPia consist of the following four types of
objects:

� components- collections of interfaces and behavior (which
can include system software), and typically used to represent
physical components,

� interfaces- collections of ports, driver routines, and simple
asynchronous event handlers,

� ports - which directly connect an interface to the outside
world, and

� wires- which are used to connect ports.

2.4 Inheritance

Since thePia language requires fairly low level specifications, it is
important to provide some mechanism for sharing parts of specifi-
cations between similar components and interfaces. For example,
we may want to use the same stream layer direct communication
model for all types of network interfaces. For this reason,Pia pro-
vides a mechanism for inheritance.

The semantics ofPia inheritance are rooted inprototype-based
object-oriented inheritance [2, 8], rather thanclass-based. This
means that an object definition creates an instance of an object
rather than a class of objects. When we say one object inherits
from another, it means that the compiler actually copies parts from
the parent object into the child. It is possible to define interfaces
which never get imported or used directly. These are calledab-
stract interfacesor interface templates.

The primary purpose of interface inheritance is to allow libraries
of abstract interfaces to be created for groups of similar interfaces.
For example, one can define an abstractmemoryinterface, which
contains only driver routines for fast communications, but leaves
the details of bus level communication to the inheriting interface.

3 Pia Language syntax

The primary goal of thePia language is to allow the designer to
easily interact with thePia tools, and to describe components and
interfaces at many levels of detail. The language itself is similar to
C++, but there are some substantial differences. First of all,Pia is
not a general purpose object-oriented language; it has specific types
of objects that can only be used in certain ways.Pia is a prototype-
based language while C++ is a class-based language. Finally, most
Pia objects are implicitly active, while C++ objects are passive.

ThePia runtime system is aware of two different types of meth-
ods which may be present in an interface:

� driver routines (seqs)- software functions that communicate
with the hardware (although possibly through other driver
calls). These are important because they allow a component
to refer to an operation by name.

� handlers- asynchronous event or interrupt handlers.

Example 3.1 shows aPia language description of a simple memory
bus interface with a 32 bit data bus, a 32 bit address bus, and one
line each for read and write. This interface would be used with a
program that represents the software portion of an embedded sys-
tem. An example might be a C program that manipulates a frame
buffer in memory connected to this bus.

3.1 Explicit Timing and Synchronization

Pia depends on explicit code and action timing annotations to fa-
cilitate time accurate simulation. There are two timing primitives
provided to the user,advance(time)andsync(). Theadvanceprim-
itive is used to advance the local clock, and thesync primitive is
used to put the currently active object to sleep until the system time
equals local time. It is expected that in the near future, we will have
tools to automatically insert these annotations into the code - so that
the designer won' t have to worry about them.

Synchronization inPia (as in a discreet event simulator) is pro-
vided purely by simulation time-based event ordering. In this con-
text,eventsinclude: sends, gets, and syncs.

Example 3.1A simple interface description inPia

interface memoryf
mergeBusf

inout [32] DATA;
inout [32] ADDRESS;
out WR;
out RD;

g;
timesf write pulseduration:6ns,

addresssetuptime:3ns,
datasetuptime:3ns,
datahold time:3ns g;

init f
// Make sure we aren't driving the bus
Bus.DATA.settri();
Bus.ADDRESS.settri(); Bus.send();

g;
seqWrite (int A, int D) f

Bus.ADDRESS = A; Bus.DATA = D;
advance(addresssetuptime);
Bus.WR = 0;advance(write pulseduration);
Bus.WR = 1;advance(datahold time);
Bus.ADDRESS.settri(); Bus.DATA.settri();

g;
seqRead (int A) f

Bus.ADDRESS = A;
advance(addresssetuptime);
Bus.RD = 0;advance(datahold time);sync();
Bus.RD = 1;
return (DATA);

g;
g

3.2 Dynamic “seqs” and driver abstraction

The mechanism for switching between different implementations
of driver routines is provided throughdynamic seqs. A seqname
can refer to many multiple driver routines, while the choice of the
actual routine is deferred until runtime. The criteria for this choice
is an integer value which is maintained by each interface. This
value describes therunlevel or level of communications detail at
which the interface is running.

Example 3.2Dynamically dispatchedWrite seqs

defval hardwareLevel 0;
defval sharedMemory 4;

...
seqWrite (int A, int D);

seq[hardwareLevel] Write (int A, int D) f
Bus.ADDRESS = A; Bus.DATA = D;
advance(addresssetuptime);
Bus.WR = 0;advance(write pulseduration);
Bus.WR = 1;advance(datahold time);
Bus.ADDRESS.settri(); Bus.DATA.settri();

g;

seq[sharedMemory] Write (int A, int D) f
MemArray[A] = D;
advance(addresssetuptime +

write pulseduration +
datahold time);

g;

Example 3.2 shows twoseqs, for Write. In this example, writes
at run level “sharedMemory” (4) write the data directly to the mem-
ory array, instead of going through the simulated hardware to do so.
Pia provides the mechanism for switching to optimal communica-
tions methods, but actually generating these optimal methods is the
topic of [5].

3.3 Using inheritance

For a Pia object to inherit the characteristics of another, the
inherits keyword is used in its definition as follows:

interface DRAM inherits memoryf ...g

This indicates that the interface for DRAM inherits all of the
characteristics of a memory interface, except those which are
overridden by the DRAM interface specification.

4 Implementation

This section describes some of the implementation issues involved
in building thePia toolkit. The current implementation includes
a Pia language compiler, a Ptolemy simulation domain as well as
several simulated peripheral and test devices.

(Pia files)

Component
& Interface

Description

Estimator

Pre-
Processor

Domain

Pia Pia

Star
(C++ file)

Timing
Program

(C files)

Ptolemy

Fig. 4: WherePia tools fit in

4.1 Pia Pre-processor

ThePia pre-processor translatesPia interface and component de-
scriptions into Ptolemy stars.

AST w/
symbol tables

AST w/
symbol tables

Pia

AST AST

Codegen

(Inheritance)

Pre-transformScanner/
Parser

Scope/
typecheck

Transform

Fig. 5: Pre processor phases

The structure of the pre-processor is fairly standard (see Fig. 5).
The scanner and parser read the file and produce an Abstract Syntax
Tree (AST). This AST is then sent through several stages which
behave as follows:

� thepre-transformstage resolves inheritance,

� thescopingstage checks each definition into its active scope
(this is important, because each variable is later tagged with
the appropriate scope, and moved into a Ptolemy star defi-
nition, thus preserving the correct behavior for non-reentrant
code),

� the transformstage linearizes a component description, then
breaks it into atomically executable pieces, so that it can be
mapped to the Ptolemy fire-and-return model of execution (es-
sentially, the description is broken apart at syncs, and at call
sites where the callee contains a sync), and

� thecodegenstage produces a Ptolemy star.

The resulting star can be loaded into Ptolemy in thePia domain.
The “scoping” and the “transform” stages require a pre-processor
that actually understands the program structure, rather than a text
replacement tool, such as CPP.

4.2 The Pia simulation domain

ThePia domain is quite similar to Ptolemy's standardDE domain,
but with some important differences. Although thePia domain is
a timed domain the scheduler works with untimed components as
well.

In the Pia domain, portholes automatically consume particles,
and buffer the values so it is possible to check the current value of
a wire.Pia Portholes also have atransition()method, so that a star
can check to see if the current value is the result of arecentchange
in values.

The Pia scheduler containscheckpoint andrestore methods
for speculative communication. This allows a designer to safely
use faster communication modes, even when the methods them-
selves are not certain to be safe. Essentially, the designer can set
up the simulator so that it saves state occasionally, and if it detects
a dependency violation, it restores the stars to a known safe state,
and decreases the run level.

5 Experiments

This section describes two experiments performed with thePia
tools. In both examples, the software components were compiled
for the simulator host, and as such, ran at near workstation speed.
These experiments were performed on a Linux/Pentium-70 “work-
station” with 36 M of physical memory.

5.1 Experiment 1: Page transfer

C 1 C 2

ApplicationApplication
Page

Interface
Page

Interface

Bus

Shared memory

HardwareHardware
Word

Page

Reference

Fig. 6: Two communicating components

In this example,C1 fills 8KB pages with data, then sends them to
C2 (see Fig. 6). This experiment presents a nearly ideal situation
for Pia since there is very little computation, and lots of communi-
cation. We look at four separate communication models:

1. hardware - each word (4B) is sent toC2 through the bus, with
the full bus handshake protocol,

2. fast word - each word is directly transmitted toC2, without
going through the bus, but these writes are still synchronized
through the event queue,

Mode Transfer time
1 548.91 seconds
2 21.95 seconds
3 1.80 seconds
4 0.24 seconds

Tab. 1: Simulation times for 64 page writes

3. page transfer - the entire page is copied into a buffer, which is
then transmitted toC2, and

4. reference transfer - only a reference to the page is transmitted
toC2.

Note: There are applications where some modes may cause
inter-component data dependency problems. For example, mode
4 might not be safe ifC1 writes to to the page buffer beforeC2 can
act on the contents.

Table 1 shows the experimental results for 64 page writes (2
17 4

byte words, or219 bytes). It is interesting that in this example, there
is a marked speedup between mode 1 and mode 2 (about 25 times).
Since the only difference between these two modes is that mode
1 performs all of the bus actions for a memory write, and mode 2
does not, we can infer that about 96% of the time in mode 1 is spent
on this overhead. For a bus, this overhead is actually a function of
the number of citizens on the bus, since each citizen may need to
monitor all communications to determine which it needs to act on.

5.2 Experiment 2: Robot vision subsystem
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

C 1

Hardware

Proc. inter

HardwareHardware

Proc. inter

App

Shared Memory

Beh.

Bus

Adapter

Processor
ScreenBeh.

Cam inter Screen inter

Fig. 7: Robot vision subsystem

This experiment tests the effective speedup in a system with a mix-
ture of dense and sparse communication paths, and some non-trivial
computation. Essentially, this is an image processing system which
is loosely coupled to a robot's main processor. The main proces-
sor can issue commands such as “grab a new frame” and “send me
the center of the brightest object” or “send me the beacon offset.”
where the “beacon offset” would be the horizontal position of a lo-
cater beacon, in degrees from image center.

This system includes a camera with a controller, a processor, and
an LCD screen (see Fig. 7). The bus adapter generates an interrupt
whenever it gets a command from the main processor. On receiving
the interrupt, the image processor:

1. reads the command, and any data from the bus adapter,

2. performs the requested action, and

3. writes a return value to the bus adapter.

On each “grab a new frame” command, the processor also copies
the new frame to the LCD screen. There are 3 effective paths in this
system:

1. processor, bus adapter (low density),

2. processor, camera (high density), and

3. processor) LCD. (high density).

Configuration Transfer time
1 228.78 seconds
2 115.64 seconds
3 0.92 seconds

Tab. 2: Sequence times

For our experiments, we used two communication modes for each
high density path: Hardware accurate mode and shared memory
mode. Shared memory communication should be safe in this appli-
cation because because both the camera and the LCD are slaved to
the processor. This means that neither will read or write the mem-
ory unless the processor orders it.

Below are the specific configurations we tested.

1. All communications are through the bus and are interface ac-
curate.

2. The camera and processor communicate through shared mem-
ory, and the rest of the communication is interface accurate.

3. The camera and the screen both communicate with the pro-
cessor through shared memory, the rest of the system uses
interface accurate communication.

Table 2 shows the times to complete the following command se-
quence in each of the configurations:

1. get a new frame, and

2. find the center of the brightest section of the center scan line.

It's interesting to note that by switching only one of the high density
paths to shared memory mode we improved performance by less
than a half. The main reason for the tremendous speedup between
configuration 1 and configuration 3 is that the computation itself is
occurring at near native speed, so it doesn' t have a large impact on
simulation time.

6 Future work

We are looking at ways to automatically generate fast communi-
cation models from high level descriptions of a system [5]. These
can benefit from an understanding of the high level semantics of
communication. This sort of automation should be especially use-
ful when thePia tools are used to validate the output of automatic
synthesis tools such as Chinook [3, 4, 9].

While speculative communication(communication which may
cause dependency violations, and thus need to be reversed) should
allow us to use larger units of transfer than may be predictably safe,
it can also costmore than if smaller units of transfer were used in
the first place. This is because it is expensive to undo a commu-
nication once committed. We are looking into ways of statically
determining reasonably large units of transfer, that will give us fast
communication that will rarely need to be undone.

Pia currently offers only marginal software debugging support.
We are looking at ways of modifying a debugger (such as gdb) so
that it recognizesPia structures, and can give better feedback.

7 Conclusion

Hardware-software co-simulation of embedded systems can per-
form poorly for many reasons, but usually, it is related to an excess
of detail, i.e. the simulator is producing more detail than is actu-
ally required. Processor internal details can be abstracted away in
most cases. Communication can present a bigger problem, since
we don' t always know in advance what details we will need, and
which we can neglect. This paper presented techniques that gives

a designer the ability to focus in on certain communications, while
representing the rest with less detail, but still with the ability to
generate a full system workload.

Although the speedup for a specific system will vary depending
on the ratio between communication and computation, we expect
the techniques embodied inPia to lead to significant gains when
the focus is on a limited part of the system.

References
[1] BECKER, D., SINGH, R., AND TELL, S. G. An engineering environment for

hardware/software co-simulation. In29th ACM/IEEE Design Automation Con-
ference(1992), pp. 129–134.

[2] BORNING, A. Classes versus prototypes in object-oriented languages. InFall
Joint Computer Conference(November 1986).

[3] BORRIELLO, G., CHOU, P., AND ORTEGA, R. Embedded system co-design -
towards portability and rapid integration. NATO, 1995.

[4] CHOU, P.,AND BORRIELLO, G. Software architecture synthesis for retargetable
real-time embedded systems. InCodes/CASHE '97(1997).

[5] HINES, K., AND BORRIELLO, G. Optimizing communication in hardware-
software co-simulation. InCodes/CASHE '97(1997), IEEE, ACM.

[6] K IM, K., KIM, Y., SHIN, Y., AND CHOI, K. An integrated hardware-software
cosimulation environment with automated interface generation. In7th Interna-
tional Workshop on Rapid Systems Prototyping(June 1996).

[7] K LEIN, R. Miami: a hardware software co-simulation environment. InPro-
ceedings. Seventh IEEE International Workshop on Rapid System Prototyping.
Shortening the path from specification to prototyping(June 1996).

[8] L IEBERMAN, H. Using prototypical objects to implement shared behavior in
object oriented systems. InOOPSLA `86 Proceedings(September 1986).

[9] ORTEGA, R., AND BORRIELLO, G. Communication synthesis for embedded
systems with global considerations. InCodes/CASHE '97(1997).

[10] ROWSON, J. Hardware/software co-simulation. InProceedings of the Design
Automation Conference(1994), pp. 439–440.

[11] SCHNAIDER, B., AND YOGEV, E. Software development in a hardware simula-
tion environment. In33rd Design Automation Conference Proceedings(1996),
pp. 684–689.

[12] THOMAS, D. E.,AND COUMERI, S. L. A simulation environment for hardware-
software codesign. InProceedings, International Conference on Computer De-
sign(October 1995), IEEE CS Press.

[13] −ZIVOJNOVIĆ, V., AND MEYR, H. Compiled hw/sw co-simulation. In33rd
Design Automation Conference Proceedings(1996), pp. 690–695.

[14] VALDERRAMA , C. A., NACABAL , F., PAULIN , P., AND JERRAYA, A. A. Au-
tomatic generation of interfaces for distributed c-vhdl cosimulation of embedded
systems: an industrial experience. In7th International Workshop on Rapid Sys-
tems Prototyping(June 1996).

[15] VALDERRAMMA , C. A., CHANGUEL, A., AND JERRAYA, A. A. Virtual proto-
typing for modular and flexible hardware-software systems.Design Automation
For Embedded Systems(1996).

[16] WILSON, J. Hardware/software selected cycle solution. InProceedings of the
international International Workshop on Hardware-Software Codesign(1994).

	CD-ROM Home Page
	DAC97
	Front Matter
	Table of Contents
	Session Index
	Author Index

