Check for
Updates

TECHNOLOGY RETARGETING FOR IC
LAYOUT

John Lakos
Mentor Graphics Corporation
Warren NJ 07059

Abstract .

The ability to recognize polygon-based layout as a collection of

objects representing circuit elements connected by path-based wires,
enables existing designs implemented using an older fabrication
process to be reimplanted quickly in a new process. The approactr
taken here, based on layout generator technology, is to create a

collection of parameterized circuit objects that, with appropriaterpe industry needs a way to recover the objects (devices and wires)
arguments, are able to represent the devices (e.g., transistojigat were used to create the original layout.

contacts)

implicitly described in the flattened design. The

The design was originally implemented using a polygon-based
layout tool.

The original design was developed elsewhere and only the
GDSIlI mask data is provided.

The object-based tool that created the layout is no-longer
available.

recognition engine is fully programmable, is independent of anyl.2. Retargeting Process Overview
particular technology or device set, and is not restricted to manhatt

or even octilinear geometries. In this paper, we describe a nO"%?tlararchical repository of transistor-level layout information. The

three-phase approach to object recognition: device recognition, exagg,

wire recognition, and wire synthesis. We believe exact wire recognition

to be entirely new and cover it in detail. Experimental results

demonstrate the effectiveness of the algorithms on actual layout.

(Element S¢) (Element S¢)
1. Introduction Design Rules Design Rules
The electronics industry has amassed a huge inventory of intellectu Mask Layer3 Mask Layer3

property (IP) in the form of polygon-based layout of integrated| TECHNOLOGY

circuit (IC) designs. Computer-aided design (CAD) layout tools of

the past]] represented transistors and contacts as the intersection
polygons on separate layers. More recently, the trend has be
toward object-based layol®,8,4,5].

1.1. Object Based Layout

Treating devices as objects has several advantages:

% RECOGNITION
RULES A

e entire retargeting process assumes the existence of a persistent,

ps of this process are illustrated in Figure 1.

TECHNBOLOGY

Technology
Retargeter

GDslI
A

Object
Recognitio
Engine

GDSII
B

Grouping semantically related geometries on multiple layers to
form a single cohesive unit enables devices to be manipulated
at a level of abstraction higher than that of intersecting

polygons.

Creating a netlist is no longer an extraction procé3s39];
the netlist is explicit in the internal representation.

Each device type (e.dNTRAN)can be parameterized to form

a generator. Instead of providing separate cells for each
transistor size, a single generator element can adapt to an§
valid size based on the current value of its arguments, further
increasing flexibility.

By extending the set of parameter types to include non-scalaP-
primitive values, we are able to describe procedurally a bent-
gate transistor simply by defining its gate region witPash
argument.

Layout compaction is simplified; an entire device moves
naturally as a unit.

Often the only available representation of these designs is the GDSY
stream format used during fabrication (for the following reasons):

Design Automation Conference [

Copyright O 1997 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or al of thiswork for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear thisnotice and the full citation on thefirst page. Copyrights for
components of this work owned by othersthan ACM must be honored. d.
Abstracting with credit is permitted. To copy otherwise, to republish,

to post on servers, or to redistribute to lists, requires prior specific
permission and/or afee. Request permissions from Publications Dept,
ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.
0-89791-847-9/97/0006/$3.50 DAC 97 - 06/97 Anaheim, CA, USA

Polygon

Object Object
View A

View A View B
Forma Database

Compacte
View B

Figure 1: Retargeting Process Data Flow

A file containing polygon data is converted to an equivalent
representation in the form of a polygon view of the cell inside
the Forma™ database. (Forma is described in Section 1.3).

The polygon view, along with a compatible technology
defining appropriate mask layers, design rules, and element
types, are supplied to the object recognition engine. In addition,
recognition rules are supplied that describe to the ergine

to recognize each of the devices and wires within the polygon
view. The result is the object view of the same cell in the same
technology as illustrated in Figure 2.

For technology retargeting to be meaningful, each device and
wire configuration in the old technology will have a
(procedural) mapping to its semantically equivalent object in
the new technology. Using Forma’'s extension language, the
technology retargeter can iterate over the devices and wires in
Object View A, using the mapping to populate Object View B
with the corresponding objects defined in the new technology.

With devices now represented as objects in the new technology,
it is easy to use Forma'’s extension language to procedurally

http://crossmark.crossref.org/dialog/?doi=10.1145%2F266021.266201&domain=pdf&date_stamp=1997-06-13

resize, replace, or otherwise manipulate any device as needeatfributes that would most likely configure a particular element to
while Forma continues to preserve connectivity. match the geometries surrounding a given shape.

The overall recognition process has two phases:

1. Setup PhaseDescribe, to the recognition engine, how to recognize
geometries in a view as devices defined for a particular technology.

2. Recognition Phasednvoke the (now programmed) recognition
engine to process the Input view, recognize the devices, and place the
correspondingly-configured technology elements in the Output view.

Initially, the recognition engine is invoked with the specified
. technology defining the available mask layers and element types.
\F;ioel\),/vgon \O/ité]v(\a,Ct During the setup phase, the object recognition engine assimilates a
series of instructions, creating an internal representation of how each
Figure 2: Object Recognition Process device would be recognized. The final instruction is then to process
the Input view to create the Output view.
e. With wires now represented as path-based objects, a compactor
[10] is employed to move the devices as close to each other @&2. Setup Phase
the new design rules will allow, while preserving the The first step in the setup phase is to describe how to use boolean
connectivity. mask operations (as if]] to synthesize key geometries (calésed
f. Itis then a trivial matter to iterate over all the objects in theshapes) on supplemental layers that identify potential devices to be
compacted view and extract their geometries to create nefgcognized. For example, to identify all likely P-transistor gate

polygon data for fabrication in the new process. regions in a CMOS process having mask laj®s YandPDIFF,
we can synthesize a new layer with geometries that are the logical
1.3. The Forma Database AND of geometries on those layers:
In Forma, a design consists ofilarary containing a collection of LAYERDEF ptran = POLY AND PDIFF

cells A cell can have more than onéew (layout, schematic,
bounding box, etc.); the appropriate view is determined by th
context in which it is used.

ext we describe a sequence of recognition blocks identifying devices

at we hope to recognize. Each block associates an element in the
technology with (1) aeedayer and (2) a list of recognition statements
Each view holds its own collection efementsForma supplies a describing how best to configure this device relative to the current (seed)
generic set of built-in element types (eRECTANGLEPOLYGON shape on the seed layer. For example, to recognize a path-based P-
PATH TEXT, INSTANCB), and also a programmable element type,transistor TPQ whose gate region is identified BYOLY crossing
called anextensible elemeriiL1], which can be configured using PDIFF, we might create a recognition block as follows:
Forma’s extension languag8genie[12], to create types specific to
an IC process (e.gNTRANPTRAN MIM3. DEVICE TPC ptran

ORIGIN = ZERO_POINT

Elements represent the devices and wires in a view. Unlike previous _

layout tools 1,2,3,4,7,8,9], Forma is not limited to a hard-coded channel = PATH_OF SEED_SHAPE
element set. Instead, each view is associated with exactly one TRY
technology defining the types of elements that can be stored in it. END

Elements are programmable objects. Element attributes that can hBe block header associates element fp€ (made available by
modified (e.g., thewidth of a RECTANGLE belong to the the current Forma technology) with the (derived) seed [atyan .
EDITABLE category, but not all modifiable attributes are The first statement within the recognition blOCk alters the origin of
necessarily independent of each other. For example, we could aldte element from the center of the bounding box of the seed shape

set the lowerLeftCorner attribute of a RECTANGLE (default) to the point value (0, 0). The ofEFINING attribute of
potentially affecting both itength andwidth attributes. this device is th@ath value of itchannel . The second statement

applies the path recognition operation to the geometry of the current
The DEFINING category allows element authors to supply anseed shape in order to “guess” that value. The third and final
orthogonal subset OofEDITABLE attributes that completely statement instructs the recognition engine to check (using boolean
charact_erlze an element. In other_words_, cller]ts can cause an ele_mﬁ{gsk operations) to see if the geometries of ’RE element as
to_attain any achievable configuration simply by setting itscyrrently configured are contained in the original layout. If so, the
DEFINING attributes. device will be declared recognized; otherwise it will not. (The
recognition language is discussed furtherlis|.)

2. Device Recognltlon The order in which recognition blocks are specified is significant.
The issues surrounding the extraction of a netlist from mask artworkor example, path-based elements capable of matching the
are well understood6[7,8,9] Device recognition goes a step further geometries of bent-gate transistors are also capable of matching
by replacing portions of the polygon layout with objects thatthose of conventional ones (e.§l). Placing the recognition block
represent the equivalent layout, but as a cohesive unit. Previogsr the simpler element ahead of the block for the more complex one
attempts at device recognitioh314] assumed a fairly restrictive may result in a more efficient representation of the device.

class of device types. The underlying flexibility in creating almost

arbitrary elements in Forma, coupled with a small but powerfulg,_ Exact Wire Recognition

general purpose recognition language enables devices from a wide

range of fabrication process technologies to be recognized easily.Once all devices have been recognized, the remaining unrecognized
geometry (still in polygonal form) is presumed to represent the wires

2.1. Overview of the Recognition Process that connect them. Our goal is to represent this geometry, instead, as

Device recognition is accomplished by programming the objecPath-based wire elements, each having a centerline and a width. A

recognition engine with a sequence of actions, enabling it to mak@uting-based approach to synthesizing manhattan wires is
educated guesses about what values to supplPERINING presented in Section 4. Here we describe what we believe to be a new

technique for recognizing all-angle wires.

3.1. Overview of Wire Recognition when the width increases to the point where vertices 5 and 6 merge.)

As with object recognition, the first phase (setup) is to specify off an end is not known, it can be found through trial and error:
which layers wire recognition is to occur. When specifying a layer for (i = 0; i < N; ++i)

we must also identify the element to use and the name of the element for (j = 1; j < N/2; ++j)) o

attribute for the engine to use to reconfigure the path. If the element !][(egge[! :J.] is ”0: ?pprox"%ate'{.para”e'c}o edgeli BJD ﬁ_reak?
is not specific to that layer, then the name of the element attribute ('J ieNPZE)‘[IbreJ‘];[lI(S; ;}?iénpfggqailgrtﬁfe'g&gf by gﬁL!(;]JC]i?' e:jegae,
indicating the layer must also be specified:

WIRE POLY "WIRE" peditable layer Once an edge corresponding to an end of the path is known, it is easy

) -) to walk the perimeter of the polygon, averaging corresponding vertices
This WIRE recognition statement programs the engine to look orfe.g., 7&0, 6&1, 5&2, 4&3) to recover the original centerline. We then

layer POLY for paths (represented as polygons) using elemengerify the result by converting the path back to a polygon and check that

"WIRE" with Path attribute peditable ~ (short for “primary the two polygons are equivalent (modulo rotation of vertex numbers).

ditable”) and_ ttributel . ' ')
editable’) and.ayer attributelayer By convention,edge[i] connectsvertex[i] to vertex[i+1], and all

For each wire recognition statement (in the order specified) arithmetic on edge and vertex indices is modulo the number of
gonﬁtg“fe e'temet”fﬁWittt']‘ currehayer d(ig ntEhEdEd)- + statement edgesN. We use the notion afpproximatelyparallel because we
Fé?%gcfgﬁyégﬁ inﬁhescﬁifgﬁf@%r e Bug{ggogsn?zigs{;' cannot rely on the corresponding edges of a segment to be exactly

GuessPath whose perimeter is the curréPlygon. parallel and on grid (for example, where fveandax of the middle

ConvertPath toPolygon and compare with current one. segment in Figure 4b are relatively prime).

If not same, continue with neRblygon on currentayer . . .

Configure element with newly identifidath . Rectangular polygons can be recognized as short-wide or long-

Verify all geometry of element is contained in Support view. narrow paths. Circuit designers along with CAD tools (such as a

Kdraot, Contlfnule Wlthtﬂteﬁolygon_ Oé‘ currenLayer . compactor) may be confused by an arbitrary orientation of the
Subtract gg%gtr‘; g;nrggog%izgg%?gﬁgnt\s”ggh Unrecognized view. centerline. Edge weighBs(not adjacent)l (partially adjacent)and

3 (fully adjacent)with respect to recognized geometry (see Section
Figure 3: High-Level Wire Recognition Algorithm 3.3) are used to influence the choice. The opposing edges with the

. - . o reater combined weight are treated as ends. In the event of a tie, a
During the recognition phase, after device recognition is complete, “I%ng-narrow wire is preferred.

sequence of wire recognition commands is applied to the geometries
remaining in the Unrecognized view. As described in Figure 3, thg8.3. Path Reparation
engine attempts to guess a path whose perimeter exactly matches K@B
of the polygon (see Section 3.2). If successful, the specified Wir&q
element is configured and tested against the geometries in the Supﬁ)rqr

evice geometries are extracted from the unrecognized view, it is not
ommon for overlapping geometries to be lifted from wires resulting

the wire, and devid® eclipses part of the interior of the wire.
3.2. Path Recognition

. . . . D
An important subtask of recognizing wires and bent-gate tranS|st0L,. . . N A
is to convert a giveRolygon to aPath representing equivalent ‘ C
geometry if one exists. In our approach to path recognition, we make m B
the following assumptions:
. . (a) Before Devices are Recognized (b) After Devices are Recognized
(1) ThePolygon to be recognized was at one time represented _.
as aPath with evenwidth and itscenterline on grid Figure 5: Damage to Wire During Device Recognition
(2) ThePath was converted to Bolygon by calculating the , ~ *edge adjacent to geometry in Recognized yiew
vertices of the perimeter using real coordinates and thep .. L i p Pl
independently rounding them to the closer integed) coordinate. *E
. . idth —
(3) The resultind?olygon does not cross |tself.4lwI |3 ti J
ConditionA ConditionB ConditionC
-AY . . .
—AX > 4§ Oedge indices andj such that for a polygon with edges:
VA AL 77N mod\> 2
= \‘ " 2 3 > 2. edgei] and edgg] are not touching recognized geometry
B4 - Gerterline £ 3. edgel+ 1] ... edgg[— 1] are touching recognized geometry
E N 2 4. edge] is approximately parallel to edgk[
0 Ax/l) 1 5. edgel is approximately colinear with edgg[
Left Then Riaht Bend) T wve Right Bend 6. edgel has positive projection on edgje[
(a) Le en Right Ben (b) Two Consecutive Right Bends B L (i +N) modN > 1 . -
Figure 4: Converting a Path to a Polygon 2. edgei] and edgg] are not touching recognized geometry
3. edge[+ 1] ... edgg[- 1] are touching recognized geometry
Figure 4 shows two non-manhattan paths. Constructing the 4. edgel is not approximately parallel to edge[])
perimeter of either path amounts to identifying integral vertices 9 > e)étiﬁ?s'ignng{ eg??g?fitrﬁgft: d”%%grt"ég ex.ﬁens'on of eqpa(pointp
through 7. Using real numbers initially, we calculate parallel lines - pointp P 9 99
half width to the left and right of each segment of the centerline. We € % Ge d—g'afﬁ g%é“ggé\‘dialre ot touching recognized geometry
gg?at'hetﬂ roundddthde points of |ngerse;:t|r(])n for consecutive segmentsjto 3 edgel+ 1] ... edge[- 1] are touching recognized geometry
An important observation is that each vertex on the.centerline will g: ggggﬂ ﬁa';o;:‘;;t{\%'gg}gziggl?ﬁ%rd‘-év'et[h edge]
always be the average of the two corresponding points of

intersection if they exist. (A degenerate case occurs in Figure 4b Figure 6: Perimeter Damage Detection Criteria

In order to recognize Rath , it is first necessary to repair the wire an array of paths to hold the optimal solution, the original polygonal
geometry. The problem is formulated as follows: Given (1) a closedire, the edge adjacency (weights) with respect to recognized
Polygon with N > 2 edges, and (2) an array weightsidentifying geometry, and a technology-dictated minimum wire width. The
whether each edge i®lly adjacent partially adjacent or not original polygon is copied and repaired using the techniques
adjacentto geometry in the Recognized view, modify Eraygon described in section 3.3. The recursive algorithm
in a way that it can be recognized dadh that is still contained in recognizePaths1 (described below) is then invoked to obtain
the Support view. (the index of) an optimal solution.

struct Cache {
PathCache d_paths;

The procedure for repairing (perimeter) damage of typds, and

C is to iterate over the edges of the polygon looking for condition
that indicate a repair is needed. Each of the three types of perimete
damage has a corresponding detection and replacement routine
Each detection routine takes the current polygon configuration, edge
adjacency information, and an edge index, and returns the index of .
second edge satisfying the condition or —1 if no such edge exists. |I
the condition is detected, the corresponding replacement routine |is
called with the two edge indices to repair the detected damage.

Figure 6 illustrates the conditions under which each type o
perimeter damage will be detected for the specified polygon, edd
adjacency, and edge indidesnd]j. The corresponding replacement
actions are given in Figure 7.

/I current set of unique paths
PolygonCache d_polygons; // current set of unique sub-polygons
Int32Matrix d_solutions; / map each sub-polygon to best set of
Float64Array d_scrapArea; /I left-over-area cost for each solution
Int32Array d_numPaths; /I path-count cost for each solution
Int32Array d_numSegments; // segment-count cost for each solutig
int d_minPathWidth; /I minimum width for path on this layer

paths

=]

h

double /I return total unrecognized area

recognizePaths(PathArray *result, // loaded with best solution
const Polygon &shape, /I original polygon
const Int32Array &edgeWeights, // w.r.t. adjacency
int minPathWidth) // avoid design rule violations.

€
{

Cache data; // records solutions with cost for dynamic programmin

A: a. set edgeWeighi$F PARTIALLY_ADJACENT g?)tl%d&msiﬂzgéhz\/\f%tﬁa; erT}inPathWidth; /I initialize scalar value in stfuct
- b. remove vertgx[+ 1.] ... vertexj) Int32Array edgeWeightsZ' = edgeWeights;
B: a. set edgeWeights][i] = PARTIALLY_ADJACENT repairPath(&shape2, &edgeWeights2);
b. set edgeWeights|j] = PARTIALLY_ADJACENT int bestSolutionindex = recognizePaths1(&data, shape2, edgeWeights2);
c. remove vertex[+ 1] ... vertex— 1] . Int32Array& pathindices = data.d_solutions[bestSolutionindex];
d. set vertex] to intersection of (extended) ralyand —rayj] for (inti = 0; i < pathindices.numElements(); ++i)
C: a. set edgeWeighist 1] = FULLY_ADJACENT result->append(data.d_paths[pathlindicesli]]);
b. remove vertex[+ 2] ... vertex]— 1] return data.d_scrapArea[bestSolutionindex];
c. set edg& = (pointp where perpendicular to edgjefit vertex[] }
intersects edgég[vertex(j])
c! set edgeE = (vertex| + 1], pointp where perpendicular to edge[; . Ydinh. ; s
at vertex] + 1] intersects edgd] Figure 9: High-Level Wire Partitioning Strategy
d. foreachkin {i+1..j} . L
translate edgg to its left until vertexg] is not to the left of The Cache data structure contains two separate associative arrays
e. set vertex[+ 1] = E[0] and vertexj] = E[1] to hold the unique sub-polygons and paths encountered during

exhaustive search. Ti@ache also contains a mapping from each
polygon to the set of paths that optimally represents it. Three parallel

: . - : : -_.Arrays are used to track tb@stof each solution. The minimum path
Prior to wire recognition, each polygon in the Unrecognized V'em{’/ividth is also stored for reference.

with holes(damage typ®) is converted to a simple polygon and a
list of simple holes. Using boolean mask operations, each hole
compared with the corresponding layer in the Support view. Hol
shapesiot contained in the Support view (rare) are subtracted from
the simple polygon

3.4. Path Partitioning
Polygons that result from intersecting wires (see Figure 8) cannot be

Figure 7: Replacing Vertices to Repair Path

cAssume that any damage to the polygon has already been repaired.
n Lookup the current shape in the polygon cache; if found return its ind
If we can recognize the polygon as simple path
If the path’s width is below the minimum
Add to cache solution with no paths and return its index.
Add to cache solution with recognized path and return its index.

£X.

/I No easy solution; we're forced to divide
/I the polygon into two sub-polygons.

recognized as a single path. In such cases, we must try to decomp
that polygon into sub-polygons that can be recognized. Thi

generalization of the exact wire recognition problem is to find a se

of paths:
(1) whose geometry is contained in the Support view,
(2) that minimizes the arewt covered by the original polygon,
(3) of minimal cardinality (i.e., number of distinct paths), and

(4) having minimal combined number of segments (or corners).

(a) Original Polygonal Wire (b) Optimal Path-Based Wires

Dint bestSolutionE —1,bestSolutionz —1; // invalid index values
5 For each edge indek, of the polygon
t For each edge indey, of the polygon
For each way to partition the polygon based on edgeslj
Divide the problem into two problemshapel andshape2 .
Repair each sub-polygon (if needed).
Call this procedure recursively on each subproblem.
If the new combined solution improves on the current one
Record the new indices bestSolutionandbestSolution2
If bestSolutionhow holds a valid inde»(0)
If the combined left-over area of the solutions is zero
If the combined number of segments is exactly 2
break; // any solution with 2 segments leaving O area is bes
If bestSolutionholds a valid index

it

Add to cache solution combining both best solutions and return its i

hdex.

Figure 10: Recursive Wire Partitioning Algorithm
When the algorithm returns to the top-level, @&che (initially

empty) contains all of the sub-polygons resulting from recursive
partitioning. The integer value returned identifies the index of the
original polygon in the polygon cache—the corresponding row in
Using dynamic programmindL§] our plan is to try all reasonable the solution matrix contains the indices in the path cache for the
partitions of the polygon and select the one that minimizes the cosptimal path-based representation. The final 4 lines in Figure 9
criteria above. Figure 9 illustrates the top-level recognitionextract the optimal solution and load the paths into the client-
procedurerecognizePaths and its associated (C++) dynamic supplied PathArray , returning the amount of unrecognizable
programming data structur€ache. The input to the procedure is geometry as double.

Figure 8: Polygonal Wire Requiring Decomposition

The recursive partitioning algorithm (Figure 10) exploits dynamiccan be repaired (if necessary) before attempting to recognize it as a
programming techniques to avoid solving any subproblem moreath.

than once. On entry, weokupthe index of polygon in the cache. If
found, the optimal partition for this polygon has already beerl T: REPLACEMENT FOR SHAPE 1:

determined; we immediately return the index as the solution al. ife%d%m?i%ﬁ[: ﬁtt‘ﬁgjﬁggm}- &&
Otherwise we try to recognize the polygon as a simple path. | thengleavege dgeWeight]s_[:: ALL ADJACENT
successful, we enter the path in the path cache, add the polygon|to else set edgeWeightsE PART_ADJACENT
the polygon cache, create a corresponding row in the solution matrjx a2. Remove vertext 1] ... vertex]

consisting of just the one index of the recognized path, and return the REPLACEMENT FOR SHAPE 2:

solution index. If this polygon cannot be recognized as a simpl bl. set edgeWeighfsE ALL_ADJACENT

path, we must partition the polygon into two sub-polygons, call th b2. remove verteifr 1] ... vertexf]

function on each sub-polygon recursively, and merge the individual
solutions to form a solution for this polygon. How we partition the
polygon will determine the quality of our solution.

=

(left of partition

(right of partitio

=]
=

Figure 12: Vertex Replacement For T Criteria

The L criteria is particularly useful for recognizing multi-width

. . . wires and tapered power busses. Xheriteria is used to recognize

The approach taken here is toatyreasonable partitions and install oygjanning evires. E)I'he vertex replacement algorithm:tfangx

the solution corresponding to the partition resulting in a path-basegh yitions are similar in concept to the one Tomartitions, but

representation of minimal cost as defined above. Although thg,,gigeraply more involved: they can be found.B17]. Figure 8b

Eumbgr of aLtl)ltr?ry rﬁ’c"ygto”f"" par(tjl_tlonst IS est,)sergtla;lly |nff|r|1|te, t‘(‘t’.eshows how each of these criteria are applied to recognize the optimal
ave been able to characterize a discrete subset of useful partiti . - : -

using 3 disjoint criteriaT, L, andX. (See Figure 11.) Oﬁ‘&th based representation of a single complex wire.

] I
P

Oedge indices andj such that %or a polygon witl edges:

a

such thatd — vertex|]| < jp — vertex[]|;
if |g— vertex]| == p — vertex[]| thenq must
not be part of an edge whose index falls betwesedj

. —ray[i] does not intersect any other edge or vertex at jppint

such that |g’ — vertekf+ 1]| < |p’ — vertex[+ 1]|;
if |g’ — vertexj + 1]| == p’ — vertexf + 1]| thenq’ must
not be part of an edge whose index falls betwesdi + 1

such thatr] — vertex]j + 1]|< |p’ — vertex] + 1]

Figure 11: T, L and X Partitioning Criteria

ConditionT ConditionL ConditionX 4. Wire Synthesis
' H A significant fraction of viable, full custom designs were originally
— — — p conceived entirely as polygons. Arbitrary polygonal wires do not

necessarily lend themselves to “exact” path-based representation
(see Figure 13a). Still, we would like to take advantage of IP invested
in such designs. Here we present an alternative to exact recognition

T: 1. §—i+N)modN>2 that synthesizes manhattan paths (suitable for compaction) that are
2. edgel] is approximately parallel to edgg[(1) contained within the original layout and (2) preserve connectivity
3. edge] is approximately colinear with edgg[(see Figure 13b)
4. edgei] has positive projection on edgle[’
5. edgei] has negative orientation w.r.t. edge[1] |
6. rayj] intersects ray[- 1] at pointp . . I:- -:|
7. rayj] does not intersect any other edge
L:1. §—i+N)modN>1 Not-~ Not .
2. Either edgé[is not approximately colinear with edgje| L} Recognized Recognized
or edgei] has negative projection on edge| - .)
3. edge he?s Eegativegorientgtiojn W.rt, ed'ge[% [(a) Original Polygonal Layout (b) Devices and Path-Based Wires
3’ edge| — 1] has negative orientation w.r.t. edge[; . i
4. rayj] intersects edgg[or vertex]] Figure 13: Synthesizing Manhattan Paths From Polygons
4 —rayli] intersects edgg[or vertex[] ini ; ; ; ;
5. ray]] does not intersect any other edge or vertex at point Each polygon remaining in the unrecognized view after device

recognition represents geometry that may be required to connect two
nodes originally on the same net. We use Forma’'s connectivity
extraction capability to infer net information for geometries in the
Recognized view. For each unrecognized polygon, we create a
routing region that is the union of the unrecognized polygon and all
adjacent geometry in the Recognized view. The problem now reduces
to finding, for a specified width, (1) a minimal set of paths (2) of

X:1. (—i+N)modN>1 L 3 AV
2. edgd] is not approximately parallel to edgje[minimal length (3) with minimal total number of segments (corners),
g; f?g)ll][iifﬁfesrzggs—frg)vill ?t l;g'iﬂtt% that restores the adjacent geometry in the recognized view to a single
4. rayl] does not intersect any ather edge at paint net. The details of the solution employed can be fountbiag.
such thatd — vertex| + 1]|< |p — vertex + 1]| i
4. —ray[i] does not intersect any other edge at pgint 5. Exper|menta| Results
such thatd’ — vertex[]| < |p’ — vertex[]| h B . o)
5. —rayf] does not intersect any other edge at point The object recognition engine is implemented in C++ as a
_ such thatr|— vertex[]| < |p - vertex[]|) hierarchical collection of 62 components (about 45,000 lines, 40%
5: ray[)] does not intersect any other edge at point commentary). Each component has an associated test driver (35,000

lines, 38% commentary) to exercise and validate that functionality
independently of other components (as recommended d)). [
Forma, also implemented in C++, is an order of magnitude larger.

By far the most common, the partitioning criteria identifies wires

that form T-like connections (though not necessarily at 90 degreesjhroughout the recognition process we exploit efficient elementary
If two wire edges, edgg[and edgg], are colinear and edggfan vector calculus techniques to avoid explicit use of expensive
be extended through the interior of the polygon to meet gatjgln ~ trigonometric functions1[9]. Figure 14 illustrates the two steps of
the polygon can usefully be partitioned by severing the geometry di¢cognizing first devices and then wires for a simple CMOS (half)
either side of the extended edge. The algorithm requires that we copkift register cell. Initially (a) the recognized view is empty. After all
the polygon intshapel andshape2 , and then use thE vertex ~ devices are recognized, the geometry is divided among the two
replacement algorithm (Figure 12) to remove unwanted verticegiews (b). Finally after exact wire recognition, all but the right well
corresponding to the severed geometry. Although partitioning dog€gion has been recognized as devices and path-based wires (c).

n:)t “??]ke use oé_dge_Wehightz dirc?Ctly' it is neﬁessaryhforghesle The algorithms described here have been applied both in isolation and
algorithms to maintain the edge adjacency so that each sub-polyg@iheiher on a variety of hypothetical test cases. The recognition engine

has been used to convert entire CMOS standard cell libraries fro@. Conclusions
GDSII polygons to circuit objects and path-based wires. Sample data) .
included bent-gate transistors and non-manhattan geometries. So}‘?@ have demonstrated a viable and general flow for extracting IP
cells were the output of object-based layout t@8 fonverted back ~ 1OM existing polygonal IC layouts in older process technologies and
to polygonal form while others were conceived as polygdns [retargeting them to new technologies. At the core of this flow is the
ability to recognize an extensible set of devices and path-based wires

In all cases, CMOS transistors and contacts were recognizegs objects solely from their polygonal representations. In addition to
correctly 100% of the time. For output originally created in ana profoundly general device-recognition capability, the major

object-based layout tool, wire recognition was perfect (except fogontribution presented here is the ability to repair, partition and
notch filling and some well regions). It was also noticed that somgscognize complex all-angle wires efficiently. For polygonal layout

tools have an off-by-one error in the way they generate the perimetgfiginally conceived as objects, the recognition capability is nearly
of a path on a gridded system. We were able to compensate b90%. Wire synthesis effectively augments exact recognition where
introducing an optional vertex tolerance and then rounding off-byarbitrary polygons are used to interconnect devices.

one centerline coordinates to the nearest multiple of 5.

For hand-generated polygonal layout, the results were stilf. Further Work

surprisingly good. Designers implementing 45-degree wires oftef; present, we are not able to recognize devices that contain multiple

follow a pattern consistent with path based recognition. We noticedeeq shapes on a seed layer (such as arrayed contacts and bipolar
however, that the database resolution affected whether a digitiz vices). By embedding recognition commands in a much more

non-manhattan polygon was in fact an accurate representation of tgg,erful language (such as Genl&]j we would be able to write
rounded perimeter coordinates of a path. Selecting the approprialghisticated recognition rules based on dbetextin which the
scale enabled us to solve this problem. device is used. Also, more work is required to predict under what

The executable size on disk (including Forma) is 10.7 megabytegonditions exact recognition requires limiting, and how to improve
Runtime for the example in Figure 18 was 24.1 CPU seconds (40 waligrformance under those conditions.

running on a SPARC 20 model 51 workstation with 64 megabytes @fiy, thanks to Joe Cicchiello, Richard Eesley, Gad Gruenstein, and

memory. The device recognition performance is roughly linear in th&freq Schmidt for their direct contributions to this research.
number of devices (due in part to the geometric sorting of objects

within Forma). Exhaustive search for some wires can occasional
become proh)ibitive despite our dynamic programming approach. ¥* References

has therefore been necessary to provide limits on how much time[l§ Calma Reference Manual, Calma Company, General Electric
spent on each polygonal wire (1) looking for a solution that covers all ~ Corporation, Fairfield, CT, 1982.

the unrecognized material, and (2) once found, how much additiongl] Matheson, T. G., C. Christensen, and M. R. Buric, A software

time we are willing to spend trying to improve on that solution. environment for building core microprocessor compilers, Proc.
ICCD, pp. 221224, 1985.
(a) [3] Draney, _M., R., Metho_d and apparatus for n_ecording and
L L rearranging representations of objects in a coordinate system,
- L] U.S. patent #4829446, 1989.
L B L [4] 1C Station, Mentor Graphics Corporation, Wilsonville, OR.
; - [5] Duh, J, T. G. Matheson, and E. Hepler, Efficiently embedding
BEEEE B - expertise in high-density process-portab_le, _standard cell
“ ™ generators, Proc. IEEE Custom Integrated Circuit Conf. pp. 497—
500, 1995.
- - [6] Bryant, R. E., A switch-level model and simulator for MOS
Initial Unrecognized View Initial Recognized View digital systems, IEEE Transactions on Computers, Vol. C-
33:160-177, 1984.
(b) L L] [7]1 Dracula, Cadence Design Systems, San Jose, CA.
I L L [8] Checkmate, Mentor Graphics Corporation, Wilsonville, OR.
momwE | m [9] Caliber, Mentor Graphics Corporation, Wilsonville, OR.
; - [10] Boyer, D. G., Symbolic layout compaction review; Proc. 25th
" 5 =W " Design Automation Conf., pp. 383-389, 1988.
- = [11] Matheson, T. G., Integrated circuit design apparatus with
5 - extensible circuit elements, U.S. patent pending.
Unrecognized After Devices Recognized After Devices| (12] gg?porﬁteglrs, W?I;%?]r\ilirlrl]er,r]lor‘ig. language, Mentor Graphics
(©) = - [13] Polygon to Symbolic, Cadence Design Systems, San Jose, CA.
- - [14] Dufourd, J., The stickizer: a layout to symbolic converter, Proc.
5 ICCAD, pp. 534-537, 1989.
preTe B . [15] Lakos, J. S., Ph.D. dissertation, Computer Science, Columbia
. = University, New York, NY, expected 1997.
I = [16] Bellman, R. E., [1957], Dynamic Programming, Princeton
S University Press, Princeton, NJ.
- - [17] Lakos, J. S., Exact (all-angle) wire path recognizer, U.S. patent
Unrecognized After Wires Recognized After Wires pending. i i i .
[18] Lakos, J. S., Sub-virtual-grid point-to-point router, U.S. patent
Figure 14: Result of Device and Wire Recognition pending.

[19] Lakos, J. S., Large Scale C++ Software Design, Addison Wesley,
Reading, MA, 1996.

	CD-ROM Home Page
	DAC97
	Front Matter
	Table of Contents
	Session Index
	Author Index

