
TECHNOLOGY RETARGETING FOR IC
LAYOUT

John Lakos
Mentor Graphics Corporation

Warren, NJ 07059

Abstract
The ability to recognize polygon-based layout as a collection of
objects representing circuit elements connected by path-based wires,
enables existing designs implemented using an older fabrication
process to be reimplanted quickly in a new process. The approach
taken here, based on layout generator technology, is to create a
collection of parameterized circuit objects that, with appropriate
arguments, are able to represent the devices (e.g., transistors,
contacts) implicitly described in the flattened design. The
recognition engine is fully programmable, is independent of any
particular technology or device set, and is not restricted to manhattan
or even octilinear geometries. In this paper, we describe a novel
three-phase approach to object recognition: device recognition, exact
wire recognition, and wire synthesis. We believe exact wire recognition
to be entirely new and cover it in detail. Experimental results
demonstrate the effectiveness of the algorithms on actual layout.

1. Introduction
The electronics industry has amassed a huge inventory of intellectual
property (IP) in the form of polygon-based layout of integrated
circuit (IC) designs. Computer-aided design (CAD) layout tools of
the past [1] represented transistors and contacts as the intersection of
polygons on separate layers. More recently, the trend has been
toward object-based layout [2,3,4,5].

1.1. Object Based Layout
Treating devices as objects has several advantages:

• Grouping semantically related geometries on multiple layers to
form a single cohesive unit enables devices to be manipulated
at a level of abstraction higher than that of intersecting
polygons.

• Creating a netlist is no longer an extraction process [6,7,8,9];
the netlist is explicit in the internal representation.

• Each device type (e.g.,NTRAN) can be parameterized to form
a generator. Instead of providing separate cells for each
transistor size, a single generator element can adapt to any
valid size based on the current value of its arguments, further
increasing flexibility.

• By extending the set of parameter types to include non-scalar
primitive values, we are able to describe procedurally a bent-
gate transistor simply by defining its gate region with aPath
argument.

• Layout compaction is simplified; an entire device moves
naturally as a unit.

Often the only available representation of these designs is the GDSII
stream format used during fabrication (for the following reasons):

• The design was originally implemented using a polygon-based
layout tool.

• The original design was developed elsewhere and only the
GDSII mask data is provided.

• The object-based tool that created the layout is no-longer
available.

The industry needs a way to recover the objects (devices and wires)
that were used to create the original layout.

1.2. Retargeting Process Overview
The entire retargeting process assumes the existence of a persistent,
hierarchical repository of transistor-level layout information. The
steps of this process are illustrated in Figure 1.

Figure 1: Retargeting Process Data Flow

a. A file containing polygon data is converted to an equivalent
representation in the form of a polygon view of the cell inside
the Forma™ database. (Forma is described in Section 1.3).

b. The polygon view, along with a compatible technology
defining appropriate mask layers, design rules, and element
types, are supplied to the object recognition engine. In addition,
recognition rules are supplied that describe to the enginehow
to recognize each of the devices and wires within the polygon
view. The result is the object view of the same cell in the same
technology as illustrated in Figure 2.

c. For technology retargeting to be meaningful, each device and
wire configuration in the old technology will have a
(procedural) mapping to its semantically equivalent object in
the new technology. Using Forma’s extension language, the
technology retargeter can iterate over the devices and wires in
Object View A, using the mapping to populate Object View B
with the corresponding objects defined in the new technology.

d. With devices now represented as objects in the new technology,
it is easy to use Forma’s extension language to procedurally

Forma Database

RECOGNITION
RULES A

TECHNOLOGY
B

Element Set

Design Rules

Mask Layers

Polygon
View A

Object
View A

Compacted
View B

Object
View B

GDSII
B

GDSII
A Compactor

Object
Recognition

Engine

Technology
Retargeter

TECHNOLOGY
A

Element Set

Design Rules

Mask Layers

Design Automation Conference 
Copyright  1997 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers, or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Publications Dept,
ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.
0-89791-847-9/97/0006/$3.50 DAC 97 - 06/97 Anaheim, CA, USA

http://crossmark.crossref.org/dialog/?doi=10.1145%2F266021.266201&domain=pdf&date_stamp=1997-06-13

 2

resize, replace, or otherwise manipulate any device as needed,
while Forma continues to preserve connectivity.

Figure 2: Object Recognition Process

e. With wires now represented as path-based objects, a compactor
[10] is employed to move the devices as close to each other as
the new design rules will allow, while preserving the
connectivity.

f. It is then a trivial matter to iterate over all the objects in the
compacted view and extract their geometries to create new
polygon data for fabrication in the new process.

1.3. The Forma Database
In Forma, a design consists of alibrary containing a collection of
cells. A cell can have more than oneview (layout, schematic,
bounding box, etc.); the appropriate view is determined by the
context in which it is used.

Each view holds its own collection ofelements. Forma supplies a
generic set of built-in element types (e.g.,RECTANGLE, POLYGON,
PATH, TEXT, INSTANCE), and also a programmable element type,
called anextensible element[11], which can be configured using
Forma’s extension language,Genie[12], to create types specific to
an IC process (e.g.,NTRAN, PTRAN, M1M2).

Elements represent the devices and wires in a view. Unlike previous
layout tools [1,2,3,4,7,8,9], Forma is not limited to a hard-coded
element set. Instead, each view is associated with exactly one
technology defining the types of elements that can be stored in it.

Elements are programmable objects. Element attributes that can be
modified (e.g., thewidth of a RECTANGLE) belong to the
EDITABLE category, but not all modifiable attributes are
necessarily independent of each other. For example, we could also
set the lowerLeftCorner attribute of a RECTANGLE,
potentially affecting both itslength andwidth attributes.

The DEFINING category allows element authors to supply an
orthogonal subset ofEDITABLE attributes that completely
characterize an element. In other words, clients can cause an element
to attain any achievable configuration simply by setting its
DEFINING attributes.

2. Device Recognition
The issues surrounding the extraction of a netlist from mask artwork
are well understood. [6,7,8,9] Device recognition goes a step further
by replacing portions of the polygon layout with objects that
represent the equivalent layout, but as a cohesive unit. Previous
attempts at device recognition [13,14] assumed a fairly restrictive
class of device types. The underlying flexibility in creating almost
arbitrary elements in Forma, coupled with a small but powerful,
general purpose recognition language enables devices from a wide
range of fabrication process technologies to be recognized easily.

2.1. Overview of the Recognition Process
Device recognition is accomplished by programming the object
recognition engine with a sequence of actions, enabling it to make
educated guesses about what values to supply asDEFINING

attributes that would most likely configure a particular element to
match the geometries surrounding a given shape.

The overall recognition process has two phases:

1. Setup Phase–Describe, to the recognition engine, how to recognize
geometries in a view as devices defined for a particular technology.

2. Recognition Phase–Invoke the (now programmed) recognition
engine to process the Input view, recognize the devices, and place the
correspondingly-configured technology elements in the Output view.

Initially, the recognition engine is invoked with the specified
technology defining the available mask layers and element types.
During the setup phase, the object recognition engine assimilates a
series of instructions, creating an internal representation of how each
device would be recognized. The final instruction is then to process
the Input view to create the Output view.

2.2. Setup Phase
The first step in the setup phase is to describe how to use boolean
mask operations (as in [7]) to synthesize key geometries (calledseed
shapes) on supplemental layers that identify potential devices to be
recognized. For example, to identify all likely P-transistor gate
regions in a CMOS process having mask layersPOLY andPDIFF,
we can synthesize a new layer with geometries that are the logical
AND of geometries on those layers:

LAYERDEF ptran = POLY AND PDIFF

Next we describe a sequence of recognition blocks identifying devices
that we hope to recognize. Each block associates an element in the
technology with (1) aseed layer and (2) a list of recognition statements
describing how best to configure this device relative to the current (seed)
shape on the seed layer. For example, to recognize a path-based P-
transistor (TPC) whose gate region is identified byPOLY crossing
PDIFF, we might create a recognition block as follows:

DEVICE TPC ptran

ORIGIN = ZERO_POINT

channel = PATH_OF SEED_SHAPE

TRY

END

The block header associates element typeTPC (made available by
the current Forma technology) with the (derived) seed layerptran .
The first statement within the recognition block alters the origin of
the element from the center of the bounding box of the seed shape
(default) to the point value (0, 0). The onlyDEFINING attribute of
this device is thePath value of itschannel . The second statement
applies the path recognition operation to the geometry of the current
seed shape in order to “guess” that value. The third and final
statement instructs the recognition engine to check (using boolean
mask operations) to see if the geometries of theTPC element as
currently configured are contained in the original layout. If so, the
device will be declared recognized; otherwise it will not. (The
recognition language is discussed further in [15].)

The order in which recognition blocks are specified is significant.
For example, path-based elements capable of matching the
geometries of bent-gate transistors are also capable of matching
those of conventional ones (e.g.,TN). Placing the recognition block
for the simpler element ahead of the block for the more complex one
may result in a more efficient representation of the device.

3. Exact Wire Recognition
Once all devices have been recognized, the remaining unrecognized
geometry (still in polygonal form) is presumed to represent the wires
that connect them. Our goal is to represent this geometry, instead, as
path-based wire elements, each having a centerline and a width. A
routing-based approach to synthesizing manhattan wires is
presented in Section 4. Here we describe what we believe to be a new
technique for recognizing all-angle wires.

MNDIFF

Polygon
View

Object
View

NTRAN

 3

3.1. Overview of Wire Recognition
As with object recognition, the first phase (setup) is to specify on
which layers wire recognition is to occur. When specifying a layer
we must also identify the element to use and the name of the element
attribute for the engine to use to reconfigure the path. If the element
is not specific to that layer, then the name of the element attribute
indicating the layer must also be specified:

WIRE POLY "WIRE" peditable layer

This WIRE recognition statement programs the engine to look on
layer POLY for paths (represented as polygons) using element
"WIRE" with Path attribute peditable (short for “primary
editable”) andLayer attributelayer .

Figure 3: High-Level Wire Recognition Algorithm

During the recognition phase, after device recognition is complete, the
sequence of wire recognition commands is applied to the geometries
remaining in the Unrecognized view. As described in Figure 3, the
engine attempts to guess a path whose perimeter exactly matches that
of the polygon (see Section 3.2). If successful, the specified wire
element is configured and tested against the geometries in the Support
(Recognized + Unrecognized) view. If the element is contained in the
Support view, it is copied into the Recognized view and its geometry
is subtracted from the Unrecognized view.

3.2. Path Recognition
An important subtask of recognizing wires and bent-gate transistors
is to convert a givenPolygon to aPath representing equivalent
geometry if one exists. In our approach to path recognition, we make
the following assumptions:

(1) ThePolygon to be recognized was at one time represented
as aPath with evenwidth and itscenterline on grid.

(2) ThePath was converted to aPolygon by calculating the
vertices of the perimeter using real coordinates and then
independently rounding them to the closer integer (grid) coordinate.

Figure 4: Converting a Path to a Polygon

Figure 4 shows two non-manhattan paths. Constructing the
perimeter of either path amounts to identifying integral vertices 0
through 7. Using real numbers initially, we calculate parallel lines a
half width to the left and right of each segment of the centerline. We
can then round the points of intersection for consecutive segments to
obtain the gridded approximation of the perimeter

An important observation is that each vertex on the centerline will
always be the average of the two corresponding points of
intersection if they exist. (A degenerate case occurs in Figure 4b

when the width increases to the point where vertices 5 and 6 merge.)
If an end is not known, it can be found through trial and error:

for (i = 0; i < N; ++i)
for (j = 1; j < N/2; ++j)

if (edge[i + j] is not approximately parallel to edge[i – j]) break;
if (edge[i + j] is not in same direction as edge[i – j]) break;

if (j > N/2) break; // i is probably the index of an “end” edge

Once an edge corresponding to an end of the path is known, it is easy
to walk the perimeter of the polygon, averaging corresponding vertices
(e.g., 7&0, 6&1, 5&2, 4&3) to recover the original centerline. We then
verify the result by converting the path back to a polygon and check that
the two polygons are equivalent (modulo rotation of vertex numbers).

By convention,edge[i] connectsvertex[i] to vertex[i+1], and all
arithmetic on edge and vertex indices is modulo the number of
edges,N. We use the notion ofapproximately parallel because we
cannot rely on the corresponding edges of a segment to be exactly
parallel and on grid (for example, where the∆Y and∆X of the middle
segment in Figure 4b are relatively prime).

Rectangular polygons can be recognized as short-wide or long-
narrow paths. Circuit designers along with CAD tools (such as a
compactor) may be confused by an arbitrary orientation of the
centerline. Edge weights0 (not adjacent), 1 (partially adjacent), and
3 (fully adjacent) with respect to recognized geometry (see Section
3.3) are used to influence the choice. The opposing edges with the
greater combined weight are treated as ends. In the event of a tie, a
long-narrow wire is preferred.

3.3. Path Reparation
As device geometries are extracted from the unrecognized view, it is not
uncommon for overlapping geometries to be lifted from wires resulting
in a geometry that is not a simple path. The four common types of
damage are illustrated in Figure 5: deviceA eclipses an edge of the wire,
deviceB eclipses a corner of the wire, deviceC eclipses an entire end of
the wire, and deviceD eclipses part of the interior of the wire.

Figure 5: Damage to Wire During Device Recognition

Figure 6: Perimeter Damage Detection Criteria

For each wire recognition statement (in the order specified)
Configure element with currentLayer (if needed).
Create empty set ofPath s recognized by the current statement.
For eachPolygon in the currentLayer of the Unrecognized view

GuessPath whose perimeter is the currentPolygon.
ConvertPath to Polygon and compare with current one.
If not same, continue with nextPolygon on currentLayer .
Configure element with newly identifiedPath .
Verify all geometry of element is contained in Support view.
If not, continue with nextPolygon on currentLayer .
Add copy of element to Recognized view.

Subtract geometry of recognized elements from Unrecognized view.

0 1

2

34

5

67

(b) Two Consecutive Right Bends

−∆Y

∆Y

|width|

|w
id

th
|

centerline
0 1

2 3

45

67

(a) Left Then Right Bend

−∆X

∆X

|w
id

th
|

|w
id

th
|

centerline

(3) The resultingPolygon does not cross itself.

(a) Before Devices are Recognized (b) After Devices are Recognized

A

B
C

D

j i

**

j

i

i

j
*

*

ConditionA ConditionB ConditionC

* edge adjacent to geometry in Recognized view

∃ edge indicesi andj such that for a polygon withN edges:
1. (j – i + N) modN > 2
2. edge[i] and edge[j] are not touching recognized geometry
3. edge[i + 1] ... edge[j – 1] are touching recognized geometry
4. edge[i] is approximately parallel to edge[j]
5. edge[i] is approximately colinear with edge[j]
6. edge[i] has positive projection on edge[j]

1. (j – i + N) modN > 1
2. edge[i] and edge[j] are not touching recognized geometry
3. edge[i + 1] ... edge[j – 1] are touching recognized geometry
4. edge[i] is not approximately parallel to edge[j]
5. extension of edge[i] intersects negative extension of edge[j] at pointp
6. pointp is not part of either edge[i] or edge[j]

p

B:

C:

A:

1. (j – i + N) modN > 1
2. edge[i] and edge[j] are not touching recognized geometry
3. edge[i + 1] ... edge[j – 1] are touching recognized geometry
4. edge[i] is approximately parallel to edge[j]
5. edge[i] is not approximately colinear with edge[j]
6. edge[i] has negative projection on edge[j]

p

E

 4

In order to recognize aPath , it is first necessary to repair the wire
geometry. The problem is formulated as follows: Given (1) a closed
Polygon with N > 2 edges, and (2) an array ofweights identifying
whether each edge isfully adjacent, partially adjacent, or not
adjacent to geometry in the Recognized view, modify thePolygon
in a way that it can be recognized as aPath that is still contained in
the Support view.

The procedure for repairing (perimeter) damage of typesA, B, and
C is to iterate over the edges of the polygon looking for conditions
that indicate a repair is needed. Each of the three types of perimeter
damage has a corresponding detection and replacement routine.
Each detection routine takes the current polygon configuration, edge
adjacency information, and an edge index, and returns the index of a
second edge satisfying the condition or –1 if no such edge exists. If
the condition is detected, the corresponding replacement routine is
called with the two edge indices to repair the detected damage.

Figure 6 illustrates the conditions under which each type of
perimeter damage will be detected for the specified polygon, edge
adjacency, and edge indicesi andj. The corresponding replacement
actions are given in Figure 7.

Figure 7: Replacing Vertices to Repair Path

Prior to wire recognition, each polygon in the Unrecognized view
with holes (damage type D) is converted to a simple polygon and a
list of simple holes. Using boolean mask operations, each hole is
compared with the corresponding layer in the Support view. Hole
shapesnot contained in the Support view (rare) are subtracted from
the simple polygon

3.4. Path Partitioning
Polygons that result from intersecting wires (see Figure 8) cannot be
recognized as a single path. In such cases, we must try to decompose
that polygon into sub-polygons that can be recognized. This
generalization of the exact wire recognition problem is to find a set
of paths:

(1) whose geometry is contained in the Support view,

(2) that minimizes the areanot covered by the original polygon,

(3) of minimal cardinality (i.e., number of distinct paths), and

(4) having minimal combined number of segments (or corners).

Figure 8: Polygonal Wire Requiring Decomposition

Using dynamic programming [16] our plan is to try all reasonable
partitions of the polygon and select the one that minimizes the cost
criteria above. Figure 9 illustrates the top-level recognition
procedure,recognizePaths and its associated (C++) dynamic
programming data structure,Cache . The input to the procedure is

an array of paths to hold the optimal solution, the original polygonal
wire, the edge adjacency (weights) with respect to recognized
geometry, and a technology-dictated minimum wire width. The
original polygon is copied and repaired using the techniques
described in section 3.3. The recursive algorithm
recognizePaths1 (described below) is then invoked to obtain
(the index of) an optimal solution.

Figure 9: High-Level Wire Partitioning Strategy

TheCache data structure contains two separate associative arrays
to hold the unique sub-polygons and paths encountered during
exhaustive search. TheCache also contains a mapping from each
polygon to the set of paths that optimally represents it. Three parallel
arrays are used to track thecost of each solution. The minimum path
width is also stored for reference.

Figure 10: Recursive Wire Partitioning Algorithm

When the algorithm returns to the top-level, theCache (initially
empty) contains all of the sub-polygons resulting from recursive
partitioning. The integer value returned identifies the index of the
original polygon in the polygon cache—the corresponding row in
the solution matrix contains the indices in the path cache for the
optimal path-based representation. The final 4 lines in Figure 9
extract the optimal solution and load the paths into the client-
supplied PathArray , returning the amount of unrecognizable
geometry as adouble.

a. set edgeWeights[i] = PARTIALLY_ADJACENT
b. remove vertex[i + 1] ... vertex[j]
a. set edgeWeights[i] = PARTIALLY_ADJACENT
b. set edgeWeights[j] = PARTIALLY_ADJACENT
c. remove vertex[i + 1] ... vertex[j – 1]
d. set vertex[j] to intersection of (extended) ray[i] and –ray[j]

B:

C:

A:

a. set edgeWeights[i + 1] = FULLY_ADJACENT
b. remove vertex[i + 2] ... vertex[j – 1]
c. set edgeE = (pointp where perpendicular to edge[j] at vertex[j]

intersects edge[i], vertex[j])
c’ set edgeE = (vertex[i + 1], pointp where perpendicular to edge[i]

at vertex[i + 1] intersects edge[j])
d. foreachk in { i + 1 ...j }
 translate edgeE to its left until vertex[k] is not to the left ofE
e. set vertex[i + 1] = E[0] and vertex[j] = E[1]

.

(a) Original Polygonal Wire (b) Optimal Path-Based Wires

struct Cache {
PathCache d_paths; // current set of unique paths
PolygonCache d_polygons; // current set of unique sub-polygons
Int32Matrix d_solutions; // map each sub-polygon to best set of paths
Float64Array d_scrapArea; // left-over-area cost for each solution
Int32Array d_numPaths; // path-count cost for each solution
Int32Array d_numSegments; // segment-count cost for each solution
int d_minPathWidth; // minimum width for path on this layer

};

double // return total unrecognized area
recognizePaths(PathArray *result, // loaded with best solution

const Polygon &shape, // original polygon
const Int32Array &edgeWeights, // w.r.t. adjacency
int minPathWidth) // avoid design rule violations.

{
Cache data; // records solutions with cost for dynamic programming
data.d_minPathWidth = minPathWidth; // initialize scalar value in struct
Polygon shape2 = shape;
Int32Array edgeWeights2 = edgeWeights;
repairPath(&shape2, &edgeWeights2);
int bestSolutionIndex = recognizePaths1(&data, shape2, edgeWeights2);
Int32Array& pathIndices = data.d_solutions[bestSolutionIndex];
for (int i = 0; i < pathIndices.numElements(); ++i)

result->append(data.d_paths[pathIindices[i]]);
return data.d_scrapArea[bestSolutionIndex];

}

Assume that any damage to the polygon has already been repaired.
Lookup the current shape in the polygon cache; if found return its index.
If we can recognize the polygon as simple path

If the path’s width is below the minimum
Add to cache solution with no paths and return its index.

Add to cache solution with recognized path and return its index.

// No easy solution; we’re forced to divide
// the polygon into two sub-polygons.

int bestSolution1 = –1,bestSolution2= –1; // invalid index values
For each edge index,i, of the polygon

For each edge index,j, of the polygon
For each way to partition the polygon based on edgesi andj

Divide the problem into two problems:shape1 andshape2 .
Repair each sub-polygon (if needed).
Call this procedure recursively on each subproblem.
If the new combined solution improves on the current one

Record the new indices inbestSolution1 andbestSolution2.
If bestSolution1 now holds a valid index (≥ 0)

If the combined left-over area of the solutions is zero
If the combined number of segments is exactly 2

break; // any solution with 2 segments leaving 0 area is best
If bestSolution1 holds a valid index

Add to cache solution combining both best solutions and return its index.

 5

The recursive partitioning algorithm (Figure 10) exploits dynamic
programming techniques to avoid solving any subproblem more
than once. On entry, welookup the index of polygon in the cache. If
found, the optimal partition for this polygon has already been
determined; we immediately return the index as the solution.
Otherwise we try to recognize the polygon as a simple path. If
successful, we enter the path in the path cache, add the polygon to
the polygon cache, create a corresponding row in the solution matrix
consisting of just the one index of the recognized path, and return the
solution index. If this polygon cannot be recognized as a simple
path, we must partition the polygon into two sub-polygons, call the
function on each sub-polygon recursively, and merge the individual
solutions to form a solution for this polygon. How we partition the
polygon will determine the quality of our solution.

The approach taken here is to tryall reasonable partitions and install
the solution corresponding to the partition resulting in a path-based
representation of minimal cost as defined above. Although the
number of arbitrary polygonal partitions is essentially infinite, we
have been able to characterize a discrete subset of useful partitions
using 3 disjoint criteria:T, L , andX. (See Figure 11.)

Figure 11: T, L and X Partitioning Criteria

By far the most common, theT partitioning criteria identifies wires
that form T-like connections (though not necessarily at 90 degrees).
If two wire edges, edge[i] and edge[j], are colinear and edge[i] can
be extended through the interior of the polygon to meet edge[j], then
the polygon can usefully be partitioned by severing the geometry on
either side of the extended edge. The algorithm requires that we copy
the polygon intoshape1 andshape2 , and then use theT vertex
replacement algorithm (Figure 12) to remove unwanted vertices
corresponding to the severed geometry. Although partitioning does
not make use ofedgeWeights directly, it is necessary for these
algorithms to maintain the edge adjacency so that each sub-polygon

can be repaired (if necessary) before attempting to recognize it as a
path.

Figure 12: Vertex Replacement For T Criteria

The L criteria is particularly useful for recognizing multi-width
wires and tapered power busses. TheX criteria is used to recognize
overlapping wires. The vertex replacement algorithms forL andX
partitions are similar in concept to the one forT partitions, but
considerably more involved; they can be found in [15,17]. Figure 8b
shows how each of these criteria are applied to recognize the optimal
path-based representation of a single complex wire.

4. Wire Synthesis
A significant fraction of viable, full custom designs were originally
conceived entirely as polygons. Arbitrary polygonal wires do not
necessarily lend themselves to “exact” path-based representation
(see Figure 13a). Still, we would like to take advantage of IP invested
in such designs. Here we present an alternative to exact recognition
that synthesizes manhattan paths (suitable for compaction) that are
(1) contained within the original layout and (2) preserve connectivity
(see Figure 13b).

Figure 13: Synthesizing Manhattan Paths From Polygons

Each polygon remaining in the unrecognized view after device
recognition represents geometry that may be required to connect two
nodes originally on the same net. We use Forma’s connectivity
extraction capability to infer net information for geometries in the
Recognized view. For each unrecognized polygon, we create a
routing region that is the union of the unrecognized polygon and all
adjacent geometry in the Recognized view. The problem now reduces
to finding, for a specified width, (1) a minimal set of paths (2) of
minimal length (3) with minimal total number of segments (corners),
that restores the adjacent geometry in the recognized view to a single
net. The details of the solution employed can be found in [15,18].

5. Experimental Results
The object recognition engine is implemented in C++ as a
hierarchical collection of 62 components (about 45,000 lines, 40%
commentary). Each component has an associated test driver (35,000
lines, 38% commentary) to exercise and validate that functionality
independently of other components (as recommended in [19]).
Forma, also implemented in C++, is an order of magnitude larger.

Throughout the recognition process we exploit efficient elementary
vector calculus techniques to avoid explicit use of expensive
trigonometric functions [15]. Figure 14 illustrates the two steps of
recognizing first devices and then wires for a simple CMOS (half)
shift register cell. Initially (a) the recognized view is empty. After all
devices are recognized, the geometry is divided among the two
views (b). Finally after exact wire recognition, all but the right well
region has been recognized as devices and path-based wires (c).

The algorithms described here have been applied both in isolation and
together on a variety of hypothetical test cases. The recognition engine

p
i j

i

j

i

j

p

ConditionT ConditionL ConditionX

∃ edge indicesi andj such that for a polygon withN edges:
1. (j – i + N) modN > 2
2. edge[i] is approximately parallel to edge[j]
3. edge[i] is approximately colinear with edge[j]
4. edge[i] has positive projection on edge[j]
5. edge[i] has negative orientation w.r.t. edge[i + 1]
6. ray[i] intersects ray[j – 1] at pointp
7. ray[i] does not intersect any other edge

T:

1. (j – i + N) modN > 1
2. Either edge[i] is not approximately colinear with edge[j]

or edge[i] has negative projection on edge[j]
3. edge[i] has negative orientation w.r.t. edge[i + 1]
3’ edge[i – 1] has negative orientation w.r.t. edge[i]
4. ray[i] intersects edge[j] or vertex[j]
4’ –ray[i] intersects edge[j] or vertex[j]
5. ray[i] does not intersect any other edge or vertex at pointq

such that |q – vertex[i]| < |p – vertex[i]|;
if |q – vertex[i]| == |p – vertex[i]| thenq must
not be part of an edge whose index falls betweeni andj

5’ –ray[i] does not intersect any other edge or vertex at pointq’
such that |q’ – vertex[i + 1]| < |p’ – vertex[i + 1]|;
if |q’ – vertex[i + 1]| == |p’ – vertex[i + 1]| thenq’ must
not be part of an edge whose index falls betweenj andi + 1

L :

1. (j – i + N) modN > 1
2. edge[i] is not approximately parallel to edge[j]
3. ray[i] intersects –ray[j] at pointp
3’ –ray[i] intersects ray[j] at pointp’
4. ray[i] does not intersect any other edge at pointq

such that |q – vertex[i + 1]|≤ |p – vertex[i + 1]|
4’ –ray[i] does not intersect any other edge at pointq’

such that |q’ – vertex[i]| ≤ |p’ – vertex[i]|
5. –ray[j] does not intersect any other edge at pointr

such that |r – vertex[j]| ≤ |p – vertex[j]|
5’ ray[j] does not intersect any other edge at pointr’

such that |r’ – vertex[j + 1]|≤ |p’ – vertex[j + 1]|

X:

.

.

.

.

.

p

T: REPLACEMENT FOR SHAPE 1: (left of partition)
 a1. if edgeWeights[i] == ALL_ADJACENT &&

edgeWeights[j] == ALL_ADJACENT
then leave edgeWeights[i] == ALL_ADJACENT
else set edgeWeights[i] = PART_ADJACENT

 a2. Remove vertex[i + 1] ... vertex[j]
REPLACEMENT FOR SHAPE 2: (right of partition)
 b1. set edgeWeights[j] = ALL_ADJACENT
 b2. remove vertex[j + 1] ... vertex[i]

(a) Original Polygonal Layout (b) Devices and Path-Based Wires

Not
Recognized

Not
Recognized

 6

has been used to convert entire CMOS standard cell libraries from
GDSII polygons to circuit objects and path-based wires. Sample data
included bent-gate transistors and non-manhattan geometries. Some
cells were the output of object-based layout tools [2,3] converted back
to polygonal form while others were conceived as polygons [1].

In all cases, CMOS transistors and contacts were recognized
correctly 100% of the time. For output originally created in an
object-based layout tool, wire recognition was perfect (except for
notch filling and some well regions). It was also noticed that some
tools have an off-by-one error in the way they generate the perimeter
of a path on a gridded system. We were able to compensate by
introducing an optional vertex tolerance and then rounding off-by-
one centerline coordinates to the nearest multiple of 5.

For hand-generated polygonal layout, the results were still
surprisingly good. Designers implementing 45-degree wires often
follow a pattern consistent with path based recognition. We noticed,
however, that the database resolution affected whether a digitized
non-manhattan polygon was in fact an accurate representation of the
rounded perimeter coordinates of a path. Selecting the appropriate
scale enabled us to solve this problem.

The executable size on disk (including Forma) is 10.7 megabytes.
Runtime for the example in Figure 18 was 24.1 CPU seconds (40 wall)
running on a SPARC 20 model 51 workstation with 64 megabytes of
memory. The device recognition performance is roughly linear in the
number of devices (due in part to the geometric sorting of objects
within Forma). Exhaustive search for some wires can occasionally
become prohibitive despite our dynamic programming approach. It
has therefore been necessary to provide limits on how much time is
spent on each polygonal wire (1) looking for a solution that covers all
the unrecognized material, and (2) once found, how much additional
time we are willing to spend trying to improve on that solution.

Figure 14: Result of Device and Wire Recognition

6. Conclusions
We have demonstrated a viable and general flow for extracting IP
from existing polygonal IC layouts in older process technologies and
retargeting them to new technologies. At the core of this flow is the
ability to recognize an extensible set of devices and path-based wires
as objects solely from their polygonal representations. In addition to
a profoundly general device-recognition capability, the major
contribution presented here is the ability to repair, partition and
recognize complex all-angle wires efficiently. For polygonal layout
originally conceived as objects, the recognition capability is nearly
100%. Wire synthesis effectively augments exact recognition where
arbitrary polygons are used to interconnect devices.

7. Further Work
At present, we are not able to recognize devices that contain multiple
seed shapes on a seed layer (such as arrayed contacts and bipolar
devices). By embedding recognition commands in a much more
powerful language (such as Genie [12]) we would be able to write
sophisticated recognition rules based on thecontext in which the
device is used. Also, more work is required to predict under what
conditions exact recognition requires limiting, and how to improve
performance under those conditions.

My thanks to Joe Cicchiello, Richard Eesley, Gad Gruenstein, and
Alfred Schmidt for their direct contributions to this research.

8. References
[1] Calma Reference Manual, Calma Company, General Electric

Corporation, Fairfield, CT, 1982.
[2] Matheson, T. G., C. Christensen, and M. R. Buric, A software

environment for building core microprocessor compilers, Proc.
ICCD, pp. 221–224, 1985.

[3] Draney, M., R., Method and apparatus for recording and
rearranging representations of objects in a coordinate system,
U.S. patent #4829446, 1989.

[4] IC Station, Mentor Graphics Corporation, Wilsonville, OR.
[5] Duh, J., T. G. Matheson, and E. Hepler, Efficiently embedding

expertise in high-density process-portable, standard cell
generators, Proc. IEEE Custom Integrated Circuit Conf. pp. 497–
500, 1995.

[6] Bryant., R. E., A switch-level model and simulator for MOS
digital systems, IEEE Transactions on Computers, Vol. C-
33:160-177, 1984.

[7] Dracula, Cadence Design Systems, San Jose, CA.
[8] Checkmate, Mentor Graphics Corporation, Wilsonville, OR.
[9] Caliber, Mentor Graphics Corporation, Wilsonville, OR.
[10] Boyer, D. G., Symbolic layout compaction review, Proc. 25th

Design Automation Conf., pp. 383–389, 1988.
[11] Matheson, T. G., Integrated circuit design apparatus with

extensible circuit elements, U.S. patent pending.
[12] The Genie programming language, Mentor Graphics

Corporation, Wilsonville, OR.
[13] Polygon to Symbolic, Cadence Design Systems, San Jose, CA.
[14] Dufourd, J., The stickizer: a layout to symbolic converter, Proc.

ICCAD, pp. 534-537, 1989.
[15] Lakos, J. S., Ph.D. dissertation, Computer Science, Columbia

University, New York, NY, expected 1997.
[16] Bellman, R. E., [1957], Dynamic Programming, Princeton

University Press, Princeton, NJ.
[17] Lakos, J. S., Exact (all-angle) wire path recognizer, U.S. patent

pending.
[18] Lakos, J. S., Sub-virtual-grid point-to-point router, U.S. patent

pending.
[19] Lakos, J. S., Large Scale C++ Software Design, Addison Wesley,

Reading, MA, 1996.

Initial Unrecognized View Initial Recognized View

Unrecognized After Devices Recognized After Devices

Unrecognized After Wires Recognized After Wires

(a)

(b)

(c)

	CD-ROM Home Page
	DAC97
	Front Matter
	Table of Contents
	Session Index
	Author Index

