
�

�

�

�

�

�

�

�

6

A Methodology for Automatic Generation of Executable
Communication Specifications from Parallel MPI Applications

XING WU and FRANK MUELLER, North Carolina State University
SCOTT PAKIN, Los Alamos National Laboratory

Portable parallel benchmarks are widely used for performance evaluation of HPC systems. However,
because these are manually produced, they generally represent a greatly simplified view of application be-
havior, missing the subtle but important-to-performance nuances that may exist in a complete application.
This work contributes novel methods to automatically generate highly portable and customizable communi-
cation benchmarks from HPC applications. We utilize ScalaTrace, a lossless yet scalable parallel-application
tracing framework to collect selected aspects of the run-time behavior of HPC applications, including commu-
nication operations and computation time, while abstracting away the details of the computation proper. We
subsequently generate benchmarks with nearly identical run-time behavior to the original applications. Re-
sults demonstrate that the generated benchmarks are in fact able to preserve the run-time behavior (includ-
ing both the communication pattern and the execution time) of the original applications. Such automated
benchmark generation is without precedent and particularly valuable for proprietary, export-controlled, or
classified application codes.

Categories and Subject Descriptors: C.4 [Performance of Systems]: Measurement techniques; D.1.3
[Programming Techniques]: Concurrent Programming—Parallel Programming; D.3.2 [Programming
Languages]: Language Classifications—Specialized application languages

General Terms: Languages, Measurement, Performance

ACM Reference Format:
Wu, X., Mueller, F., and Pakin, S. 2014. A methodology for automatic generation of executable communica-
tion specifications from parallel MPI applications. ACM Trans. Parallel Comput. 1, 1, Article 6 (September
2014), 30 pages.
DOI:http://dx.doi.org/10.1145/2660249

1. INTRODUCTION

Evaluating and analyzing the performance of high-performance computing (HPC)
systems generally involves running complete applications, computational kernels, or
microbenchmarks. Complete applications are the truest indicator of how well a sys-
tem performs. However, it may be time-consuming to port them to a target machine’s
compilers, libraries, and operating system, and their size and intricacy makes them
time-consuming to modify, for example, to evaluate the performance of different data
decompositions or parallelism strategies. Furthermore, with intense competition to be
the first to scientific discovery, computational scientists may be loath to risk grant-
ing their rivals access to their application’s source code; or the source code may be
more formally protected as a corporate trade secret or as an export-controlled or

This work was supported in part by NSF grants 0937908 and 0958311 and by the U.S. Department of
Energy’s National Nuclear Security Administration under contract DEAC52-06NA25396 with Los Alamos
National Security, LLC.
Author’s address: F. Mueller, North Carolina State University; email: meuller@cs.ncsu.edu.
c©2014 Association for Computing Machinery. ACM acknowledges that this contribution was authored or co-
authored by an employee, contractor or affiliate of the United States government. As such, the Government
retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for
Government purposes only.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© 2014 ACM 2329-4949/2014/09-ART6 $15.00
DOI:http://dx.doi.org/10.1145/2660249

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 6, Publication date: September 2014.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2660249&domain=pdf&date_stamp=2014-10-03

�

�

�

�

�

�

�

�

6:2 X. Wu et al.

Fig. 1. Our benchmark generation system.

classified piece of information. Computational kernels address some of these issues
by attempting to isolate an application’s key algorithms (e.g., a conjugate-gradient
solver). Their relative simplicity reduces the porting effort, and they are generally less
encumbered than a complete application. While their performance is somewhat in-
dicative of how well an application will perform on a target machine, isolated kernels
overlook important performance characteristics that apply when they are combined
into a complete application. Finally, microbenchmarks stress individual machine com-
ponents (e.g., memory, CPU, network). While easy to port, distribute, modify, and run
on a target machine, they provide little information about how an application might
perform when the primitive operations they measure are combined in complex ways in
an application.

The research question we propose to answer in this article is the following. Is it pos-
sible to combine the best features of complete applications, computational kernels, and
microbenchmarks into a single performance-evaluation methodology? That is, can one
evaluate how fast a target HPC system will run a given application without having to
migrate it, and all of its dependencies, to that system, without ignoring the subtleties
of how different pieces of an application perform in context, without forsaking the
ability to experiment with alternative application structures, and without restricting
access to the tools needed to perform the evaluation?

Our approach is based on the insight that application performance is largely a func-
tion of the sorts of primitive operations that microbenchmarks measure and that if
these operations can be juxtaposed as they appear in an application, the performance
ought to be nearly identical. We therefore propose generating application-specific per-
formance benchmarks. In fact, by “generating,” we imply a fully automatic approach in
which a parallel application can be treated as a black box and mechanically converted
into an easy-to-build, easy-to-modify, and easy-to-run program with the same perfor-
mance as the original but absent the original’s data structures, numerical methods,
and other algorithms.

We take as input an MPI-based [Gropp et al. 1996] message-passing application.
To convert this into a benchmark, we utilize the approach illustrated in Figure 1. We
begin by tracing the application’s communication pattern (including intervening com-
putation time) using ScalaTrace [Noeth et al. 2007]. The resulting trace is fed into the
benchmark generator that is the focus of this article. The benchmark generator out-
puts a benchmark written in CONCEPTUAL, a domain-specific language for specifying
communication patterns [Pakin 2007]. The CONCEPTUAL code can then be compiled
into ordinary C+MPI code for execution on a target machine.

We utilize ScalaTrace [Noeth et al. 2007] for communication trace collection be-
cause ScalaTrace represents the state of the art in parallel application tracing. It
benefits benchmark generation in two aspects. First, due to its pattern-based com-
pression techniques, ScalaTrace generates application traces that are lossless in com-
munication semantics, yet small and scalable in size. For example, ScalaTrace can
represent all processes performing the same operation (e.g., each MPI rank sending a

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 6, Publication date: September 2014.

�

�

�

�

�

�

�

�

Generation of Executable Communication Specifications from MPI Applications 6:3

message to rank+4) as a single event, regardless of the number of ranks. Because the
application trace is the basis for benchmark generation, this feature helps reduce
the size of the generated code, making it more manageable for subsequent hand-
modification. In contrast, previous application tracing tools, such as Extrae/Paraver
[Pillet et al. 1995], Tau [Shende and Malony 2006], Open|SpeedShop [Schulz et al.
2008], Vampir [Nagel et al. 1996], and Kojak [Wolf and Mohr 2003], are less suitable
for benchmark generation because their traces increase in size with both the number
of communication events and the number of MPI ranks traced. Second, ScalaTrace is
aware of the structure of the original program. It utilizes the stack signature to distin-
guish different call sites. Its loop compression techniques can detect the loop structure
of the source code. For example, if an iteration comprises a hundred iterations, and
each iteration sends five messages of one size and ten of another, ScalaTrace repre-
sents that internally as a set of nested loops rather than as 1500 individual messaging
events. These pattern-identification features help benchmark generation maintain the
program structure of the original application so that the generated code will not only
be semantically correct, but also human-comprehensible and editable.

We use the domain-specific CONCEPTUAL language [Pakin 2007] instead of a
general-purpose language such as C or Fortran as the target language for benchmark
generation. (CONCEPTUAL does, however, compile to C source code.) CONCEPTUAL is
designed specifically to facilitate the rapid creation of benchmarks that assess commu-
nication design and network performance. We embrace CONCEPTUAL for its unique
features that benefit benchmark generation in various aspects.

— CONCEPTUAL has a powerful, yet concise grammar for the expression of communi-
cation patterns. Benchmarks generated in CONCEPTUAL are highly readable.

— CONCEPTUAL code includes almost exclusively communication specifications.
Mundane benchmarking details such as error checking, memory allocation, timer
calibration, statistics calculation, MPI subcommunicator creation, and so forth, are
all handled implicitly, which reduces code clutter and helps benchmark designers to
focus on the core functionality.

— The CONCEPTUAL runtime library automatically generates an execution log to fa-
cilitate analysis and reproduction of experimental results.

— Benchmarks in CONCEPTUAL are also more portable, as they can be compiled to
not only C+MPI but also other combinations of languages and messaging layers.

Later in this article we present the complete CONCEPTUAL program that our tool
generated for NPB FT (Class C) of 256 MPI tasks (Figure 12). This program reproduces
the communication behavior and performance characteristics of FT, which is a 2131-
line program, in only 22 lines of CONCEPTUAL code. We believe the conciseness of
CONCEPTUAL makes it an ideal language for benchmark generation.

Beyond the naive conversion from traces to CONCEPTUAL codes, we also focus on
eliminating ambiguity and nondeterminism in the generated code. In particular, MPI
allows constructs whose behavior cannot statically be determined. The use of “wild-
card receives” (MPI ANY SOURCE) introduces randomness to the performance of the
application. While application developers are encouraged to exploit the rich features of
MPI, we deem some of them inappropriate for benchmarks because they degrade per-
formance reproducibility. For this work, we designed trace-based algorithms to com-
bine per-node collectives and to eliminate nondeterminism in MPI applications. With
these optimizations, we managed to make the generated benchmarks more readable
and performance-reproducible.

We evaluated our benchmark generation approach with the NAS Parallel Bench-
mark (NPB) suite [Bailey et al. 1991] and the Sweep3D code [Koch et al. 1992]. We
performed experiments to assess both the correctness and the timing accuracy of the

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 6, Publication date: September 2014.

�

�

�

�

�

�

�

�

6:4 X. Wu et al.

generated parallel benchmarks. Experimental results show that the autogenerated
benchmarks preserve the application’s semantics, including the communication pat-
tern, the message count and volume, and the temporal ordering of communication
events as they appear in the original parallel applications. In addition, the total execu-
tion times of the generated codes are very similar to those of the original applications;
the mean absolute percentage error across all of our measurements is only 2.9%.

Beyond the straightforward benchmark generation, we also combined the bench-
mark generator with ScalaExtrap [Wu and Mueller 2011] to generate scalable codes
that can be executed with arbitrary numbers of MPI processes. ScalaExtrap captures
the communication patterns and computation times as functions of mesh dimensions
from several small-scale input traces. With these functions—instead of the exact pa-
rameter values for a particular scale—we are able to generate codes that execute at
different scales. We evaluated the generated scalable codes with NPB FT and BT. The
experimental results show that the generated scalable codes are able to correctly repro-
duce the communication patterns at different scales. For the timing accuracy, the mean
absolute percentage error for a single benchmark across different scales is only 5.12%
for BT and 3.42% for FT. Given these experimental results, we conclude that the gen-
erated benchmarks are able to reproduce the communication behavior and wall-clock
timing characteristics of the source applications.

The contributions of this work are the following:

(1) a demonstration and evaluation of the feasibility of automatically converting par-
allel applications into human-readable benchmark codes;

(2) an algorithm for determining precisely when separately appearing collective-
communication calls in fact belong to the same logical operation;

(3) an approach and algorithm for ensuring performance repeatability by introducing
determinism into benchmarks generated from nondeterministic applications; and

(4) an approach for generating scalable codes from application traces by utilizing trace
extrapolation.

We foresee our work benefiting application developers, communication researchers,
and HPC system procurers. Application developers can benefit in multiple ways. First,
they can quickly gauge what application performance is likely to be on a target ma-
chine before exerting the effort to port their applications to that machine. Second, they
can use the generated benchmarks for performance debugging, as the benchmarks
can separate communication from computation to help isolate observed performance
anomalies. Third, application developers can examine the impact of alternative appli-
cation implementations such as different data decompositions (causing different com-
munication patterns) or the use of computational accelerators (reducing computation
time without directly affecting communication time). Communication researchers can
benefit by being able to study the impact of novel messaging techniques without in-
curring the burden of needing to build complex applications with myriad dependencies
and without requiring access to codes that are not freely distributable. Finally, people
tasked with procuring HPC systems benefit by being able to instruct vendors to deliver
specified performance on a given application without having to provide those vendors
with the application itself.

2. RELATED WORK

The following characteristics of our benchmark-generation approach make it
unique.

— The size of the benchmarks we generate increases sublinearly in the number of
processes and in the number of communication operations.

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 6, Publication date: September 2014.

�

�

�

�

�

�

�

�

Generation of Executable Communication Specifications from MPI Applications 6:5

— We exploit run-time information rather than limit ourselves to information avail-
able at compile time.

— We preserve all communication performed by the original application.

We utilize ScalaTrace to collect the communication trace of parallel applications.
With a set of sophisticated domain-specific trace-compression techniques, ScalaTrace
is able to generate traces that preserve the original source-code structure while en-
suring scalability in trace size. Other tools for acquiring communication traces such
as Vampir [Brunst et al. 2001], Extrae/Paraver [Pillet et al. 1995], and tools based on
the Open Trace Format [Knüpfer et al. 2006] lack structure-aware compression. As a
result, the size of a trace file grows linearly with the number of MPI calls and the num-
ber of MPI processes, and so too would the size of any benchmark generated from such
a trace, making it inconvenient for processing long-running applications executing on
large-scale machines. This lack of scalability is addressed in part by call-graph com-
pression techniques [Knupfer 2005] but still falls short of our structural compression,
which extends to any event parameters. Casas et al. [2007] utilize techniques of sig-
nal processing to detect internal structures of Paraver traces and extract meaningful
parts of the trace files. While this approach could facilitate trace analysis, it is lossy
and thus not suitable for benchmark generation.

Xu et al. construct coordinated performance skeletons to predict application execu-
tion time in new hardware environments [Xu and Subhlok 2008; Xu et al. 2008]. This
work exhibits the following fundamental differences from ours. (1) A key aspect of
performance skeletons is that they drop local communication (communication outside
the dominant pattern) and only capture a single, dominant communication pattern
by filtering a trace into aggregate information equivalent to profiling (communication
matrix). Similarly, PAS2P [Panadero et al. 2013] extracts a subset of communication
patterns, but not all of them, as we do, and generates signature kernels with asso-
ciated weights per pattern to reflect an application mix for execution time prediction.
We handle local/irregular communication via lossless tracing and generate concise and
readable benchmarks from such lossless traces, which is nontrivial; Xu et al. generate
code only for a single hot-spot communication pattern. (2) Fully preserving all the com-
munication events ensures the correctness of the generated benchmarks while drop-
ping events may introduce errors such as deadlock and/or mismatching send/receive
operations. We carefully address these problems to ensure that our tool is applicable
to real-world scenarios. (3) In some applications, such as NPB MG, minor communica-
tion patterns can become the dominant pattern as the application scales. To generate
performance-accurate benchmarks, no communication events should be dropped. In
addition, we generate benchmarks in CONCEPTUAL instead of C so that the gener-
ated benchmarks are more human-readable and editable.

Program slicing, statically reducing a program to a minimal form that preserves key
properties of the original, offers an alternative approach to generating benchmarks
from application traces. Van Ertvelde and Eeckhout [2008] utilize program slicing to
generate benchmarks that preserve an application’s performance characteristics while
hiding its functional semantics. This work focuses on resembling the branch and mem-
ory access behaviors for sequential applications and may therefore complement our
benchmark generator for parallel applications. Shao et al. [2006] designed a compiler
framework to identify communication patterns for MPI-based parallel applications
through static analysis, and Zhai et al. [2009] built program slices that contain only
the variables and code sections related to MPI events and subsequently executed these
program slices to acquire communication traces. Program slicing and static bench-
mark generation in general have a number of shortcomings relative to our run-time,
trace-based approach. Their reliance on interprocedural analysis requires that all

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 6, Publication date: September 2014.

�

�

�

�

�

�

�

�

6:6 X. Wu et al.

source code—the application’s and all its dependencies—be available; they lack run-
time timing information; they cannot accurately handle loops with data-dependent trip
counts (“while not converged do. . . ”); and they produce benchmarks that are neither
human-readable nor editable.

Previous work also focused on benchmark synthesis using low-level workload char-
acteristics [Bell and John 2005; Sreenivasan and Kleinman 1974; Wong and Morris
1988]. For example, Bell and John [2005] synthesize representative test cases from
workload characteristics, such as instruction sequences, branch predictability, and
cache miss rates, of an application binary. Wong and Morris [1988] concentrate on the
locality of references and use the LRU cache hit function as a workload characteriza-
tion for benchmark synthesis. Sreenivasan and Kleinman [1974] generate representa-
tive synthetic workload by matching the joint probability density of the real workload
with that of the synthetic workload.

Besides benchmark generation and synthesis, our work is also relevant to perfor-
mance modeling and prediction [Chen et al. 2011; Ïpek et al. 2006; Kerbyson et al.
2001; Bailey and Snavely 2005; Snavely et al. 2002]. For example, Chen et al. [2011]
describe a modeling and analysis framework designed to automatically estimate the
resource demand for a given performance target using program characteristics. Ïpek
et al. [2006] use artificial neural networks (ANNs) to predict application performance
when the configuration varies.

3. BACKGROUND

Our benchmark generation approach utilizes the ScalaTrace infrastructure [Noeth
et al. 2007] to extract the communication behavior of the target application. Based
on the application trace, we generate benchmarks in CONCEPTUAL [Pakin 2007], a
high-level domain-specific language (with an associated compiler and run-time sys-
tem) designed for testing the correctness and performance of communication networks.
This section introduces the features of ScalaTrace and CONCEPTUAL that enable our
benchmark generation methodology.

3.1. ScalaTrace

ScalaTrace is chosen as the trace collection framework because it generates near
constant-size communication traces for parallel applications regardless of the num-
ber of nodes, while preserving structural information and temporal ordering. This is
important because it makes the size of the generated benchmarks reasonably small
and independent of node count.

ScalaTrace achieves near constant-sized traces through pattern-based compression.
It uses extended regular section descriptors (RSDs) to record the participating nodes
and parameter values of multiple calls to a single MPI routine in the source code across
loop iterations and nodes in a compressed manner. Power-RSDs (PRSDs) recursively
specify RSDs nested in loops. For example, the program fragment shown in Figure 2
establishes a ring-style communication across N nodes. The three RSDs,

RSD1: { 〈rank〉, MPI Irecv, LEFT},
RSD2: { 〈rank〉, MPI Isend, RIGHT},
RSD3: { 〈rank〉, MPI Waitall},

denote the MPI Send, MPI Receive, and MPI Waitall operations in a single loop itera-
tion, where 〈rank〉 takes on each value from 0 to N−1 in turn. ScalaTrace then detects

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 6, Publication date: September 2014.

�

�

�

�

�

�

�

�

Generation of Executable Communication Specifications from MPI Applications 6:7

for(i=0; i<1000; i++){
MPI_Irecv(LEFT, ...);
MPI_Isend(RIGHT, ...);
MPI_Waitall(...);

}

Fig. 2. Sample code for RSD and PRSD generation.

Fig. 3. Ranklist representation.

the loop structure and outputs the single PRSD, {1000, RSD1, RSD2, RSD3}, to con-
cisely denote a single, 1000-iteration loop. Note that the intranode loop compression
is done on the fly to reduce memory overhead and compression time. Finally, the lo-
cal traces are combined into a single global trace upon application completion (within
the PMPI interposition wrapper for MPI Finalize). This internode compression detects
similarities among the per-node traces and merges the RSDs by combining their lists
of participating nodes. For example, in Figure 2, because each MPI routine is called
with the same parameters on each node, the RSDs within the PRSD are consequently
merged across nodes as

RSD1: {0, 1, . . . , N − 1, MPI Irecv, LEFT},
RSD2: {0, 1, . . . , N − 1, MPI Isend, RIGHT},
RSD3: {0, 1, . . . , N − 1, MPI Waitall}.

Of course, enumerating all participating ranks one by one is not scalable. Hence,
ScalaTrace further compresses the participating list with a ranklist representation.
Using the EBNF meta-syntax, a ranklist is represented as

〈dimension start rank iteration length stride{iteration length stride}∗〉,
where dimension is the dimension of the group, start rank is the rank of the starting
node, and the iteration length stride pair is the iteration and stride of the correspond-
ing dimension. As an example, consider the row-major grid topology in Figure 3. The
shaded nodes form a communication group. This group is represented as ranklist <2 6
3 5 3 1>, where the tuple indicates that this communication group is a 2-dimensional
area starting at node 6 with 3 iterations of stride 5 in the y dimension and 3 iterations
of stride 1 in the x dimension, respectively. Since this encoding scheme takes node
placement into account, it naturally reflects the spatial characteristics of a communi-
cation group.

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 6, Publication date: September 2014.

�

�

�

�

�

�

�

�

6:8 X. Wu et al.

Besides communication tracing, ScalaTrace also stores application computation
times in a scalable way [Ratn et al. 2008]. Computation is defined as the time between
consecutive MPI calls. Rather than store individual computation-time measurements,
ScalaTrace compresses into a histogram, the time taken by all instances of a par-
ticular computation across all loop iterations and all nodes. ScalaTrace’s path-aware
compression distinguishes delta times of different execution paths. Therefore, in the
cases where the time spent in computation prior to the first statement of a loop differs
significantly from the time spent in the subsequent iterations, ScalaTrace can still
achieve good compression without sacrificing performance accuracy. This feature of
ScalaTrace enables the generated CONCEPTUAL code to always reflect the loop struc-
tures and capture the path-specific execution times irrespective of their time variance
by having conditionals on loop iterators, as illustrated by the following CONCEPTUAL
code snippet.

FOR EACH i IN {1, ..., n} {
IF i<>1 THEN ALL TASKS COMPUTE FOR t1 THEN
IF i=1 THEN ALL TASKS COMPUTE FOR t2 THEN
...

}

3.2. coNCePTuaL

CONCEPTUAL is a tool designed to facilitate rapid generation of network bench-
marks. CONCEPTUAL includes a compiler for a high-level specification language and
an accompanying run-time library. CONCEPTUAL programs are understandable even
to non-experts because of its English-like grammar. For example, the following is a
complete CONCEPTUAL benchmark program corresponding to the code snippet pre-
sented in Figure 2.

FOR 1000 REPETITIONS {
ALL TASKS RESET THEIR COUNTERS THEN
ALL TASKS t ASYNCHRONOUSLY SEND A 1 KILOBYTE MESSAGE TO TASK t+1 THEN
ALL TASKS AWAIT COMPLETION THEN
ALL TASKS LOG THE MEDIAN OF elapsed_usecs AS "Time (us)".

}

Note that no variable or function declarations are required; no buffer allocation is
required; no MPI Request or MPI Status objects need to be defined; no MPI commu-
nicators need to be queried for rank and size; no files need to be opened and written
to; no statistics-calculating routines need to be implemented; no error codes need to
be checked; no matching receive needs to be posted for each send (but can be if the
programmer requires more precise control over posting order); and no special cases for
the first and last tasks (ranks) need to be specified. Nevertheless, CONCEPTUAL is
able to express sophisticated communication patterns utilizing a variety of collective
and point-to-point communication primitives, looping constructs, and conditional op-
erations. When executed, the generated code produces log files that contain a wealth
of information about the measured communication performance, code build charac-
teristics, execution environment, and other information needed to yield reproducible
performance measurements [Pakin 2004].

The aforementioned features make CONCEPTUAL an ideal language for bench-
mark generation. In the following section, we present our approach to producing
CONCEPTUAL output from ScalaTrace input.

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 6, Publication date: September 2014.

�

�

�

�

�

�

�

�

Generation of Executable Communication Specifications from MPI Applications 6:9

4. BENCHMARK GENERATION

4.1. Overview

The process of automatic code generation from traces, is the process of traversing
the parallel application trace, interpreting compressed trace formats as RSDs and
PRSDs (see Section 3.1), and generating the corresponding CONCEPTUAL program.
We designed a trace traversal framework that walks through the trace and invokes
a language-dependent code generator for each RSD and PRSD. A code generator is a
pluggable function that conforms to a predefined interface. By implementing a gener-
ator for a different target language we can easily generate code for languages other
than CONCEPTUAL as well [Wu et al. 2012].

Most of the conversion from RSDs and PRSDs to CONCEPTUAL code is straightfor-
ward. An RSD representing point-to-point communication (blocking or non-blocking) is
converted to a CONCEPTUAL SEND or RECEIVE statement; computation time encoded
in an RSD is converted to a CONCEPTUAL COMPUTE statement; and a PRSD is con-
verted to a CONCEPTUAL FOR EACH loop. Behavior that differs across loop iterations
(message destinations, compute times, etc.) is implemented with a CONCEPTUAL IF
statement conditioned on a loop variable. There are a few subtleties involved in the
mapping from ScalaTrace to CONCEPTUAL (see Section 4.2).

Our view, however, is that a naive conversion from a trace to benchmark code has
two important shortcomings. First, one of our goals is for the generated benchmark
code to be readable so a human can easily examine, understand, and modify the code.
Our second goal is for the performance reported by the benchmark program to be repro-
ducible, to make it a more suitable vehicle for experimentation. In short, we want it to
be possible to reason about a generated benchmark’s behavior and performance. How-
ever, achieving the goals of readability and reproducibility is a challenging research
problem and is the subject of this section.

One difficulty in improving benchmark readability is the elimination of constructs
whose behavior cannot statically be determined. Consider the following snippet
of C code.

if (rank == 0)
MPI_Reduce(〈argument list〉);

else
MPI_Reduce(〈the same argument list〉);

It is not possible to know if those two MPI Reduce() calls are part of the same collective
operation without knowing the complete, run-time control flow of the program—on
each rank individually—that led to this execution of the code. The challenge is how to
merge per-rank collective operations found in a trace into a single collective operation
whose participants can be identified statically. As an example, if a reduce operation in
which tasks 0, 3, 6, 9, . . . participate is implemented with multiple statements in the
source code and recorded as multiple events in the trace, we expect these statements to
be combined into a single line of generated CONCEPTUAL code: “TASKS t SUCH THAT 3
DIVIDES t REDUCE A DOUBLEWORD TO TASK 0”. As such, it suffices to know that tasks 0,
3, 6, 9, . . . are the participants in that reduction operation. Section 4.3 presents our
algorithm for matching collective operations, which is invoked separately per node.

MPI programs are allowed to be nondeterministic. That is, they can observe differ-
ent communication patterns and different performance from run to run even given the
same inputs. The primary source of nondeterministic behavior in MPI is “wildcard re-
ceives” (MPI ANY SOURCE), which can receive messages from any sender. Consider,
for example, the following use of the MPI Recv receive operation.

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 6, Publication date: September 2014.

�

�

�

�

�

�

�

�

6:10 X. Wu et al.

MPI_Recv(..., MPI_ANY_SOURCE, ..., status);
if (status.MPI_SOURCE == 0)

〈Do some long-running computation.〉
else

〈Do some short-running computation.〉
MPI_Recv(..., MPI_ANY_SOURCE, ..., status);

Depending on the sender’s MPI rank (status.MPI SOURCE), the preceding code can
take either a long time or a short time to run. Because the sender whose message
matches the MPI Recv can vary from run to run, the execution time of the preced-
ing code also varies from run to run. While this behavior may be reasonable for an
application, we deem it inappropriate for a benchmark program. As benchmarks are
commonly used to evaluate system performance, small changes in a target machine’s
hardware or system software should not result in arbitrarily large changes in a bench-
mark’s execution time.

Consider, for example, if the preceding code were used to compare the performance
of two clusters, one containing slow processors and a slow network and one containing
fast processors and a fast network. If the first cluster happened to deliver rank 1’s
message before rank 0’s while the second cluster happened to deliver those messages
in the reverse order, one might conclude that the first cluster is the faster of the two,
although this conclusion is based on happenstance, not on fundamental performance
characteristics of the two clusters.

To ensure that our generated benchmarks lead to fair, reproducible performance
comparisons our benchmark generator selects one of the possible executions and forces
that to always be used. Section 4.4 presents our algorithm for identifying a valid
execution. The result from running our algorithm is a deterministic, performance-
reproducible benchmark that accurately captures what the original application might
do without being susceptible to the complete set of vagaries that impact the applica-
tion’s performance.

4.2. Engineering Details

CONCEPTUAL is not designed to exactly represent MPI features. In fact, the
CONCEPTUAL compiler can compile the same source program to C+MPI, C+Unix
sockets, or to any other language/communication library combination for which a com-
piler backend exists. Consequently, CONCEPTUAL contains collectives that MPI lacks
(e.g., arbitrary many-to-many reductions with non-overlapping source and destination
task sets), and MPI contains collectives that CONCEPTUAL lacks (e.g., scatters of
different-sized messages to different destinations). Therefore, for the MPI collectives
that are directly supported by CONCEPTUAL, such as MPI Bcast, MPI Reduce, and
MPI Alltoall, we generate the corresponding CONCEPTUAL MULTICAST and RE-
DUCE statements. For the unsupported MPI collectives, we had to “impedance match”
the benchmark generator’s MPI-centric input to CONCEPTUAL output. Our approach
is to replace each unsupported MPI collective with one or more CONCEPTUAL collec-
tives that represent a similar communication pattern (data fan in or fan out) and data
volume. Table I presents the substitutions we made.

MPI has a notion of a “communicator,” which is a subset of the available ranks,
renumbered and possibly reordered. Every MPI communication operation takes a com-
municator as an argument and uses it to specify the participants in the operation. A
disturbing consequence of communicators is that a line in the application source code
that seems to be sending a message to, say, rank 3, may in fact be sending a message to
rank 8 in the primordial MPI COMM WORLD communicator. To make the generated
benchmarks more readable, we keep track of the mapping of every rank within every

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 6, Publication date: September 2014.

�

�

�

�

�

�

�

�

Generation of Executable Communication Specifications from MPI Applications 6:11

Table I. Mapping of MPI Collectives to CONCEPTUAL

MPI collective CONCEPTUAL implementation

Allgather REDUCE + MULTICAST

Allgatherv REDUCE with averaged message size + MULTICAST

Alltoallv MULTICAST with averaged message size
Gather REDUCE

Gatherv REDUCE with averaged message size
Reduce scatter n many-to-one REDUCEs with different message sizes and roots, where n is the

communicator size
Scatter MULTICAST

Scatterv MULTICAST with averaged message size

if(rank == 0) {
MPI_Isend(1);
MPI_Barrier();

} if(rank == 1) {
MPI_Barrier(1);
MPI_Irecv(0);

} MPI_Wait();

(a) C+MPI Program

if(rank == 0)
MPI_Isend(1);

MPI_Barrier(); if(rank == 1)
MPI_Irecv(0);

MPI_Wait();

(b) Aligned Collectives

Fig. 4. Combining collectives across statements.

communicator to an absolute rank within MPI COMM WORLD and express all gen-
erated computation and communication operations in terms of these absolute ranks.

4.3. Combining Per-Node Collectives

As discussed in Section 4.1, MPI allows multiple statements in the source code to
represent a single, common collective operation. Because ScalaTrace differentiates
call sites by call-stack signatures, this use of collectives generates distinct RSDs in
the trace. To improve benchmark readability, before generating CONCEPTUAL code
we want to combine these separate RSDs, each representing a subset of the collec-
tive’s participants, into a single RSD that represents the complete set of participants.
Figure 4 illustrates the intention, for clarity using C+MPI (with the omission of most
MPI arguments) instead of RSDs. Figure 4(a) presents the initial communication pat-
tern, in which each of ranks 0 and 1 invoke MPI Barrier from a different source-
code line. Assuming these are found to be the same collective, we want to hoist the
MPI Barrier outside of all conditionals on the rank, as shown in Figure 4(b).

To perform this transformation, recall that our benchmark generator operates on
communication traces, not on application source code; it therefore does not literally
perform the source-code transformation shown in Figure 4. Rather, it follows the se-
quence of steps presented in Algorithm 1 to align in time, the RSDs of the same collec-
tive operation across nodes then combine these RSDs into a single RSD specifying the
complete set of nodes to which the collective operation applies.

The main idea, illustrated in Figure 5 for RSDs corresponding to the C+MPI code
in Figure 4, is to stop the trace traversal for a node at each collective in which it par-
ticipates until all of the other participating nodes have arrived at the same collective.
Algorithm 1 guarantees that (1) a collective operation corresponds to only one RSD
in the output trace, (2) the ordering of MPI events for each node is preserved in the
trace, and (3) the output trace is still in a compressed format. This algorithm tracks
the traversal on different nodes by maintaining a traversal context for each node. The

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 6, Publication date: September 2014.

�

�

�

�

�

�

�

�

6:12 X. Wu et al.

Task 0 Task 1

RSD1: {0, MPI Isend, 1} ➙ {1, MPI Barrier, 0 1}
RSD2: ➙{0, MPI Barrier, 0 1} {1, MPI Irecv, 0}
RSD3: {0, MPI Wait} {1, MPI Wait}

➘ ➘

Combination

RSD1: {0, MPI Isend, 0}
RSD2: {0 1, MPI Barrier, 0 1}
RSD3: {1, MPI Irecv, 0}
RSD4: {0 1, MPI Wait}

➙

TASK 0 ASYNCHRONOUSLY SENDS AN x-BYTE MESSAGE TO UNSUSPECTING TASK 1 THEN
ALL TASKS SYNCHRONIZE THEN
TASK 1 ASYNCHRONOUSLY RECEIVES AN x-BYTE MESSAGE FROM TASK 0 THEN
ALL TASKS AWAIT COMPLETION.

Fig. 5. Operation of Algorithm 1.

traversal context stores the current RSD the node is executing, the loop stack the ex-
ecution is in, and the iteration count for each loop in the stack. Upon startup, the
algorithm traverses the trace on behalf of node 0, which is called the current running
node. For each RSD of non-collective MPI routines that the running node is involved
in, the algorithm extracts the current MPI event and appends an RSD to the output
queue. (Note that an RSD can contain multiple MPI events across loop iterations and
across nodes, due to compression.) For collectives, however, the traversal stops for the
current running node and switches to the next node in the communicator (indicated by
the small arrows in Figure 5). When the last node in the communicator arrives at the
collective, the algorithm appends the RSD for all the nodes to the output queue and
switches the traversal back to the first node that is blocked on the same collective. We
treat MPI Finalize as a collective so that the algorithm cannot finish until the traver-
sal is done for all the nodes. To guarantee that the new trace is scalable in length, we
apply ScalaTrace’s loop compression algorithm [Noeth et al. 2007] to the output RSD
queue each time a new RSD is appended to the queue.

The complexity of Algorithm 1 is O(e), where e = �n−1
i=0 ei is the total number of MPI

events on all the nodes and ei is the number of communication events per node. This
can be derived from the fact that Algorithm 1 traverses every event in the trace exactly
once for each node. In Algorithm 1, the for loop in line 2 initializes the iterator to the
head RSD for each node. During execution, the while loop in line 12 always moves the
iterator forward by exactly one event in each iteration. In case the traversal is blocked
at a collective, a context switch happens at line 27. When the call to Align returns,
the traversal proceeds to the next event. In addition, since MPI Finalize is handled
as a collective that all nodes participate in (line 23), the traversal is performed for all
the nodes.

Nevertheless, we do not blindly run this algorithm for arbitrary input traces. Before
applying the algorithm, we first check the trace to see if there are unaligned collectives.
This check costs only O(r), where r is the number of RSDs in the trace and is typically
much smaller than e, due to compression.

4.4. Eliminating Nondeterminism

MPI supports the use of a wildcard value, MPI ANY SOURCE, for the source param-
eter of point-to-point receives. For example, in the NAS Parallel Benchmarks’s imple-
mentation of LU decomposition [Bailey et al. 1991], nodes use MPI ANY SOURCE to
receive messages in arbitrary order from their neighbors in a 2-D stencil. The problem
with the use of MPI ANY SOURCE from a benchmarking perspective is that it has
the potential to introduce performance artifacts, as discussed in Section 4.1. That is,
each run of LU may stress the communication subsystem slightly differently based
on the order in which messages happen to be received. To promote reproducibility of

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 6, Publication date: September 2014.

�

�

�

�

�

�

�

�

Generation of Executable Communication Specifications from MPI Applications 6:13

Algorithm 1 Algorithm to Align Collectives
Precondition: Tin: input trace, N: total number of nodes
Postcondition: Tout: the trace for CONCEPTUAL code generation

1: function INITIALIZATION(Tin, N)
2: for i ← 1, N do
3: Allocate traversal context C[i]
4: C[i].RSD ← Tin.head
5: end for
6: Initialize Tout to am empty trace
7: Tout ← ALIGN(0, Tout) � Start with node 0
8: return Tout
9: end function

10: function ALIGN(n, Tout)
11: iter ← C[n].RSD
12: while iter do
13: if node n is not in iter.rank list then
14: iter ← iter.next
15: else
16: if iter.op is not a collective then
17: Extract current MPI event
18: Append a new RSD to Tout
19: Compress Tout
20: iter ← iter.next
21: continue
22: end if
23: if iter.op is a collective or MPI Finalize then
24: if some participants have not arrived yet then
25: C[n].RSD ← iter
26: next ← the next node in the communicator
27: ALIGN(next, Tout)
28: else
29: Append an RSD for all participants to Tout
30: Compress Tout
31: C[n].RSD ← iter
32: for each i ∈ {participants} do
33: C[i].RSD ← C[i].RSD.next
34: end for
35: first ← the first node in the communicator
36: ALIGN(first, Tout)
37: end if
38: end if
39: end if
40: end while
41: return Tout
42: end function

empirical measurements, our benchmark generator removes nondeterminism by re-
placing wildcard receives with arbitrary but valid non-wildcard receives.

As in Section 4.3’s algorithm for combining collectives, our algorithm for eliminating
nondeterminism (Algorithm 2) utilizes a trace-traversal approach to resolve wildcard
receives. Let eijk represent an MPI event k that is issued by node i and has node j
as its peer. We maintain two lists for each node x: a list L1 of the to-be-matched MPI
events exj11, exj22, exj33, . . . that were issued by node x itself and a list L2 of the MPI

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 6, Publication date: September 2014.

�

�

�

�

�

�

�

�

6:14 X. Wu et al.

if(rank == 1){
MPI_Recv(MPI_ANY_SOURCE);
MPI_Recv(0);

} if(rank == 0 || rank == 2){
MPI_Send(1);

}

(a) MPI Program with Potential Deadlock

RSD1: {1, MPI Recv, MPI ANY SOURCE}
RSD2: {1, MPI Recv, 0}
RSD3: {0, MPI Send, 1}
RSD4: {2, MPI Send, 1}

(b) Trace of (a): Deadlock of Algorithm 2

Fig. 6. Potential deadlock.

events ei1xk1 , ei2xk2 , ei3xk3 , . . . specifying the events issued by other nodes that should
be matched by node x. Upon startup, this algorithm traverses the input trace on be-
half of an arbitrary node x. During the traversal, it adds the unmatched point-to-point
operations to list L1 of node x and to list L2 of each peer node. The traversal for node x
stops when the execution is blocked on, (1) a blocking send/receive, (2) a collective,
or (3) a wait operation. It then switches the traversal to a node y whose execution
will potentially unblock the execution on node x. In order to be selected as the tar-
get node to which the traversal switches (node y), a node must be, (1) the destination/
source of the blocking send/receive on node x, (2) a node in the same communicator
with node x, or (3) the destination/source of one of the non-blocking sends/receives
that node x is waiting on, respectively. During the traversal for node y, we look up
every MPI operation we arrived at in list L2 of node y to detect matches. When a
match is found, we delete the event from both lists. If possible, we unblock the ex-
ecution on node x so that the traversal for it can proceed later. If the receiver of a
match uses MPI ANY SOURCE, this value is replaced with the rank of the (first)
matching sender so that the wildcard source is resolved. Collectives are handled in
a similar way as Algorithm 1, by blocking the traversal until every participating node
arrives. We treat MPI Finalize as a collective that all the nodes participate in, so that
every node is traversed before the algorithm finishes. Because Algorithm 2 is again
based on traversing a trace and each MPI event is evaluated exactly once in the while
loop at line 12, the complexity is O(e), where e = �n−1

i=0 ei is the total number of MPI
events on all the nodes. Similarly, the use of wildcard receives is checked at a cost of
O(r) before applying this algorithm, where r is the number of RSDs in the trace, and
typically, r 	 e.

A ScalaTrace trace is obtained from an instance of a correct execution of the orig-
inal parallel application. However, ScalaTrace does not represent this or any other
specific execution because it does not replace the wildcard source value with the rank
of the actual sender. Consequently, if the original application potentially deadlocks,
Algorithm 2 suffers from the same risk. As an example, the code fragment in
Figure 6(a) deadlocks if the wildcard receive is matched with node 0, but completes if
matched with node 2. One possible execution generates the trace shown in Figure 6(b),
which causes Algorithm 2 to hang, because node 0 is blocked on MPI Finalize and
node 1 is blocked on MPI Recv(0) during trace traversal.

To prevent Algorithm 2 from hanging when nondeterminism in the original appli-
cation introduces a deadlock condition, our benchmark generator extends Algorithm 2
to detect deadlock conditions during trace traversal. Notice that these deadlocks stem
from incorrect MPI semantics of the application, not from flaws in our tracing or code-
generation frameworks. We decided to identify such incorrect MPI programs and re-
port the existence of deadlocks to the user. To this end, we track two other types of
events during traversal: (1) Tijk, the transfer of traversal from node i to node j due to

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 6, Publication date: September 2014.

�

�

�

�

�

�

�

�

Generation of Executable Communication Specifications from MPI Applications 6:15

Algorithm 2 Algorithm to Resolve Wildcard Receive (without Deadlock Detection)
Precondition: T: input trace, N: total number of nodes
Postcondition: T: trace without wildcard receive

1: function INITIALIZATION(T, N)
2: for i ← 1, N do
3: Allocate list L1 and list L2 for node i
4: Allocate traversal context C[i]
5: C[i].RSD ← T.head
6: end for
7: T ← Match(0, T) � Start with node 0
8: return T
9: end function

10: function MATCH(n, T)
11: iter ← C[n].RSD
12: while iter do
13: if node n is not in iter.rank list then
14: iter ← iter.next
15: else
16: if iter.op is point-to-point operation then
17: if match with an event eink in L2 then
18: L2.delete(eink)
19: nodei.L1.delete(eink)
20: if nodei.L1 is empty then
21: C[i].RSD ← C[i].RSD.next � unblock
22: end if
23: if iter.peer is MPI ANY SOURCE then
24: iter.peer = i � resolve the wildcard
25: end if
26: iter ← iter.next
27: continue
28: else
29: p ← iter.peer
30: L1.add(enp(kn++))
31: nodep.L2.add(enpkn)
32: if iter.op is blocking operation then
33: C[n].RSD ← iter
34: MATCH(p, T)
35: else
36: iter ← iter.next
37: continue
38: end if
39: end if
40: end if
41: if iter.op is collective or MPI Finalize then
42: ... � refer to Algorithm 1
43: end if
44: if iter.op is wait operation then
45: if L1 is not empty then
46: MATCH(L1.first.getPeer(), T)
47: else
48: iter ← iter.next
49: continue
50: end if
51: end if
52: end if
53: end while
54: return T
55: end function

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 6, Publication date: September 2014.

�

�

�

�

�

�

�

�

6:16 X. Wu et al.

MPI event ek, and (2) U, the unblocking event. We append these events to a global list,
L3, in the order they were encountered during the traversal. If the traversal is switched
to node n while node n is blocked on an MPI event ek, the deadlock detection algorithm
traverses L3 to determine if any unblocking event U has taken place since the last time
the traversal left node n due to the same MPI event ek. If there is no unblocking event
found, a potential cyclic dependency is detected. If ek is a blocking send/receive, then
a deadlock potential has been uncovered and the algorithm terminates. If ek is a wait
operation blocked on multiple requests, the traversal is proxied to the peer of another
non-blocking communication on which node n is waiting. If the peers of all the pending
non-blocking sends/receives have been traversed and the cyclic dependency still exists,
a deadlock potential has been detected and the algorithm terminates. This algorithm
implements a sufficient deadlock detection scheme. As a result, Algorithm 2 is guar-
anteed to be deadlock-free. However, unlike the DAMPI algorithm [Vo et al. 2010],
Algorithm 2 does not establish or test the permutations of all execution interleavings
and thus does not present a necessary condition for a deadlock as the approach is based
on a single trace sequence of events. It may therefore fail to identify deadlocks in the
original application that were not uncovered by the specific trace execution.

4.5. The Generation of Scalable Benchmarks

An inherent drawback of the trace-based benchmark generation approach is that the
generated code is not scalable in a parametric sense; it can be executed only with the
exact number of MPI tasks with which the trace was collected. To alleviate this short-
coming and allow an arbitrary number of MPI tasks for invocation, we incorporated
our benchmark generator with ScalaExtrap, our prior work, which extrapolates a large
communication trace (a trace with large number of MPI tasks) from a series of smaller
traces.

4.5.1. ScalaExtrap. This section briefly summarizes ScalaExtrap. A complete discus-
sion of ScalaExtrap can be found in our prior work [Wu and Mueller 2011]. ScalaEx-
trap is a tool that implements a methodology to automatically extrapolate a large trace
from a series of smaller traces for SPMD codes with a stencil/mesh communication pat-
tern. ScalaExtrap assumes that MPI parameters such as source, dest, and count are
linearly correlated with the dimension sizes x, y, and z of the communication topology.
Given a set of input traces of different node sizes, ScalaExtrap constructs a set of linear
equations in which unknown coefficients of x, y, z reflect the correlation. ScalaExtrap
uses Gaussian elimination to solve the set of linear equations. The obtained coeffi-
cients are later used with the known x, y, z sizes of an application at large scale to
calculate actual values of the MPI parameters of interest. In addition, ScalaExtrap
utilizes the curve fitting approach to extrapolate the lengths of the computational re-
gions in the application so that the timing behavior under scaling is also captured in
the extrapolated trace.

We combined our benchmark generator with ScalaExtrap by introducing the use
of an auxiliary trace. We extended ScalaExtrap such that for each MPI parameter, a
function of the processor mesh’s x, y, and z dimensions and the solved coefficients is
stored in a separate trace in addition to the extrapolated trace of a specific node size.
We store formulae for all the trace parameters including

(1) MPI parameters such as source, dest, count, etc.,
(2) application parameters such as the loop iteration counts; and
(3) trace parameters such as the ranklists (see Section 3.1).

In addition, the fitting curves for the computation times are also stored in the auxiliary
trace. The auxiliary trace is structurally similar to a normal ScalaTrace trace so that

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 6, Publication date: September 2014.

�

�

�

�

�

�

�

�

Generation of Executable Communication Specifications from MPI Applications 6:17

Fig. 7. Communication pattern of a 2D stencil code.

the formulae in the auxiliary trace can be easily mapped to parameters once a trace
size is selected for an actual run.

To auto-generate the extrapolation benchmark of an application, both the extrapo-
lated trace of a specific size and the auxiliary trace are read into the code generator.
During generation, whenever there is a formula in the auxiliary trace for a certain
parameter in the normal trace, the code generator generates a CONCEPTUAL com-
munication statement that uses the scalable representation in the auxiliary trace. As
an example, Figure 7 shows a 2D communication pattern in which the gray nodes send
messages to the nodes below them. ScalaExtrap identifies that the relative distance d
of the receiving nodes is d = x, i.e., a linear correlation with the size of the x dimen-
sion. Hence, a scalable CONCEPTUAL send statement using a formula instead of a
particular value as the destination will be generated as

TASKS t1 SUCH THAT ... SEND ... TO
TASKS t2 SUCH THAT t2 = t1 + x,

where x is initialized according to the total number of MPI tasks of a particular run.
Moreover, since all the gray nodes follow the same communication pattern, their send
events are merged into a single trace record with an associated ranklist

〈 2 x y − 2 x x 1 〉
indicating the participating MPI tasks. During code generation, this ranklist is used
to generate the range expression that defines the source tasks of this MPI event.
CONCEPTUAL implements the ranklist with a list comprehension using n variables
to recursively define the iteration count and stride for each of the n dimensions in a
ranklist. By utilizing list comprehensions, we can conveniently generate the scalable
ranklist representation with the CONCEPTUAL range expression (in this case, the
following list comprehension [Turner 1982]).

TASKS t1 SUCH THAT t1 IS IN {i1+i2
FOR EACH i1 IN {x,2x,...,x+((y-2)-1)*x}
FOR EACH i2 IN {0,1,...,(x-1)*1}} SEND ...

Parameters other than the source/dest and ranklists, such as count, loop iterations,
and computation times, are also generated with the auxiliary formulae. Because a
generated benchmark cannot automatically infer the user’s intentions when selecting
a processor layout, the user must explicitly provide the processor mesh’s x, y, and z
dimensions through command-line arguments. The generated benchmark then auto-
matically uses these values to extrapolate the various other parameters described in
the preceding.

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 6, Publication date: September 2014.

�

�

�

�

�

�

�

�

6:18 X. Wu et al.

By introducing ScalaExtrap’s parameter-extrapolation functionality into our
benchmark-generation framework, we are able to generate CONCEPTUAL communi-
cation benchmarks that can be executed with an arbitrary valid number of MPI tasks
while performance remains accurate at different processor counts. Note that generat-
ing scalable benchmarks is nontrivial due to the challenges in trace-based extrapola-
tion such as detecting communication topology, matching trace events across scales,
and inferring scale-dependent communication events. ScalaExtrap currently focuses
on stencil/mesh topology with nodes arranged in a row-major fashion, which repre-
sents the structure of many parallel applications.

4.6. Sources of Performance Inaccuracy

As indicated, there are a number of ways in which our benchmark generator trades
off performance fidelity for an improved ability to reason about the generated code
and its performance: computation times are summarized across ranks instead of being
specified individually (Section 3.1); some complex MPI collectives are implemented
in terms of more basic CONCEPTUAL collectives (Section 4.2); and nondeterministic
receive ordering is replaced with an arbitrary deterministic ordering (Section 4.4). In
Section 5 we examine the impact of these design decisions in the context of a suite of
test programs.

5. EVALUATION

5.1. Experimental Framework

To evaluate our benchmark-generation methodology, we generated CONCEPTUAL
codes for the NAS Parallel Benchmarks (NPB) suite (version 3.3 for MPI, compris-
ing BT, CG, EP, FT, IS, LU, MG, and SP) using the class C input size [Bailey et al.
1991], and for the Sweep3D neutron-transport kernel [Wasserman et al. 2000]. These
benchmarks all have either a mesh-neighbor communication pattern or rely heavily
on collective communication. Some of them (e.g., Sweep3D) require collective align-
ment (Section 4.3), and some (e.g., LU) require the resolution of wildcard receives (Sec-
tion 4.4). Hence, the key features of our code-generation framework are fully tested in
this set of experiments. We believe that the results from the NPB suite and Sweep3D
in this article, combined with previous ScalaTrace experiments [Noeth et al. 2009; Wu
and Mueller 2011], are sufficient to demonstrate the correctness of our approach, and
we do not foresee any algorithmic or technical problems with generating code for larger
applications. Moreover, these benchmarks are sufficient to demonstrate our ability to
retain an application’s performance characteristics. In particular, several kernels in
the NPB suite, including CG, FT, and MG, are known to be memory-bound [Saini et al.
2008], which stresses our generated benchmarks’ ability to mimic computation with
spin loops of the same duration.

Benchmark generation is based on traces obtained on, (a) Ocracoke, an IBM
Blue Gene/L [Adiga et al. 2002] with 2048 compute nodes and 1 GB of DRAM per
node, and (b) ARC, a cluster with 1728 cores on 108 compute nodes, 32 GB memory per
node, and an Ethernet interconnect. Due to limited access to these systems, our exper-
iments generally run on only a subset of the available nodes. Benchmark generation is
performed on a standalone workstation.

5.2. Communication Correctness

Our first set of experiments verifies the correctness of the generated benchmarks,
i.e., the benchmark generator’s ability to retain the original applications’ com-
munication patterns. For these experiments, we acquired traces of our test suite
on Blue Gene/L, generated CONCEPTUAL benchmarks, and also executed these

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 6, Publication date: September 2014.

�

�

�

�

�

�

�

�

Generation of Executable Communication Specifications from MPI Applications 6:19

benchmarks on Blue Gene/L. To verify the correctness of the generated benchmarks,
we linked both them and the original applications with mpiP [Vetter and McCracken
2001], a lightweight MPI profiling library that gathers run-time statistics of MPI event
counts and the message volumes exchanged. Experimental results (not presented here)
showed that, for each type of MPI event, the event count and the message volume mea-
sured for each of the generated benchmarks matched perfectly with those measured
for the original application.

We then conducted experiments to verify that the generated benchmarks not only
resemble the original applications in overall statistics but also that they preserve the
original semantics on a per-event basis. To this end, we instrumented each generated
benchmark with ScalaTrace and compared its communication trace with that of its
respective original application. Due to differences in the call-site stack signatures be-
tween the original application and the generated benchmark, these traces are never
bit-for-bit identical. Therefore, we replayed both traces with the ScalaTrace-based
ScalaReplay tool [Wu and Mueller 2011] to eliminate spurious structural differences
and thereby fairly compare the pairs of traces. The results (again, not presented here)
show that the original applications and the generated benchmarks generated equiv-
alent traces. That is, the semantics of each of the original applications was precisely
reproduced by the corresponding generated benchmark.

5.3. Accuracy of Generated Timings

Having shown that autogenerated benchmarks faithfully preserve the communication
performed by the original applications, we then assessed the generated benchmarks’
ability to retain the original applications’ performance. To measure the total execu-
tion time of the original applications, we extended the PMPI profiling wrappers of
MPI Init and MPI Finalize to obtain timestamps. The corresponding CONCEPTUAL
timing calls were also added to the generated benchmarks. We ran both the original ap-
plication and the generated benchmark on the Blue Gene/L system and compared the
total elapsed times. Figure 8 shows that the timing accuracy is qualitatively extremely
good. Quantitatively, the mean absolute percentage error (100% × |(TCONCEPTUAL −
Tapp)/Tapp|) across all of Figure 8 is only 2.9%, and only two data points exhibit worse
than 10% deviation: LU at 256 nodes observes a deviation of 22% (40 s for the bench-
mark versus 52 s for the original application), and SP at 16 nodes observes a deviation
of 10% (980 s for the benchmark versus 1092 s for the original application). Close ex-
amination of the SP traces shows that the inaccuracy might be caused by the use of
the average histogram value as the computation time. When the variance is large for
a histogram, the replay time tends to be shorter than the original execution time if the
immediately succeeding operation is a wait operation. This is a tradeoff between the
conciseness and performance fidelity of the generated benchmarks.

5.4. Correctness and Timing Accuracy of Auto-Generated Extrapolation Benchmarks

By combining the benchmark generator with ScalaExtrap, we are able to generate
extrapolation benchmarks under CONCEPTUAL that can be executed with an arbi-
trary number of MPI tasks. In this section, we evaluate the correctness of the ex-
trapolation benchmarks in terms of their ability to retain the communication pattern
under scaling. In addition, we also assess the timing accuracy of the extrapolation
benchmarks. In this set of experiments, we generated extrapolation benchmarks un-
der CONCEPTUAL for the NPB BT and FT codes. We chose BT and FT because they
represent two widely used communication patterns: stencil/mesh codes and applica-
tions with collective communication, and thus demonstrate the ability of generating
scalable codes for such patterns in general. BT is a 2-dimensional 7-point stencil code.
Due to strong scaling, various application parameters vary across different node sizes,

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 6, Publication date: September 2014.

�

�

�

�

�

�

�

�

6:20 X. Wu et al.

Fig. 8. Time accuracy for generated benchmarks.

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 6, Publication date: September 2014.

�

�

�

�

�

�

�

�

Generation of Executable Communication Specifications from MPI Applications 6:21

Fig. 9. Timing accuracy of the scalable CONCEPTUAL benchmarks.

including the MPI parameters source, dest, and count, the loop iteration count, the
ranklists for MPI events, and the computational delta times. FT performs a fast
Fourier transform (FFT). Its communication workload is mainly comprised of repet-
itive calls of MPI Alltoall in multiple iterations.

In the first experiment, we generated an extrapolation benchmark under
CONCEPTUAL for BT of the Class D input size. We used traces of 16, 64, 144, and
256 tasks as the input of ScalaExtrap. With an extrapolated trace and the auxiliary
trace generated during extrapolation, we generated an extrapolation benchmark un-
der CONCEPTUAL. We then executed the extrapolation benchmark at different scales
from 16 to 400 MPI tasks and evaluated their communication correctness and timing
accuracy. To demonstrate the communication correctness, we collected the message
density matrices for both the original application and the extrapolation benchmark.
The heat maps of the original application and the extrapolation benchmark are identi-
cal, showing that the generated extrapolation benchmark is able to preserve the com-
munication pattern of the original application under scaling.

In the second experiment, we evaluated the timing accuracy of the generated ex-
trapolation benchmarks under CONCEPTUAL with different numbers of MPI tasks.
For BT, we used the same scalable code that we used in the experiment described in
the preceding. For FT, we used the Class C input size instead of Class D so that we can
collect the input traces for ScalaExtrap starting with a minimum of 8 MPI tasks. With
traces collected for 8, 16, 32, and 64 MPI processes, we generated an extrapolation
benchmark for FT under CONCEPTUAL. We then executed both the original appli-
cation and the extrapolation benchmarks at different scales and compared their total
execution times. Figure 9 shows the experimental results. As demonstrated, the au-
togenerated extrapolation codes under CONCEPTUAL have total execution times that
closely resemble those of the original applications at each tested scale. Quantitatively,
across all the tested node sizes, the mean absolute percentage errors for BT and FT
are only 5.12% and 3.42%, respectively.

5.5. Case Studies: Applications of the Benchmark Generator

The experimental results presented in Sections 5.2 and 5.3 indicate that the perfor-
mance of the generated benchmarks can be trusted. We now present a set of case
studies featuring what-if analysis and cross-platform performance prediction that be-
come practical due to the novel capabilities of automatic benchmark generation. Since
each scenario requires detailed analysis to interpret their behavior and the respective
causes, we demonstrate these capabilities for just one exemplary program at a time.

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 6, Publication date: September 2014.

�

�

�

�

�

�

�

�

6:22 X. Wu et al.

Fig. 10. Communication performance of BT.
Fig. 11. Impact of communication performance on
BT.

5.5.1. Impact of Computational Speedup. A current trend in high-performance computing
is to supplement general-purpose CPUs with more special-purpose computational ac-
celerators (e.g., GPUs).1 However, by Amdahl’s Law [Amdahl 1967], accelerating only
an application’s computational phases does not always lead to proportional overall
speedup. Unfortunately, it is nontrivial both to predict how fast a parallel application
will run once accelerated and to port a parallel application to an accelerated architec-
ture. Application developers may also optimize performance by overlapping communi-
cation and computation. This too takes time to implement and leads to a reduction in
execution time that can be difficult to predict.

Because the CONCEPTUAL benchmarks produced by our generator are easy to mod-
ify, we can use our framework to estimate how fast an application can be expected to
run once accelerated or once communication and computation fully overlap. We gener-
ated a benchmark from the NPB BT code on 64 cores using the class C input, which is
computation-bound in nature at this input size and core count. We chose BT because it
is a stencil code consisting almost exclusively of asynchronous point-to-point commu-
nication operations, which leads to the optimal computation speedup that we want to
study. We then modified the CONCEPTUAL code to vary the time spent in all computa-
tion phases from 100% down to 0% of their original time to simulate different expected
improvements due to acceleration. We ran the resulting benchmark variations on the
ARC cluster (cf. Section 5.1) and plotted the results in Figure 10.

Reading Figure 10 from right to left, the data points ranging from 100% down
to 30% of the original application’s compute time are essentially what one might ex-
pect: a steady but sublinear decrease in total execution time. That is, a fabricated
3.3x speedup of computation leads to only a 21% reduction in total execution time for
BT. However, as computation time continues to decrease, rather than reach a plateau,
the total execution time increases. At the 0% computation mark, which represents in-
finitely fast processors on a modern Ethernet network, there is essentially no speedup
over the unmodified BT execution time.

To understand this puzzling behavior, note that BT is a stencil code consisting al-
most exclusively of asynchronous point-to-point communication operations, with only
a few collectives at the beginning and end of the execution. Reducing the time between
subsequent communication operations alters the dynamics of the messaging layer and
leads to the observed increase in performance. For example, if messages begin arriv-
ing faster than they can be processed, they will start being directed to the MPI imple-
mentation’s unexpected-receive queue, which incurs a performance cost in the form of

1In fact, four of the world’s ten fastest supercomputers contain accelerators (http://www.top500.org/, June
2014).

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 6, Publication date: September 2014.

�

�

�

�

�

�

�

�

Generation of Executable Communication Specifications from MPI Applications 6:23

an extra memory copy to transfer unexpected messages to the target buffer. Once all
available space for storing incoming messages on a given node is exhausted, the MPI
implementation’s flow-control mechanism must stall any senders and later pay a cost
in network latency to resume them. It is the nonlinear effects such as those that make
it important to quantify potential performance improvements using a framework such
as ours before investing the effort to accelerate an application.

We should note that the experimental result presented in Figure 10 is both
application-specific and platform-specific. Yet, with our benchmark-generation ap-
proach, the experiment can easily be repeated on different platforms without ever
needing to port the original application. In addition, our BT experiment can easily
be refined to utilize different speedup factors for different computational phases. We
foresee this type of performance experimentation, enabled by our benchmark gener-
ator, becoming increasingly important as HPC hardware increases in complexity and
requires expanded efforts to port large applications (for potentially small performance
gains).

5.5.2. Impact of Communication Performance. In the second case study, we evaluate the
impact of network bandwidth on the overall performance of an application. We keep
the computation times and communication pattern as they are but vary the message
sizes to mimic the impact of different problem sizes or different data decomposition on
the communication behavior. For each configuration, we further evaluate the impact
of the maximum bandwidth by varying the number of MPI tasks on each node.

For this experiment, we used the ARC cluster with an Infiniband QDR interconnect.
We generated the CONCEPTUAL benchmark for the NPB BT code with 16 MPI tasks
and class A input size. BT is computation bound in nature at this input size and core
count (just like the preceding BT experiment), but we will assess the point where it
becomes communication bound. The generated benchmark allows us to modify the
generated benchmark by manually customizing message sizes from 0.1x to 256x of
their original sizes. We then executed the modified codes with a node count from 1
to 16, which increases the available bandwidth per MPI task as node counts become
higher. Figure 11 shows the overall execution time of the modified benchmark for each
configuration. Each curve represents the results obtained for a different message size.

We observe that, in the figure, the curves for 0.1x, 0.25x, 0.5x, 1x, and 4x message
sizes overlap with each other. This indicates, for this particular application and this
particular system, that neither increasing the available bandwidth nor decreasing the
message size may improve overall performance. Therefore, optimizations in the com-
putation design are required to accelerate this application. Yet, when the message size
is 16 times the original size, the communication starts to saturate the network band-
width. From there on, notable speedup can be observed if more nodes and hence higher
overall bandwidth are allocated for this application.

5.5.3. Impact of Collective Implementation. With easy-to-modify CONCEPTUAL bench-
marks, application developers can not only modify the parameter values for what-if
analysis, they can also quickly modify the communication implementation for perfor-
mance comparison. This is made practical by the conciseness of CONCEPTUAL pro-
grams. For example, no buffer allocation or explicit request handle management is
necessary. In addition, because computation is removed and replaced with idle spin-
ning in the generated benchmarks, the generated benchmarks tend to be much shorter
and simpler than the original application. For example, the CONCEPTUAL version of
FT has only 22 lines of code (Figure 12) while the original FT code has 2131 lines of
code. As Figure 8(d) shows, there is no qualitative difference between the performance
of the original code and the generated benchmark, even though the latter is only 1%
of the length of the former. With the generated communication skeleton, application

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 6, Publication date: September 2014.

�

�

�

�

�

�

�

�

6:24 X. Wu et al.

All tasks synchronize then
Task 0 resets its counters then
All tasks compute for 52 microseconds
Task 0 multicasts a 12-byte message

to all other tasks
All tasks compute for 0 microseconds
Task 0 multicasts a 4-byte message

to all other tasks
All tasks compute for 295410 microseconds
All tasks multicasts a 32768-byte message

to all other tasks
All tasks compute for 133044 microseconds
All tasks synchronize
All tasks compute for 317381 microseconds
All tasks multicasts a 32768-byte message

to all other tasks

For each i1 in {1, ..., 20} {
If i1 <> 1 then All tasks compute

for 167332 microseconds then
If i1 = 1 then All tasks compute

for 312861 microseconds then
All tasks multicasts a 32768-byte message

to all other tasks then
All tasks compute

for 254450 microseconds then
All tasks reduce 4 integers to task 0

}
All tasks compute for 24 microseconds
All tasks synchronize then
Task 0 logs elapsed_usecs/1E6 as "Seconds"

Fig. 12. Complete autogenerated CONCEPTUAL program for NPB FT (Class C) of 256 MPI tasks.

developers can readily assess a communication design without having to modify the
entire parallel algorithm and keep track of the changes in multiple source files.

In this experiment, we evaluate different communication implementations for
the NPB FT code. FT solves a three-dimensional partial differential equation using
the fast Fourier transform (FFT). It uses MPI Alltoall to exchange data among all the
participating MPI tasks in each timestep. Alternatively, point-to-point communication
routines can also be used to implement the same communication pattern. We compared
the performance of these two different implementations by modifying the generated FT
benchmark. To migrate from the MPI Alltoall implementation to the point-to-point im-
plementation with MPI Isend, we do not need to understand the FFT algorithm to find
out which buffer should be changed or to implement the all-to-all style point-to-point
communication for the communicators representing the user-defined processor layout.
Instead, only one line of the CONCEPTUAL code needs to be changed from

All tasks multicasts a xxx-byte message to all other tasks

to

All tasks asynchronously send a xxx-byte message to all other tasks
All tasks await completion

where the matching receive operations will be posted automatically by the
CONCEPTUAL runtime framework.

We compared the performance for different implementations by executing the
CONCEPTUAL FT codes on ARC. Figure 13 plots the overall execution times for dif-
ferent implementation strategies with different numbers of nodes. Not surprisingly,
the MPI Alltoall implementation outperforms the point-to-point implementation. Be-
cause the point-to-point implementation blindly exchanges data between each pair
of nodes without any communication pattern optimization, it suffers from scalabil-
ity constraints: the overall runtime of the point-to-point version with 256 MPI tasks is
46.2% longer than the collective version even though its performance is 0.5% slower for
16 nodes.

With this experiment, we show the ability to utilize the generated benchmark to
assess the efficiency of different communication options in rapid prototyping. This
becomes feasible due to the ease of modifying the generated CONCEPTUAL bench-
mark for what-if analysis. In practice, developers may evaluate various optimizations,
such as replacing point-to-point message-based multicasting with collectives within
a communicator or replacing a single collective with sets of group-based collectives

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 6, Publication date: September 2014.

�

�

�

�

�

�

�

�

Generation of Executable Communication Specifications from MPI Applications 6:25

Fig. 13. All-to-all variants for FT.

using modified communication patterns, which is facilitated by CONCEPTUAL
benchmarks. Moreover, developers may even completely change the communication
design for evaluation before modifying the implementation of the associated data
and problem decomposition in the original application. Modifying the output of con-
ventional MPI tracing tools is tedious and error-prone. For example, given that
MPI Alltoall is called 22 times by each MPI process, altering the communication pat-
tern of a 256-rank FT run requires that 22 × 256 locations be changed. In contrast,
our approach of using CONCEPTUAL benchmarks generated from compressed traces
requires modifying only one statement and hence significantly facilitates this process.

5.5.4. Cross-Platform Performance Prediction. The benchmark generation approach pre-
sented in this article may also benefit system designers and procurers by providing
a means for fast cross-platform performance prediction for existing, or even future,
systems. In this section, we present our prediction results for two different architec-
tures, ARC and Juqueen. Juqueen is an IBM Blue Gene/Q system with 131,072 cores
on 8192 compute nodes, 16 GB SDRAM-DDR3 per node, and a 5D Torus interconnect.
In this set of experiments, we predict the performance of the NPB CG and MG codes
on Juqueen by modifying and executing the generated CONCEPTUAL benchmarks on
ARC. For these experiments, we pretend that Juqueen is a future supercomputer for
which one compute node is available and the network performance is known. In prac-
tice, the same approach can also be used for cross-platform prediction between existing
systems.

The runtime of a parallel application consists of the sequential computation time
in each process, the communication time between processes, and their convolution. To
predict the runtime of an application on a future platform, we generate CONCEPTUAL
benchmarks of different node sizes that reflect the computational speedup with modi-
fied sleep times, execute the generated benchmarks on an existing system, and adjust
the communication times to estimate the total runtime. In this set of experiments, we
obtained the computational speedup by executing the application on only one node on
each of the existing (ARC) and the future (Juqueen) platforms. The communication
speedup was calculated by performing a ping-pong test on both systems. To adjust the
total runtime, mpiP was utilized to measure the time spent in MPI communication
events. Hence, with the known communication time Tcomm, communication speedup s,
and the computation time Tcomp of the simulation run, the predicted runtime T can
be calculated with equation T = Tcomm × s + Tcomp. In case the interconnect on the
future platform is not yet available, estimation or analytical modeling results can be
used instead.

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 6, Publication date: September 2014.

�

�

�

�

�

�

�

�

6:26 X. Wu et al.

Fig. 14. Cross-platform prediction.

Figure 14 shows the cross-platform prediction results. According to the single-node
computational speedup tests, ARC is 5.9 times faster than Juqueen for MG and 6.2
times faster for CG. Accordingly, the CONCEPTUAL benchmarks were generated to
reflect the speedup. We then measured the communication speedup by performing
ping-pong tests for messages of different sizes on both systems. The message sizes
chosen for this test are the send volumes of the dominating send operations in the
applications. The communication speedup is then used together with the mpiP results
(not presented) to calculate the adjusted total runtime prediction shown in Figure 14.
Compared to actual runtimes for MG and CG on Juqueen, our execution time predic-
tions match closely, with an accuracy of 97.72% for MG and 96.81% for CG.

This experiment demonstrates the feasibility to perform such experiments—enabled
by our benchmark generation tools—via quick cross-platform performance prediction
for either existing or future HPC systems, yet without porting the actual applications
to those platforms.

5.6. Limitations

Automatic generation of executables from traces is subject to limitations. As a premise,
traces should be scalable in the sense that their trace file size does not significantly
change as the number of time steps of iterative algorithms or the number of parallel
tasks is increased. Absence of change (constant trace file sizes) irrespective of these
two parameters is an indication for scalability. Sublinear increases in trace file sizes
generally result in conditionals to distinguish irregular behavior across nodes (e.g.,
parameter differences such as send volumes or communication events only triggered
by a subset of tasks). Superlinear trace file size increases generally result in exces-
sive conditionals that will skew the replay accuracy of generated executables relative
to their original program counterpart. UMT2k [LLNL 2002] is one example of such a
benchmark, where the superlinear growth in trace file size can be observed not just for
uncompressed but also for node-only intracompression and global internode compres-
sion (Figure 15).

Phase changes in applications, on the other hand, are handled by our framework
as we recognize new, repetitive values as a new pattern when dynamically compress-
ing traces. For example, if an application utilizing Adaptive Mesh Refinement (AMR)
changes communication from one pattern to another, the phase change is recognized.
However, some ARM codes contain inner loops whose iteration counts vary from one
timestep to another. Such behavior results in superlinear trace size growth and causes
generated executions from traces to become inaccurate. This behavior can be countered
by probabilistic trace encodings [Wu et al. 2011]. The POP code [Jones et al. 2005] is an

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 6, Publication date: September 2014.

�

�

�

�

�

�

�

�

Generation of Executable Communication Specifications from MPI Applications 6:27

Fig. 15. UMT2k trace file size on blueGene/L. Fig. 16. POP on blueGene/L.

example for such a code with varying inner loop trip counts, where only probabilistic
traces provide linear growth of trace files (see Figure 16) while precise (lossless) traces
increase superlinearly. In the future, generation of executables could be extended to
probabilistic traces to extend the applicability of our approach to a wider class of
programs.

In general, any generated executable reflects the behavior of its original benchmark
for a specific set of inputs for its traced execution. Different inputs generally result
in different traces for the same application, and hence, different generated executa-
bles. If, however, a parameter is changing on each event invocation in a randomized
manner, trace compression will deteriorate in terms of trace size explosion making the
generation of executables infeasible and their runtimes inaccurate.

6. DISCUSSION AND FUTURE WORK

Currently, our work focuses on the generation of communication benchmarks. Our ap-
proach guarantees that the generated communication is cross-platform performance-
portable because we preserve the original communication pattern and can execute it
natively on a target machine. However, since computation times are taken from the
source machine, the computation performance does not reflect architecture-specific
effects of a different platform. One advantage of mimicking computation with spin
loops is that this enables studies in which computation time is explicitly varied, as in
Section 5.5 of the article. Meanwhile, we are also working on scalable memory tracing
to complement communication tracing. Automatic generation and replay of memory-
access behavior within ScalaTrace is a subject of future work.

7. CONCLUSIONS

To bridge the gap between the performance realism of a complete application and the
convenience of porting and modifying a small benchmark code, we have designed, im-
plemented, and evaluated a benchmark-generation framework that automatically gen-
erates portable, customizable communication benchmarks from parallel applications.
Our approach is based on an application’s dynamic behavior rather than its statically
identifiable characteristics. We use ScalaTrace [Noeth et al. 2007] to recover applica-
tion structure from a communication trace and CONCEPTUAL [Pakin 2007] to express
the resulting benchmarks in a readable, editable, yet executable format.2 Algorithms
we developed to assist in this process merge collective operations described by dis-
parate source-code lines into a single call point and eliminate nondeterminism caused
by wildcard receives. Empirical measurements indicate that the performance of the
generated benchmarks is faithful to that of the original application.

2ScalaTrace and CONCEPTUAL are freely available from, respectively, http://moss.csc.ncsu.edu/∼mueller/
ScalaTrace/ and http://conceptual.sourceforge.net/.

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 6, Publication date: September 2014.

http://moss.csc.ncsu.edu/~mueller/ScalaTrace/
http://moss.csc.ncsu.edu/~mueller/ScalaTrace/
http://conceptual.sourceforge.net/

�

�

�

�

�

�

�

�

6:28 X. Wu et al.

There are two main conclusions one can draw from this work. First, it is in fact feasi-
ble to automatically convert parallel applications into benchmark codes that accurately
reproduce the applications’ performance yet are easy to port, read, edit, and reason
about. Second, as demonstrated in Section 5.5, nonlinear performance effects come
into play as applications are modified for nascent architectures, and performance-
accurate, application-specific benchmarks are an important new technology for quan-
tifying these effects before exerting the effort involved in application porting.

The benchmarks we generate preserve all communication operations, represent ap-
plications’ actual run-time behavior, and do not grow proportionally to the process
count or message volume. To our knowledge, our work is the first successful attempt at
automatically converting parallel applications into performance-accurate benchmarks
that exhibit all of those features.

REFERENCES

Adiga, N. R., Amási, G., Aridor, Y. et al. 2002. An Overview of the BlueGene/L Supercomputer. In Proceedings
of the ACM/IEEE Conference on Supercomputing. IEEE Computer Society Press, Baltimore, Maryland.

Amdahl, G. M. 1967. Validity of the Single Processor Approach to Achieving Large Scale Computing Capa-
bilities. In Proceedings of the AFIPS Spring Joint Computer Conference. 483–485.

Bailey, D. H. and Snavely, A. 2005. Performance modeling: Understanding the present and predicting the
future. In Proceedings of the Euro-Par Conference.

Bailey, D. H., Barszcz, E., Barton, J. T., Browning, D. S., Carter, R. L, Dagum, D., Fatoohi, R. A., Frederickson,
P. O., Lasinski, T. A., Schreiber, R. S., Simon, H.D., Venkatakrishnan, V., and Weeratunga, S. K. 1991.
The NAS parallel benchmarks. Int. J. Supercomput. Appl. 5, 3, 63–73.

Bell, R. and John, L. 2005. Improved automatic testcase synthesis for performance model validation. In
Proceedings of the International Conference on Supercomputing. 111–120.

Brunst, H., Hoppe, H.-C., Nagel, W. E., and Winkler, M. 2001. Performance optimization for large scale
computing: The scalable VAMPIR Approach. In Proceedings of the International Conference on Compu-
tational Science (2). 751–760.

Casas, M., Badia, R., and Labarta, J. 2007. Automatic structure extraction from MPI applications tracefiles.
In Proceedings of the Euro-Par Conference.

Chen, J., John, L. K., and Kaseridis, D. 2011. Modeling program resource demand using inherent program
characteristics. SIGMETRICS Perform. Eval. Rev. 39, 1, 1–12.

Gropp, W., Lusk, E., Doss, N., and Skjellum, A. 1996. A high-performance, portable implementation of the
MPI message passing interface standard. Parallel Comput. 22, 6, 789–828.

Ïpek, E., McKee, S. A., Caruana, R., de Supinski, B. R., and Schulz, M. 2006. Efficiently exploring archi-
tectural design spaces via predictive modeling. In Proceedings of the 12th International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS-XII). 195–206.

Jones, P. W., Worley, P. H., Yoshida, Y., White III, J. B., and Levesque, J. 2005. Practical performance porta-
bility in the Parallel Ocean Program (POP): Research articles. Concurrency and Computation: Pract.
Exper. 17, 10, 1317–1327.

Kerbyson, D., Alme, H., Hoisie, A., Petrini, F., Wasserman, H., and Gittings, M. 2001. Predictive performance
and scalability modeling of a large-scale application. In Proceedings of the ACM/IEEE Conference on
Supercomputing.

Knüpfer, A. 2005. Construction and compression of complete call graphs for post-mortem program trace
analysis. In Proceedings of the International Conference on Parallel Processing. 165–172.

Knüpfer, A., Brendel, R., Brunst, H., Mix, H., and Nagel, W. E. 2006. Introducing the Open Trace Format
(OTF). In Proceedings of the International Conference on Computational Science. 526–533.

Koch, K. R., Baker, R. S., and Alcouffe, R. E. 1992. Solution of the first-order form of the 3-D discrete ordi-
nates equation on a massively parallel processor. Trans. Amer. Nuclear Soc. 65, 108, 198–199.

LLNL. 2002. The ASCI Purple Benchmarks. http://www.llnl.gov/asci/purple/benchmarks.
Nagel, W. E., Arnold, A., Weber, M., Hoppe, H. C., and Solchenbach, K. 1996. VAMPIR: Visualization and

Analysis of MPI Resources. Supercomputer 12, 1, 69–80.
Noeth, M. Mueller, F., Schulz, M., and de Supinski, B. R. 2007. Scalable compression and replay of com-

munication traces in massively parallel environments. In Proceedings of the International Parallel and
Distributed Processing Symposium.

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 6, Publication date: September 2014.

�

�

�

�

�

�

�

�

Generation of Executable Communication Specifications from MPI Applications 6:29

Noeth, M. Mueller, F., Schulz, M., and de Supinski, B. R. 2009. ScalaTrace: Scalable compression and replay
of communication traces in high performance computing. J. Parallel Distrib. Comput. 69, 8, 969–710.

Pakin, S. 2004. Reproducible network benchmarks with CONCEPTUAL. In Proceedings of the 10th Interna-
tional Euro-Par Conference. 64–71.

Pakin, S. 2007. The design and implementation of a domain-specific language for network performance
testing. IEEE Trans. Parallel and Distrib. Syst. 18, 10, 1436–1449.

Panadero, J., Wong, A., Rexachs, D., and Luque, E. 2013. A tool for selecting the right target machine for
parallel scientific applications. Procedia Comput. Sci. 18, 1824–1833.

Pillet, V., Labarta, J., Cortes, T., and Girona, S. 1995. PARAVER: A Tool to visualize and analyze parallel
code. In Proceedings of the 18th Technical Meeting of WoTUG-18: Transputer and Occam Developments.
17–31.

Ratn, P., Mueller, F., de Supinski, B. R., and Schulz, M. 2008. Preserving time in large-scale communication
traces. In Proceedings of the International Conference on Supercomputing. 46–55.

Saini, S., Talcott, D., Jespersen, D., Djomehri, J., Jin, H., and Biswas, R. 2008. Scientific application-based
performance comparison of SGI Altix 4700, IBM POWER5+, and SGI ICE 8200 supercomputers. In
Proceedings of the ACM/IEEE Conference on Supercomputing. 1–12.

Schulz, M., Galarowicz, J., Maghrak, D., Hachfeld, W., Montoya, D., and Cranford, S. 2008.
Open|SpeedShop: An open source infrastructure for parallel performance analysis. Sci. Program. 16,
2–3, 105–121.

Shao, S., Jones, A., and Melhem, R. 2006. A compiler-based communication analysis approach for multipro-
cessor systems. In Proceedings of the International Parallel and Distributed Processing Symposium.

Shende, S. S. and Malony, A. D. 2006. The Tau Parallel Performance System. International J. High Perform.
Comput. Appl. 20, 2, 287–311.

Snavely, A., Carrington, L., Wolter, N., Labarta, J., Badia, R., and Purkayastha, A. 2002. A frame-
work for performance modeling and prediction. In Proceedings of the International Conference on
Supercomputing.

Sreenivasan, K. and Kleinman, A. J. 1974. On the construction of a representative synthetic workload.
Commun. ACM 17, 3, 127–133.

Turner, D. A. 1982. Recursion equations as a programming language. In Functional Programming and Its
Applications: An Advanced Course, J. Darlington, Peter Henderson, and D. A. Turner Eds., Cambridge
University Press, 1–28.

Van Ertvelde, L. V., and Eeckhout, L. 2008. Dispersing proprietary applications as benchmarks through code
mutation. In Proceedings of Architectural Support for Programming Languages and Operating Systems.
201–210.

Vetter, J. and McCracken, M. 2001. Statistical scalability analysis of communication operations in dis-
tributed applications. In Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming.

Vo, A., Aananthakrishnan, S., Gopalakrishnan, G., de Supinski, B. R., Schulz, M., and Bron-
evetsky, G. 2010. A Scalable and distributed dynamic formal verifier for MPI Programs. In
Proceedings of the ACM/IEEE International Conference for High Performance Computing, Networking,
Storage and Analysis.

Wasserman, H., Hoisie, A., and Lubeck, O. 2000. Performance and scalability analysis of teraflop-scale par-
allel architectures using multidimensional wavefront applications. Int. J. High Perform. Comput. Appl.
14, 330–346.

Wolf, F. and Mohr, B. 2003. KOJAK—A tool set for automatic performance analysis of parallel applications.
In Proceedings of the European Conference on Parallel Computing (Euro-Par). 1301–1304.

Wong, W. S. and Morris, R. J. T. 1988. Benchmark synthesis using the LRU cache hit function. IEEE Trans.
Comput. 37, 6, 637–645.

Wu, X., Deshpande, V., and Mueller, F. 2012. ScalaBenchGen: Auto-generation of communication benchmark
traces. In Proceedings of the International Parallel and Distributed Processing Symposium.

Wu, X. and Mueller, F. 2011. ScalaExtrap: Trace-based Communication Extrapolation for SPMD Programs.
In ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.

Wu, X., Vijayakumar, K., Mueller, F., Ma, X. and Roth, P. C. 2011. Probabilistic communication and I/O
tracing with deterministic replay at scale. In Proceedings of the International Conference on Parallel
Processing. 196–205.

Xu, Q., Prithivathi, R., Subhlok, J., and Zheng, R. 2008. Logicalization of MPI Communication Traces. Tech.
rep. UH-CS-08-07. Dept. of Computer Science, University of Houston.

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 6, Publication date: September 2014.

�

�

�

�

�

�

�

�

6:30 X. Wu et al.

Xu, Q. and Subhlok, J. 2008. Construction and evaluation of coordinated performance skeletons. In Proceed-
ings of the International Conference on High Performance Computing. 73–86.

Zhai, J., Sheng, T., He, J., Chen, W., and Zheng, W. 2009. FACT: Fast communication trace collection for
parallel applications through program slicing. In Proceedings of SC. 1–12.

Received February 2011; revised June 2014; accepted July 2014

ACM Transactions on Parallel Computing, Vol. 1, No. 1, Article 6, Publication date: September 2014.

