Fully Secure and Fast Signing from Obfuscation

Kim Ramchen Brent Waters
University of Texas at Austin University of Texas at Austin
kramchen@cs.utexas.edu bwaters@cs.utexas.edu
Abstract

In this work we explore new techniques for building short signatures from obfuscation. Our goals are
twofold. First, we would like to achieve short signatures with adaptive security proofs. Second, we would
like to build signatures with fast signing, ideally significantly faster than comparable signatures that are
not based on obfuscation. The goal here is to create an “imbalanced” scheme where signing is fast at the
expense of slower verification.

We develop new methods for achieving short and fully secure obfuscation-derived signatures. Our base
signature scheme is built from punctured programming and makes a novel use of the “prefix technique”
to guess a signature. We find that our initial scheme has slower performance than comparable algorithms
(e.g. EC-DSA). We find that the underlying reason is that the underlying PRG is called = £? times for
security parameter /.

To address this issue we construct a more efficient scheme by adapting the Goldreich-Goldwasser-
Micali [GGMS86] construction to form the basis for a new puncturable PRF. This puncturable PRF
accepts variable-length inputs and has the property that evaluations on all prefixes of a message can
be efficiently pipelined. Calls to the puncturable PRF by the signing algorithm therefore make fewer
invocations of the underlying PRG, resulting in reduced signing costs.

We evaluate our puncturable PRF based signature schemes using a variety of cryptographic candidates
for the underlying PRG. We show that the resulting performance on message signing is competitive with
that of widely deployed signature schemes.

1 Introduction

Obfuscation deals with the problem of how to protect a program from reverse engineering while preserving
functionality. Traditionally constructing secure obfuscation in a mathematically sound way has been a very
challenging problem. While there have been numerous ad hoc approaches to obfuscation, in practice these
have nearly all broken, pointing to the need for a cryptographically grounded solution. This state of affairs
changed dramatically with the introduction of candidate indistinguishability obfuscation by Garg, Gentry,
Halevi, Raykova, Sahai and Waters [GGH'13a].

Recently, starting with [SW14] there has been much interest in investigating what can be built from
indistinguishability obfuscation, since this model leads to poly-time obfuscation of unrestricted program
classes, circumventing the known impossibility results of [BGIT01]. Roughly, this body of work can be
divided into two classes. The first seeks to discover new applications that were not achievable prior to
introduction of secure obfuscation. The second seeks to re-explore the construction of existing cryptographic
primitives, but through the lens of obfuscation.

The latter direction is important for several reasons. First, re-exploration leads to qualitatively different
ways of approaching cryptographic problems. For example, the Sahai-Waters [SW14] public key scheme was
obtained by application of obfuscation to symmetric key encryption, thereby matching Diffie and Hellman’s
original vision that public key encryption be obtainable by scrambling a private key enciphering program
[DH76]. Moreover the techniques that were used to build cryptographic primitives for which their were
already candidates, led to new and unexpected results. For example the technique of “punctured program-
ming”, which was used to construct public key encryption in turn, led to the first construction of deniable

encryption. Second, such schemes have unique and interesting properties in their own right. For example,
decryption in the SW public key cryptosystem involves only a symmetric key operations and is therefore
quite fast. Likewise the signing algorithm from their signature scheme is also fast due to only applying
symmetric key primitives.

This work In this paper we explore building new signature systems from obfuscation. Our goals are
twofold. First, we would like to achieve short signatures with adaptive security proofs (matching the GMR
definition [GMRS8S8]).

Second, we would like to build signatures with fast signing— ideally significantly faster than comparable
signatures that are not based on obfuscation. The goal here is to create an “imbalanced” scheme where
signing is fast at the expense of longer verification. Such imbalance could be useful in applications where
signing must be done by low power devices such as sensors, which verification can be done by well equipped
machines. We note that employing imbalanced schemes has a long history. For example, an earlier feature
of low-exponent RSA [Knu81] (e.g. e = 3) was that verification was very fast. In addition, recent work
on delegation of computation (e.g., [GGP10, LW12, GGH'13b, GVW13, PHGR13]) works on a similar
principle of saving resources of a weaker client.

Although current obfuscation candidates will admit prohibitively slow verification, the work of obfuscation
is in its nascent stages and it is plausible that systems with reasonable performance will be realized in the
not too distant future. This future seems even more possible if one considers that obfuscation candidates
might be designed and optimized for implementing particular functionalities.

We begin by overviewing the techniques of the SW signature system [SW14] which builds signatures
from puncturable pseudorandom functions (PRFs). We briefly recall that a puncturable PRF is a type of
constrained pseudo random function [BW13, BGI14, KPTZ13| where a key K{z*} can be given out that
allows one to evaluate the (keyed) function F (+) at all inputs x ezcept when x = z*. In this scheme the Setup
algorithm chooses a puncturable PRF key at random. A message is signed by evaluating the puncturable
PRF on it. The verification key is an indistinguishability obfuscation that on input a message and signature
pair, verifies that the signature is the correct output of the PRF on the message. One significant limitation
of this scheme is that it only satisfies unforgettability against a selective attacker. In this notion of security,
the attack algorithm is forced to select the message M™ it will attempt to forge on at the beginning of the
security game, before seeing the verification key and before he gets to query for signatures on other messages.

We are therefore interested in designing signature systems to accommodate stronger attacks on security
- in particular the standard notion of security where that attacker can adaptively choose which message
it will forge on. To construct a signature scheme satisfying this notion of security, we employ the prefix-
guessing technique of Hohenberger-Waters [HW09]. Here the signature scheme challenger uses the list of
pre-committed message queries to guess the shortest differing prefix between these messages and the forgery.
This prefix is used to embed a challenge in the verification key, which a successful forger must answer with
noticeable probability. We note that this “prefix technique” has been successfully employed in other contexts
[CHKP10, BSW11, FS12, MP12, CK12, BHJ 14, Seol4].

The Hohenberger-Waters technique gives a technique to build a scheme against an attacker that adap-
tively chooses the forged message, but where the signature queries must be declared before seeing the
verification key. In [HWO09] they transform this notion into a fully adaptive secure scheme by using the
well-known technique of applying a chameleon hash [KRO00] to the message before running the base signa-
ture scheme. Here we wish to avoid this transformation firstly to meet the goal of constructing fully secure
signatures using purely obfuscation-based techniques and secondly to keep signing costs low compared to
deployed signature schemes such as EC-DSA| necessitates avoiding discrete-log based systems.

To achieve adaptive security from the prefix-embedded scheme, we do something akin' to publishing a
signature tag ¢t and building a one-time signature using the tag ¢ as the verifcation key for the message. This
part of the signature is secure provided that no tag t is ever re-used more than once. We can then sign

LOur construction uses the primitive a little differently. In a standard one-time signature scheme, anyone can generate a
verification key and sign with the corresponding private key. In our scheme some secret information is needed even to sign with
tag t.

the tag with the prefix-guessing scheme, generating a second signature part. The structure of our signature
scheme is such that we can xor these parts together, with a suitable modification to the verificaion circuit.

Our construction in a nutshell We now describe the main two pieces of our construction. Firstly we
construct a one-time like signature scheme as follows. We generate a tag t of A bits. Our first “signature
piece” is s; = ®._, Fy(K1,t|)i||M (7)), where Fy(Ky,-) is a puncturable PRF with appropriate input length.
Our verification key is an obfuscated circuit that on input (M, (¢,s1)) checks that s; is of the above form.
The security property is that an adversary on seeing a signature for a message M that uses tag t, cannot
construct a signature on M™* # M, that uses the same tag t. To argue security, we use a Lamport-like
proof. If M* # M then there exists some index 7 where M*(z) % M(3). Let bit b = M*(7). The reduction
algorithm can guess the position i and bit b = M *(i) with noticeable probability. The reduction first
punctures K, on 7 = t|i||b. Then it evaluates an injective one way function evaluated on the punctured
value Fy (K1, 7), yielding an image z. This image is embedded inside the verification key, VK, and is used
to test validity of message M™*, while the punctured key can still be used to verify all other messages. VK is
sent to the adversary. Now suppose an adversary produces a valid forgery (¢, s}). The reduction can extract
the punctured value as s} @, ; Fi(K1{7},t[|i[[M*(i)), yielding a pre-image of z. This breaks the security
guarantee of the one way function.

Our second piece is the ability to sign the tag t according to the [HWO09] prefix-guessing technique. To
sign a tag t, a puncturable PRF Fy ;(K5;,-) is evaluated on every prefix. Here Fy; for i = 1,..., ¢ takes in
inputs of 7 bits. The signature piece is thus so = EB,L?\:lFQJ‘(KQ,i, t(i)), where the length-i prefix of ¢ is denoted
t(. A verification key is an obfuscated circuit that on input (t,s2), checks that s is of the above form.
The security property is as follows. The attacker commits to a list of tags (tj)?zl. The challenger sends
verification key VK, as well as signatures (Uj);l':l corresponding to the above tags. The attacker should not
be able to construct a signature on a tag t* not contained in the queried list. We argue security as follows.
Since t* is distinct from all queried tags, there exists some tag t;» and index i’ such that t* and t;; agree on
the first i’ — 1 bits, differing at the i’" bit. The reduction algorithm guesses the tag tjo and index i’. The
reduction punctures K5 ;; on the differing prefix p and generates an equivalent verification circuit, using an
injective one way function is to hide the punctured value F; ;s (K5 ;/,p). This image is embedded inside the
verification key, VK, which is sent to the adversary. Suppose the adversary now submits a valid forgery s3.
The reduction extracts the punctured value as s§ @i F (Ko, t(i)), again breaking the one way function.

Our complete scheme merges these two ideas to generate concise signatures. The signatures s; and s
are xor-ed together yielding a single signature s. The complete signature is thus (¢,s). The verification
circuit on input (M, (¢, s)) computes s; = @L_, F1(Ky,t|i||M(i)) and sg = @}, Fy (Ko, %) and checks
that s = s1 ®ss. In the proof of security, the reduction will deal with the case that a forgery tag t is repeated,
or not, separately.

Fast Signing While the scheme above achieves our goal of getting short signatures that are fully secure,
it does not meet our goal of getting fast signing. The primarily culprit is that in the generation of the
second signature piece, £ different punctured PRF systems must be evaluated leading to a O(¢?) calls to the
underlying psuedorandom generator when using current constructions based on GGM [GGMS6] trees.

We address this problem by giving a slightly modified second construction. The primary change is that
instead of using ¢ different punctured PRF systems, each with a different domain size, we will use one
punctured PRF with a variable length domain {0, 1}!<<*. That is the input to the function can be a string
of any length up to £. We can then plug this into our main construction.

At first glance it might seem that this modification brings us nothing since the construction still needs
to XOR together ¢ different PRF values. However, as we will show that it is possible to create a variable
length punctured PRF where the cost of evaluating the PRF on all prefixes of an ¢ bit message M is the
same as computing the GGM tree once on M. The main modification is that, following Goldreich [Gol06],
we now need a length tripling PRG G : {0,1}* — {0,1}3* that goes from) bits to 3 - A bits. In practice,
this will likely consume more computation per pseudo random generator invocation call more than using a
length doubling one, but in total should result in significantly faster signatures than the prior approach.

Evaluation We evaluate the cost of the selectively secure Sahai-Waters scheme and our adaptively secure
scheme in terms of the cost of the underlying PRGs used by the puncturable PRFs. We compute concrete
signing costs at the 128-bit security level using a several cryptographic hash functions and ciphers to instan-
tiate the PRGs. These costs are compared to the RSA and EC-DSA signature schemes at the same security
level.

For appropriate choices of the underlying PRG, our adaptively secure construction is significantly faster
than EC-DSA. For example, at the 128-bit level, the EC-DSA algorithm takes 348 microseconds. When the
ChaCha stream cipher is used to instantiate the PRGs, the selectively secure Sahai-Waters scheme takes
25 microseconds and the adaptively secure scheme takes 81 microseconds. Timings were performed on a
quad-core Intel Xeon E3-1270 v2 workstation with 16Gb RAM, clocked @3.50GHz.

2 Signature Scheme Preliminaries
A signature scheme is a tuple of PPT algorithms:

Setup(1?) The setup algorithm outputs a pair (VK, SK) where VK is the verification key and SK is the
secret key.

Sign(SK, M) The signing algorithm takes in secret key SK and message M € M and outputs a signature
.

Verify (VK, M, o) The verification algorithm takes in a verification key VK, a message M and a claimed

signature o. The algorithm returns 1 if the signature is valid and L otherwise.

Correctness VM € M Pr[Verify(VK, M, Sign(SK, M)) = 1 : (VK, SK) « Setup(1*)] = 1 — negl()\)

In what follows will assume M is an [-bit message space.

2.1 Unforgeability against Adaptive Attacks

We extend the above notion of a secure signature scheme to accommodate adaptive attacks, according to
the formalization by Goldwasser, Micali and Rivest [GMR88]. Here an attacker may adaptively make an
arbitrary (polynomial) number of signature queries on messages, even after it has received the verification
key. The attacker must then output a message on which it did not receive a signature, and a valid signature
corresponding to that message.

Setup The challenger runs the algorithm Setup(1*) to obtain (VK,SK). The challenger sends VK to the
adversary.

Queries Proceeding adaptively, the adversary requests a signature on any message M € M and the chal-
lenger responds with o « Sign(SK, M). Let Q be the set of messages queried by the adversary.

Output Eventually the adversary outputs a pair (M*,c*) and is said to win the game if M ¢ Q and
Verify(VK, M*,0*) = 1.

We define Advi‘{fffma to be the probability that adversary A wins in the above game.

Definition 1. A signature scheme (Setup, Sign, Verify) is existentially unforgeable with respect to adaptive
chosen message attacks if for all PPT algorithms A

AdvE™ < negl())

3 Obfuscation Preliminaries

Definition 2 (Indistinguishability Obfuscation). A uniform PPT machine iQO is called an indistinguishability
obfuscator for a circuit class {Cx}ren if it satisfies the following conditions:

e Functionality preserving For all security parameters A € N, for all C € Cy, for all inputs x, we
have that C'(x) = C(x) where C" — iO(X, C).

e Indistinguishability of obfuscation For any not necessarily uniform PPT distinguisher (Samp, D),
there exists a negligible function negl(-) such that the following holds: if for all security parameters
AeN

Pr[Vz, Co(z) = C1(z) : (Co; C1;7) « Samp(1*)] > 1 — negl(N),

then

| Pr[D(7,iO(X, Cp)) = 1 : (Co; Cy; 7) «— Samp(1*)]—
Pr[D(7,iO(\, C1)) = 1: (Co; Cy;7) «— Samp(1*)]| < negl()).

3.1 Puncturable PRFs
A pseudorandom function (PRF) is a function F : L x M — Y such that the function F(K,-) is indistin-

guishable from random when K & k.

A constrained PRF [BW13] is a PRFF(K,-) with the functionality to enable evaluation of the PRF
at certain portions of the input space and nowhere else. A puncturable PRF [BW13, SW14] is a type of
contrained PRF that enables evaluation at the complement of a single arbitrary polynomial-sized subset of
the input space. That is, PRF F(K,) is equipped with additional PPT algorithms (Evalr, Punctureg) such
that the following properties hold

e Functionality preserved under puncturing For every PPT algorithm A which on input 1* outputs
aset S C {0,1}", for all z € {0,1}™\S, we have

Pr[Evalp(K{S},z) = F(K,z) : K & K, K{S} < Puncturer(K, S)] = 1

e Pseudorandom at punctured points For every pair of PPT algorithms (A;,.42) and polynomial
m() such that A;(1*) outputs a set S C {0, 1}" of cardinality m()\) and a state o it holds that

| Pr[Ay(o, K{S}, F(K,8)) =1:(S,0) «— A1 (1), K{S} — Puncturer(K, S)]—
Pr[ds(o, K{S},Y) = 1:(S,0) — A, (1)), K{S} — Puncturep (K, S),Y < {0,11™151]| < negl(\)

For notational convenience we will denote the output of Puncturer(K,S) by K{S}, with the former
occasionally suppressed.

4 QOwur Adaptively Secure Signature Scheme

In this section we describe our adaptively secure signature scheme. Our signature scheme consists of two
main pieces. Our first piece is a one-time like signature scheme. We generate a tag t of A bits. The security
property is that an adversary on seeing a signature for a message M that uses tag t, cannot construct a
signature on M* # M, that uses the same tag t. Our signature piece is s; = ®!_, Fy (K1, t||i||M(i)), where
Fi(K3,-) is a puncturable PRF with appropriate input length. Our verification key is an obfuscated circuit
that on input (M, (¢, s1)) checks that s; is of the correct form. To argue security, the simulator guesses the
position ¢ where M*(i) # M(i) and the bit b = M*(i). The simulator punctures K; on 7 = ¢i||b, and
generates an equivalent one-time verification circuit using the punctured key, making use of an (injective)
one-way function to hide the punctured value. Now suppose an adversary produces a valid forgery (¢, s7).
Then the simulator can extract the punctured value as s* xor-ed with {F}(K1{7},t||i|[M*(i)) : i # 1}. This
can be shown to break the security of the one-way function.

Our second piece is the ability to sign the tag t according to the [HWO09] prefix-guessing technique.

The security property is as follows. The attacker commits to a list of tags (tj)?zl. The challenger sends

verification key VK, as well as signatures (Uj);l-:l corresponding to the above tags. The attacker should not
be able to construct a signature on a tag t* not contained in the queried list. Let F5; for i = 1,...,¢ be
puncturable PRFs taking in inputs of i bits. The second signature piece is sy = &} ; Fs ; (K2, @), where
the length-i prefix of ¢ is denoted ¢(*). A verification key is an obfuscated circuit that on input (t, s2), checks
that s, is of the above form. To argue security, the simulator guesses the tag t;; and position ¢’ such that ¢*
and ¢;, have common prefix of length ¢ — 1. The simulator punctures K ;; on differing prefix p and generates
an equivalent verfication circuit using the punctured key, the one way function is used to hide the punctured
value. Suppose the adversary now submits a valid forgery s5. Then the simulator can extract the punctured
value as s} xor-ed with {F ;(Ka;,t™) 14 # i'}, again breaking the one-way function.

To combines these pieces, the signatures s; and sy are xor-ed together. A signature is simply (¢,s). The
verfication circuit on input (M, (¢, s)) computes s; and s9 as above and checks that s = s1 @ s. In the proof
of security, the simulator will deal with the case that a forgery tag ¢ is repeated, or not, separately. In the
former case, the simulator will extract a punctured value as s* & s3 @, ; F1(K1 {7}, t[|il| M*(i)), where s3
is computed using non-punctured PRF key Ks. In the case of the no repeat, the simulator will extract a
punctured value as s* @ s7 Bz Fo i (Ko, (D), where s¥ is computed using non-punctured PRF key K. To
complete the proof of security, the simulator guesses ahead of time which case it will have to deal with it,
reducing its success probability by at most one half, hence remaining non-negligible. Our complete scheme
follows.

4.1 The Scheme

The message space of the signature scheme is {0, 1}!. For I-bit message M, let M (i) denote the i-th bit of
M. For \-bit string ¢, let t(*) denote the first i bits of . Let Fy(K7,-) be a puncturable PRF mapping l;-bit
inputs to A-bit outputs. Here I, = A+ [lgl] + 1. Let F5 (K2,) be a puncturable PRF mapping i-bit inputs
to A-bit outputs, for each i € [1,A]. Let f be an injective one way function mapping A-bit inputs to w-bit
outputs. Our signature scheme is as follows.

Setup(1*) : Pick puncturable PRF keys K & K1 and Ky, & Ko; = i € [1,A]. The secret key is
(K1, (K2,)}). Let the verification key VK be an indistinguishability obfuscation of the program SigCheck
defined below.

Sign(SK, M) : Choose t & {0,13 . Let sy = @ Fy (K, t)|i|| M (7). Let so = @) Fp (Ko, t®). Com-
pute s = s1 ® s5. Output o = (¢, s).

Verify (VK, M, o) : Output VK(M, o).

SigCheck :
Inputs : M, o
Constants : PRF keys K; and (K2 ;)2
(t,s) — o
s1 e @i Fy (K, til| M ()
So — @g‘:lFQ’i(Kz’i,t(i))
if s = s1 @ s then output 1 else output L

Theorem 1. The above signature scheme is existentially unforgeable with respect to chosen message attacks
as specified in Definition 1, assuming the existence of secure indistinguishability obfuscators and secure
puncturable PRFs.

Proof. Suppose that A is a PPT adversary that outputs a valid forgery (M*, 0*) with non-negligible proba-
bility e. We will construct an adversary B that inverts the one way function f with non-neligible probability.
We may split the forgery submitted by A into two cases. Let o* = (t*,s*). The first case is that t* = ¢;
for some signature o; returned by the challenger in response to the j*" message query M; € Q. The other

case is that t* # t; for all signatures o; returned by the challenger on M; € Q, where j ranges from 1 to
n. We will call the first case a type I forgery and the second case, where t* # t; for all ¢;, a type II forgery.
We prove that in both cases, there exists PPT B which uses A to invert f. In practice simulator B guesses
ahead of time which type of forgery A will make and errs with probability at most one half. In what follows
we will let |Q| = n. Also define e; = 0°11.

Lemma 1. Suppose that adversary A in the adaptive security game makes a type I forgery with probability
er. Then we can construct B that inverts the one way function f with probability e;/(2nl) — negl(\).

Proof. To prove this lemma, we define the following sequence of hybrids.

Game 1 This is the original security game in which the attacker receives the verification key, and then
queries for signatures on messages adaptively. Let Q be the set of queried messages. In the final step an
attacker outputs (M*,o*). Here o* = (t*,s*) and ¢* = ¢; for some signature o; on M; € Q.

1. Let t; & {0,1}* for all j € [1,n].

2. Pick K1 & Ky and Ky & Ks.

3. Let VK = iO(\, SigCheck). Here the circuit SigCheck is padded if necessary, such that its size is equal
to that of later inputs to the obfuscator.

4. Output VK.

5. While M; € Q is received:

(a) Let s1; = &y Fy (Ku, 15][i|M (i) and sy = &y Fp (K1),
(b) Compute s; = s1; @ s25. Let o = (¢, s5).
(c) Output o;.

6. Receive (M*,0*).

A succeeds if M* ¢ Q and VK(M*,0*) = 1.

Game 2 In this hybrid we change the winning condition. First the challenger choose indices (575) in
[1,1] x [1,n] and a bit b in {0,1} at random. Suppose an attacker in the final step outputs (M*,0*). The
winning condition enforces an additional check that t* =t; and M*(z) = b and b # M;(4).

Let t; & {0,1}* for all j € [1,n].

Choose (i,7) in [1,1] x [1,n] and b in {0,1} at random. Let 7 = ¢ |i]|b).

Pick K; & Ky and Koy & Ky, 1 € [1,\].

Let VK = iO(), SigCheck). Here the circuit SigCheck is padded if necessary, such that its size is equal
to that of later inputs to the obfuscator.

Output VK.

6. While M; € Q is received:

(a) Tet 515 = @l P (Ky, 5]l M(i)) and sp; = @)y Fy i(Ka i, 5.
(b) Compute s; = s1; @ s2;. Let 0; = (¢, ;).
(c) Output o;.

7. Receive (M*,0*).

= o=

ot

A succeeds if M* ¢ Q and VK(M*,0*) = 1 and if t* = t: and M*(i) = b and b # M (3).

Game 3 In this game the challenger creates the verification key as an obfuscation of an alternate verification
circuit SigCheckA. First the challenger computes a puncturing of the secret key K at string 7. Let y =
F1(Ky,7). The challenger uses the punctured key K;{7}, punctured value y and the injective OWF f to
generate SigCheckA.

1. Let t; & {0,1}* for all j € [1,n).
2. Choose (i,7) in [1,1] x [1,n] and b in {0,1} at random. Let 7 = (¢ i i,b).
3. Pick K; & K1 and Ky ; & Ko i€ [1,A]. Let K1{r} < Puncturep, (K1,7). Let y = F}(K;,7). Let
2= f(y).
4. Let VK = iO()\, SigCheckA).
5. Output VK.
6. While M; € Q is received:
(a) Let s1; = @l Fy (K1, ;]| M (i) and so; = ®y Fo (Ko, 1),
(b) Compute s; = s1; @ s2;. Let 0; = (¢, ;).
(c) Output o;.
7. Receive (M*,0*).
SigCheckA :
Inputs : M, o R
Constants : Punctured PRF key Ki{7}, keys (Ka,;)} . Strings 7,7, 2.
(t,s) — o

S — By Fo i(Ka i, t0)
if t||¢|| M (¢) = 7 then

if f(s® s2 @, ,; Fi(Ki{7},t]|i]M(i))) = z then output 1 else output L
else

if s@ sy =@, Fi(K{r},t]|i| M(i)) then output 1 else output L
end if

A succeeds if M* ¢ Q and VK(M*,0") =1 and if t* = ¢; and M*(i) = b and b # Mj(%)

Game 4 In this game the constant ¥, used to create z in SigCheckA, is replaced with a random A-bit string.
The other parts of the game do not change.

1. Let ¢; & {0,1}* for all j € [1,n).
2. Choose (7,7) in [1,1] x [1,n] and b in {0,1} at random. Let 7 = t3||:£||b.

o

7.

Pick K; & Ky and Ko ; & Ko i€ [1,A]. Let K1{7} « Puncturep, (K3, 7). Choose y at random in
{0,1}*. Let 2 = f(y).

Let VK = iO(), SigCheckA).
Output VK.

While M; € Q is received:

(a) Let s1; = By Fy (K1, t;[[i]| M (i) and so; = @) Fyi(Ka,t1").
(b) Compute s; = s1; @ s2;. Let 0; = (¢, ;).
(c) Output o;.

Receive (M*, o).

A succeeds if M* ¢ Q and VK(M*,0%) =1 and if t* =¢t; and M*(i) = b and b # M](E)

Claim 1. Suppose there exists a PPT adversary A making a type I forgery such that AdvGamel =c¢€. Then
the advantage of A in Game 2, i.e. Advjfrﬁez, is bounded below by €/(2nl).

Proof. For any message M™ submitted by A, since o* is a type I forgery, there exists M; € Q such that the
signature o; satisfies t; = t*. On the other hand, since M* # Mj, there exists some bit position i € [1,]

for which M* (i) # M;(i). Since the challenger chooses (i, j,b) randomly in [1,1] x [1,n] x {0,1}, the event

(i,7,b) L (4,7, M*(i)) occurs with probability 1/(2nl). The claim then follows from the fact the view of A
in Game 1 is identical to its view in Game 2. O

Claim 2. Suppose there exists a PPT adversary A for which AdvGame2 Adv} Came3 — ¢ is non-negligible.

Then we can construct an attacker B with advantage € in dzstmgmshmg the output of the indistinguishability
obfuscator.

Proof. We first demonstrate the functional equivalence of circuits SigCheck and SigCheckA. Consider a
claimed signature (M, o) which is input to the latter circuit. If it holds that ¢||i||M(z) # 7, then since the
24 component of 7 is 1, t|)i|| M (i) # 7 for all i € [1,1]. Therefore Fy(K,{r},t|i||M(i)) = Fy(Ky,t|i||Mi))
for all ¢ € [1,1], since the punctured PRF key preserves functionality outside the punctured point. Thus
5 = @l (K, t|i|M(7) @ sy & s @ sy = @b Fi (K {r},t]|i||M(i)). On the other hand, if t|i||M (i) =
7, then s = @ilel(Kl,t”Z”M(Z)) & 5D s2 @i#% Fl(Kl{T}7t||Z||M(Z)) = F(K1,7) & f(s @ s2 @i;éi
Fy (K {7}, t||i]|M(i))) = f(y), since f is injective. Consider the adversary B = (Samp, D). The algorithm
Samp on 1* chooses t; & {0,1}* for j € [1,n]. Next it picks random (%, j, b) in [1,1] x [1,n] x {0, 1}, computes
string 7 and outputs Cy = SigCheck and C; = SigCheckA. It sets state § = ((t;)1 1, K1, (K2,)} 4,4 i,7,b).
Now the distingisher D on input (4, 1O(X, C.)) sends VK = iO(\, C,) as well as a signature ¢; on each mes-
sage M; received from A. If A outputs a pair (M*,¢*) for which M* ¢ Q, VK(M*,0*) =1 and M*(i) = b
and b # M; (1) then D outputs 1, otherwise L. If z = 0 then B simulates Game 2. Otherwise B simulates
Game 3. T he claim follows. O

Claim 3. Suppose there exists a PPT adversary A for which AdvGame3 AdVETE = € is non-negligible.

Then we can construct an attacker B with advatange € in dzstmguzshmg the output of the puncturable PRF
Fi(Kq,-).

Proof. Simulator B interacts with the puncturable PRF challenger while acting as a challenger to A. First
B chooses t; & {0,1}* for j € [1,n]. Next it chooses (i,7,b) at random from [1,1] x [1,n] x {0,1} and
computes string 7. B submits point 7 to the PRF challenger and receives punctured key K;{r} and PRF
challenge y" in return. B then computes z = f(y’) and computes an obfuscation of SigCheckA. It sends
VK = iO(), SigCheckA) and a signature o on every received message M;. If A submits (M*,0*) which
meets the winning condition, then B outputs 1, otherwise L. If y' = Fy(K;,7) then B simulates Game 3.
Otherwise ¢’ is a random w-bit string and B simulates Game 4. The claim follows. O

Claim 4. Suppose there exists a PPT adversary A such that AdvGame4 = € is non-negligible. Then we can
construct an adversary B with advantage € in inverting the one way function.

Proof. Simulator B interacts with the one way function challenger while acting as a challenger to A. First B

receives the challenge 2’ = f(a) as an input, where a is a w-bit random string. Then it chooses ¢; & {0,1}*
for j € [1,n]. Next it chooses (i,],b) at random from [1,1] x [1,n] x {0,1} and computes string 7. It
computes punctured key K;{7} and an obfuscation of SigCheckA with z’ hardwired in place of z. Since
z' is identically distributed to z, the view of A is identical to its view in Game 4. It sends VK and
signatures on every received message M;. Then with probability €, A outputs (M*,c*) such that M* & Q,
VK(M*,0*) = 1 and t*||i|| M*(i) = 7. Thus B can compute a* = s* @ s} @3 1 (K {7}, ¢]]i]| M7 (i) which
satisfies a* = f~1(2/). O

Suppose that there exists a PPT adversary A with non-negligible advantage € in breaking the adaptive
security of the signature scheme, i.e. in winning Game 1. Let the maximal advantage of any adversary
in distinguishing the output of the indistinguishability obfuscator and in distinguishing the output of the
puncturable PRF be €;0 and epgrp respectively. Claims 1 - 4 then imply that A has probability atleast

e/(nl) — €;0 — eprp in inverting the one way function f. Since n and [are polynomially bounded, the first
term is non-negligible and since O is a secure indistinguishability obfuscator and Fj is a secure puncturable
PRF the second and third terms are negligible. This contradicts the non-invertibility of f. It follows that
the advantage of A in Game 1 must be negligible. This concludes the proof of Lemma 1. O

Lemma 2. Suppose that adversary A in the adaptive security game makes a type II forgery with probability
err. Then we can construct B that inverts the one way function f with probability e;;/(n)\) — negl(A).

Proof. Similar to the proof of Lemma 1, we proves this result by a hybrid argument.

Game 1 This is the original security game in which the attacker receives the verification key, and then
queries for signatures on messages adaptively. Let Q be the set of queried messages. In the final step an
attacker outputs (M*,0*). Here o = (t*, s*) and t* # t; for all signatures o; on M; € Q.

1. Let t; & {0,1}* for all j € [1,n].

2. Pick K7 < Ky and Ky & K.

3. Let VK = iO(\, SigCheck). Here the circuit SigCheck is padded if necessary, such that its size is equal
to that of later inputs to the obfuscator.

4. Output VK.

5. While M; € Q is received:

(a) Let s1; = ! Fy(Ky, t][i]| M(0) and sy; = &), Foi(Kai, t5).
(b) Compute Sj = S15 B S25- Let o; = (tj,Sj).
(c) Output o;.

6. Receive (M*,o*).

A succeeds if M* ¢ Q and VK(M*,0*) = 1.

Game 2 In this hybrid we change the winning condition. First the challenger choose indices (i',5’) in
[1,\] x [1,n] at random. Suppose an attacker in the final step outputs (M*,c*). The winning condition
enforces an additional check that t* and ¢, have shortest differing prefix of length 4’

1. Let t; & {0,1}* for all j € [1,n].

2. Choose (i',7") in [1, \] x [1,n] at random. Let p = tgz,) @ ey

3. Pick K1 <& Ky and Ko & Ko ti € [1, .

4. Let VK = iO(\, SigCheck). Here the circuit SigCheck is padded if necessary, such that its size is equal
to that of later inputs to the obfuscator.

Output VK.

6. While M; € Q is received:

(a) Let s1; = &_y i (Ky, £]| M(0)) and s5; = @} Fa (Ko, 1),
(b) Compute s; = s1; @ s25. Let 0; = (t;,s;).
(c) Output o;.

7. Receive (M*, 0*).

ot

A succeeds if M* ¢ Q and VK(M*,0*) =1 and if t*) = p.

10

Game 3 In this game the challenger creates the verification key as an obfuscation of an alternate verification
circuit SigCheckB. First the challenger computes a puncturing of the secret key K5 ; at string p. Let

y:

F5i(K24,p). The challenger uses the punctured key K ;/{p}, punctured value y and the injective OWF

f to generate SigCheckB.

1.
2.

ot

Let t; & {0,1}* for all j € [1,n].
Choose (i',7) in [1,] x [1,n] at random. Let p = tg-z,) @ e
Pick K, i K41 and K27i i ’CQ,Z‘ 11 € [1,)\] Let ng/{]?} — PunctureFM, (Kgﬂ‘l,p). Let Yy = Fy i’(KQ i/,p).

Let z = f(y).

Let VK = iO(A, SigCheckB).
Output VK.

While M; € Q is received:

(a) Let s1; = @y Fy (K1, t;]|i| M(i)) and sp; = @, Fai (Ko i, 1)),
(b) Compute S5 = S1j4 D 525 Let 05 = (tj,Sj).
(c) Output o;.

. Receive (M*,c*).

SigCheckB :
Inputs : M, o
Constants : PRF keys K, (K2)iz, punctured key K ;{p}. Strings i, p, z.
(t,8) — o
s1— G F1 (K,]| M ()
if t@) = p then
if f(s @ s1 @iz Fo i(K27i,t(i))) = z then output 1 else output L
else
if s®s = @#i/Fg,i(Kg,i,t(i)) ® Fo (K27i/{p}7t(il)) then output 1 else output L
end if

A succeeds if M* ¢ Q and VK(M*,c*) =1 and if) — .

Game 4 In this game the constant y, used to create z in SigCheckB, is replaced with a random A-bit string.

The

1.

other parts of the game do not change.

Let t; & {0,1}* for all j € [1,n].

2. Choose (i',7") in [1, \] x [1,n] at random. Let p = tjl, Dey.

o

7

Pick K, & K1 and Ko ; & Ko, :i €1, Let Ko {p} — Puncturep, , (K2,4,p). Choose y at random
in {0,1}*. Let z = f(y).

Let VK = iO(A, SigCheckB).

Output VK.

While M; € Q is received:

(a) Let s1; = @l Fy (Ky,][i| M(3)) and sz; = @} Fy(Ka, 1)),
(b) Compute s; = s1; @ s25. Let o = (5, s5).
(c) Output o;.

. Receive (M*,c*).

A succeeds if M* ¢ Q and VK(M*,0*) =1 and if) = p,

Claim 5. Suppose there exists a PPT adversary A making a type II forgery such that Advjaﬂel =¢€. Then
the advantage of A in Game 2, i.e. Advjﬁrﬁez, is bounded below by €/(n)\).

11

Proof. For any message t* submitted by A in Game 1, there exists a shortest common prefix of t* with the
tj:j € [1,n]. Also, since o* is a type II forgery, t* # t;, for all t;. Thereore the length of this prefix is at most

A — 1. In particular there exists some string ¢; and a prefix of length 4, at most A, for which () = t;i) @ e;.

Since the challenger chooses (¢, j') uniformly at random from [1, \] x [1, n], the event (i, j") < (i,7) occurs
with probability 1/(n\). The claim then follows from the fact the view of A in Game 1 is identical to its

view in Game 2.
O

Claim 6. Suppose there exists a PPT adversary A for which AdvGame2 AdVETE® = € is non-negligible.

Then we can construct an attacker B with advantage € in dzstmguzshmg the output of the indistinguishability
obfuscator.

Proof. We demonstrate the functional equivalence of circuits SigCheck and SigCheckB as follows. Con-
sider a claimed signature (M, o) which is input to the latter circuit. If it holds that (@) % p, then
Fg’i/(Kg’i/{p}J(il)) = FQ’i/(Kg’i/,t(i/)), since the punctured PRF key preserves functionality outside the
punctured point. Thus s = s1 @iz Foi(Kai,tW) @ FQ,Z'/(KQJ/,t(i/)) S 5D s = Qg Foi(Koyyt) @
F271j/(K27i/{p}7t(i/)). On the other hand, if t(ll) = D, then s = s; @f\:l F271'(K272‘7t(i)) = § D s1 Bz
F271-(K27i,t(i)) = Fy i (Koy,p) & f (s ® 51 Ditsr F27»L'(K277;,t(i))) = f(y), since f is injective. Consider the

adversary B = (Samp, D). The algorithm Samp on 1* chooses t; S {0,1}* for j € [1,n]. Next it picks ran-
dom (7, j') in [1, A] X [1,n], computes string p and outputs Cy = SigCheck and C; = SigCheckB. It sets state
§=((t;)q, K1, (K2;)}q,7,5'). Now the distingisher D on input (3, iO(A, C.)) sends VK = iO(),C,) as
well as a signature o; on each message M; received from A. If A outputs a pair (M*, ") for which M* & Q,
VK(M*,0*) =1 and () = p then D outputs 1, otherwise L. If z = 0 then B simulates Game 2. Otherwise
B simulates Game 3. The claim follows. O

Claim 7. Suppose there exists a PPT adversary A for which AdvGamE3 Adv; Camet — ¢ is non-negligible.

Then we can construct an attacker B with advatange € in dzstmguzshmg the output of the puncturable PRF
Fy(Ka,-).

Proof. Simulator B interacts with the puncturable PRF challenger while acting as a challenger to A. First B
chooses t; & {0,1}* for j € [1,n]. Next it chooses (', j') at random from [1, A] x [1,n] and computes string p.
B submits point p to the PRF challenger and receives punctured key K» ;{p} and PRF challenge ¢’ in return.
B then computes z = f(y’) and computes an obfuscation of SigCheckB. It sends VK = iO(), SigCheckB)
and a signature o on every received message M;. If A submits (M*,c*) which meets the winning condition,
then B outputs 1, otherwise L. If ' = Fy ;+(Ky;,p) then B simulates Game 3. Otherwise ¢’ is a random
w-bit string and B simulates Game 4. The claim follows. O

Claim 8. Suppose there exists a PPT adversary A such that AdvGame4 = € is non-negligible. Then we can
construct an adversary B with advantage € in inverting the one way function.

Proof. Simulator BB interacts with the one way function challenger while acting as a challenger to A. First B

receives the challenge 2’ = f(a) as an input, where a is a A-bit random string. Then it chooses ¢; & {0,1}*
for j € [1,n]. Next it chooses (i’,5’) at random from [1,A] x [1,n] and computes string p. It computes
punctured key K5 - {p} and an obfuscation of SigCheckB with 2z’ hardwired in place of z. Since 2’ is identically
distributed to z, the view of A is identical to its view in Game 4. It sends VK and signatures on every received
message M;. Then with probability €, Aoutputs (M*, o*) such that M* ¢ Q, VK(M*,0*) =1 and @) =,
Thus B can compute a* = s* @ sT Bizir Fo (Ko, i, 1) which satisfies a* = f~1(2'). O

Suppose that there exists a PPT adversary A with non-negligible advantage € in breaking the adaptive
security of the signature scheme. Similar to the proof of Lemma 1, Claims 5-8 imply that A has probabil-
ity €/(nA) — negl(\) in inverting the one way function. As before, since n is polynomially bounded, this
contradicts its non-invertibility. It follows that the advantage of A is negligible. O

12

Given Lemmas 1 and 2 we can conclude Theorem 1 as follows. Simulator B guesses ahead of time which
forgery A will make. Thus B has advantage at least (1/2) - (e;/(2nl) + err/(nA\) — negl(X)) > Advau/(2n -
max{2l,A\}) — negl(\). Since B has negligible advantage in inverting f, it follows that A has negligible
advantage in breaking the signature scheme. O

5 Improving Efficiency

One drawback of our previous construction is that it does not meet our goal of achieving fast signing. (We
will see some concrete end-to-end comparisons in Section 6.) Relative to the selectively secure Sahai-Waters
scheme the primary drawback is that a punctured PRF must be evaluated ¢ different times. If we use the
GGM implementation each call results is around £ applications of the underlying pseudo random generator,?
resulting in an O(¢?) applications.

In this section we demonstrate an idea to lower the cost of our fully secure scheme. The primary change
is that instead of using ¢ different punctured PRF systems, each with a different domain size, we will use
one punctured PRF with a variable length domain {0,1}'<?<¢, That is the input to the function can be a
string of any length up to £. We can then plug this into our main construction.

At first glance it might seem that this modification brings us nothing since the construction still needs
to XOR together ¢ different PRF values. However, as we will show that it is possible to create a variable
length punctured PRF where the cost of evaluating the PRF on all prefixes of an ¢ bit message M is the
same as computing the GGM tree once on M. The main modification is that, following Goldreich [Gol06],
we now need a length tripling PRG G : {0,1}* — {0,1}3* that goes from X bits to 3 - X bits. In practice,
this could be more than using a length doubling one, but should result in significantly faster signatures than
the prior approach.

Below we first give the modified punctured PRF construction. Then we show the changes to our scheme.

5.1 Puncturable PRFs for Variable Length Domain

Let the puncturable PRF have variable message size v bits and output size A bits. Here v < [. Let G be a
PRG with input size A bits and output size 3\ bits. Define auxiliary functions Go,G; and G mapping A
bits to A bits as follows: G(z) = Go(z)||G1(z)||G L(z).

Construction

e Setup(1*) : Let K be a random A-bit string. Output key K.
e Puncture(K, z) :
Write x as by ... b,, where v <.
for i=1tov—1 do
Fg i~ Gy, (Gpi_ (0 Gy (K))..)
FK,i,L — Gl(Gbi e (Gb1 (K)) .o)
end for
Fr ., — GEH(GZ,WI(. Gy (K))..Y)
Frvi1,0 + Go(Go, (... (Gy, (K))...))
FK7U+171 — G1 (va(. .o (Gb1 (K)) .))
Let K{z} = (Fk,i, Fri,1)ien,v—1]> Fxw, (Frot1,6)bef0,1]- Output key K{z}.
e Eval(K{z},y):
if y =z then
output L
else
Let xt =b1...b,.

2The exact number of applications will depend on the length of the input. In Section 6 we work out the details.

13

Write y = by ... bgbj ;... by, where u < 1.
if i <v and u = 7 then
Output Fg ;1.
else if i < v and u > i then
Output GL(G%(. Gb2+2 (FK,i+1) ..))
else
Output GJ_(GbL(.. Gb:)+2 (FK,’U+1,b;+1) ..))
end if
end if

Cost To evaluate this puncturable PRF on a u-bit message requires u—i calls to G, where i is the length of
the longest common prefix with the punctured point. Even more significantly, to evaluate the PRF on every
prefix of a u-bit message still only requires u — i calls, because evaluations on successive prefixes corresponds
to pipelined calls to GG, with each evaluation terminated by a single application of G . We will see that this
leads to significant savings in our signature scheme.

Security We defer the proof of security of this puncturable PRF to the Appendix.

5.2 Modified Scheme

The message space of the signature scheme is {0, 1}!. For [-bit message M, let M (i) denote the i-th bit of
M. For \-bit string ¢, let t(*) denote the first i bits of . Let Fy(K7,-) be a puncturable PRF mapping l;-bit
inputs to A-bit outputs. Here I; = A+ [Ig{] +1. Let Fy(K>,-) be a puncturable PRF mapping {0, 1}'<*<¢ to
A-bit outputs. Let f be an injective one way function mapping A-bit inputs to w-bit outputs. Our signature
scheme is as follows.

Setup(1?) : Pick puncturable PRF keys K & K1 and K> & Ko. The secret key is (K7, K2). Let the
verification key VK be an indistinguishability obfuscation of the program SigCheck defined below.

Sign(SK, M) : Choose t & {0, 13 . Let s, = @l_, Fy (K1, t]i|| M (7). Let so = @}, Fo(K2,t®). Compute
s =81 @ s2. Output o = (¢,).

Verify (VK, M, o) : Output VK(M, o).

SigCheck :
Inputs : M, o
Constants : PRF keys K; and Ky
(t,s) — o
s1— Gy F1 (K, til| M (0))
So — EBg\:lFQ(KQ,t(i))
if s = s1 @ s then output 1 else output L

We omit the proof of this scheme since it follows extremely close to the base scheme of Section 4.

6 Analysis and Evaluation

In this section we evaluate the cost of the (selectively secure) Sahai-Waters construction and the proposed
adaptively secure construction in terms of the cost of the puncturable PRFs. We begin by expressing the
cost of each scheme in terms of the underlying length-doubling and length-tripling PRGs. Next we show
costs on a common architecture assuming 128-bit security and compare this against the RSA and elliptic
curve DSA signature schemes.

14

6.1 Analysis of Costs

Let gp be the cost of the length-doubling PRG and g be the cost of the length-tripling PRG. We assume
the messages to be signed are [-bits.

Sahai-Waters [SW14] This scheme makes a single call to the puncturable PRF on an [-bit message. This
call traverses the GGM tree according to the message bits, requring [invocations of the length-doubling PRG.
The cost is therefore gp - I.

Adaptively secure scheme Our adaptively secure scheme calls the fixed-length puncturable PRF once
on each of [inputs, where each input is A + [lg{] + 1 bits. However each input has the same A-bit suffix,
differing only in the remaining bits. Therefore the GGM tree can be traversed to a depth of A, before a
depth-first search is performed to an additional [lgl] + 1 depth. Thus A + 2] — 1 calls are made to the
length-doubling PRG. Additionally the scheme evaluates the variable-length puncturable PRF once on a
A-bit input, outputting pipelined evaluations on each prefix. Therefore the modified GGM tree is traversed
to a depth of A, requiring A calls to the length-tripling PRG. Therefore the total cost is gp - (A+21—1)+gr- .

6.2 Comparison of Signature Computation for 128-bit Security

To achieve a security level of 128 bits, we consider signatures on 256-bit messages. In practice such messages
are produced by application of a collision-resistant hash function, we disregard this cost here. For our
analysis we considered several different candidates for the PRG. These include the SHA-256 cyptographic
hash function, the ChaCha stream cipher, the RC5 block cipher and AES-256 (software and hardware).
We compare this against the cost of elliptic curve DSA signatures. All primitives are implemented using
v1.0.1 of the OpenSSL library, excepting the ChaCha stream cipher which uses a C implementation available
here [Chal4]. The AES hardware implementation is based upon the Intel AES-NT instruction set which is
available via the EVP wrapper of the OpenSSL library. All timings were performed on a quad-core Intel
Xeon E3-1270 v2 workstation with 16Gb RAM, clocked @3.50GHz.

Primitives

SHA-256 : The SHA-256 compression function maps 512-bits to 256-bits.

ChaCha : The ChaCha stream cipher is seeded via a 256-bit key and 64-bit IV. It generates 512-bit
psuedorandom bits per update operation of the internal state.

AES (software only) : The AES-256 block cipher is seeded via a 256-bit key and 64-bit IV. It operates
on 128-bit blocks.

AES (hardware accelerated) : The AES-256 block cipher is seeded via a 256-bit key and 64-bit IV. It
operates on 128-bit blocks.

RC5 : The RC5 block cipher has a variable key /block size. The default implementation uses a 128-bit key
and operates on 64-bit blocks.

RSA : The RSA algorithm (PKCS #1 v2.0) is used to generate signatures on a 3072-bit modulus. The
cost is 3400us.

EC-DSA : The elliptic curve DSA algorithm is used to generate signatures on a 256-bit curve. The cost is
348us.

Length-doubling PRG

SHA-256 : The input is zero-padded to 512 bits. The SHA-256 compression function is then applied. The
cost of this routine is 0.52us.

ChaCha : The input is zero-padded to 256 bits. We then extract the first 256 bits of the 512 pseudorandom
bits produced by an update operation and xor these with the input.? The cost to seed is 0.03us. The
amortized invocation cost is 0.18ps.

3The remaining bits are cached for the next invocation.

15

AES (software only) : The input is extended to 256 bits. We then apply the AES cipher in CTR mode.
The cost to seed is 0.17us. The invocation cost is 0.28us.

AES (hardware accelerated) : The input is extended to 256 bits. We then apply the AES cipher in
CTR mode. The cost to seed is 0.16us. The invocation cost is 0.08us.

RC5 : The input is extended to 256 bits. We then apply the RC5 cipher in CTR mode. The cost to seed
is 1.11us. The invocation cost is 0.36us.

Length-tripling PRG

SHA-256 : The input is extended to 1024 bits. The SHA-256 compression function is then applied on each
512-bit block and the first 384 bits of the output extracted. The cost of this routine is 1.04us.

ChaCha : The input is zero-padded to 384 bits. We then extract the first 384 bits of the 512 pseudorandom
bits produced by an update operation and xor these with the input.? The cost to seed is 0.03us. The
amortized invocation cost is 0.27us.

AES (software only) : The input is extended to 384 bits. We then apply the AES cipher in CTR mode.
The cost to seed is 0.17us. The invocation cost is 0.42us.

AES (hardware accelerated) : The input is extended to 384 bits. We then apply the AES cipher in
CTR mode. The cost to seed is 0.16us. The invocation cost is 0.12us.

RC5 : The input is extended to 384 bits. We then apply the RC5 cipher in CTR mode. The cost to seed
is 1.11us. The invocation cost is 0.54us.

PRG SHA-256 | ChaCha | AES | AES (hardware) | RC5
[SW14] 133 23 36 10 47
Adapt. scheme 465 81 125 36 162
RSA 3400
EC-DSA 348

Table 1: Signature cost on 256-bit messages. By PRG, we mean the appropriate choice of length-doubling
PRG or length-tripling PRG. All times given in microseconds.

Optimizations Exploiting the stream property of ChaCha and CTR mode of operation for the above
block ciphers allows some efficiency gains. In a call to the fixed domain puncturable PRF, only one output
block need be computed at each level of the GGM tree, halving the invocation cost of the length-doubling
PRG. Likewise in a call to the variable-domain puncturable PRF, only two out of three output blocks need
be computed at each level of the modified GGM tree, reducing the invocation cost of the length-tripling
PRG by a factor of 2/3.

Pulling it Together Our measurements show some interesting features. For all pseudo random generator
candidates considered, signing in the Sahai-Waters scheme is significantly faster than EC-DSA. Using the
AES (software) or ChaCha based solutions it is around ten to fifteen times faster.

Our adaptively secure scheme adds an overhead of about 2.5, relative to the selectively secure Sahai-
Waters.

Finally, we note that our scheme is conducive to leveraging parallelism. In Appendix A we describe a
slight generalization to larger width GGM trees. For small increases in width it is feasible to utilize certain
PRG structures that allow for computing multiple bits of the PRG output in parallel.

Acknowledgements

We thank Amit Sahai for observing that a wider tree structure in tandem with a parallelizable PRG could
be conducive to leveraging parallelism.

16

References

[BGI+01]

[BGI14]

[BHJ*14]

[BSW11]

[BW13]

[Chal4]

[CHKP10]

[CK12]

[DH76]

[DN9A4]

[FS12]

[GGH"13a]

[GGH*13b]

[GGMS6]

Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil Vadhan,
and Ke Yang. On the (im)possibility of obfuscating programs. In Lecture Notes in Computer
Science, pages 1-18. Springer-Verlag, 2001.

Elette Boyle, Shafi Goldwasser, and loana Ivan. Functional signatures and pseudorandom
functions. In Hugo Krawczyk, editor, Public-Key Cryptography PKC 2014, volume 8383 of
Lecture Notes in Computer Science, pages 501-519. Springer Berlin Heidelberg, 2014.

Florian Bo6hl, Dennis Hofheinz, Tibor Jager, Jessica Koch, and Christoph Striecks. Confined
guessing: New signatures from standard assumptions. Journal of Cryptology, pages 1-33, 2014.

Elette Boyle, Gil Segev, and Daniel Wichs. Fully leakage-resilient signatures. In Kenneth G.
Paterson, editor, Advances in Cryptology EUROCRYPT 2011, volume 6632 of Lecture Notes
in Computer Science, pages 89-108. Springer Berlin Heidelberg, 2011.

Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications.
Cryptology ePrint Archive, Report 2013/352, 2013. http://eprint.iacr.org/.

ChaCha stream cipher implementation, May 2014. http://cr.yp.to/streamciphers/
timings/estreambench/submissions/salsa20/chacha8/ref/chacha.c.

David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to delegate
a lattice basis. In Henri Gilbert, editor, Advances in Cryptology EUROCRYPT 2010, volume
6110 of Lecture Notes in Computer Science, pages 523—-552. Springer Berlin Heidelberg, 2010.

Melissa Chase and Markulf Kohlweiss. A new hash-and-sign approach and structure-preserving
signatures from DLIN. In Proceedings of the 8th International Conference on Security and
Cryptography for Networks, SCN’12, pages 131-148, Berlin, Heidelberg, 2012. Springer-Verlag.

Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22(6):644-654, 1976.

Cynthia Dwork and Moni Naor. An efficient existentially unforgeable signature scheme and
its applications. In Proceedings of the 14th Annual International Cryptology Conference on
Advances in Cryptology, CRYPTO ’94, pages 234-246, London, UK, UK, 1994. Springer-Verlag.

Dario Fiore and Dominique Schroder. Uniqueness is a different story: Impossibility of verifiable
random functions from trapdoor permutations. In Proceedings of the 9th International Confer-
ence on Theory of Cryptography, TCC’12, pages 636—653, Berlin, Heidelberg, 2012. Springer-
Verlag.

Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. Cryptology
ePrint Archive, Report 2013/451, 2013.

Sanjam Garg, Craig Gentry, Shai Halevi, Amit Sahai, and Brent Waters. Attribute-based
encryption for circuits from multilinear maps. In Ran Canetti and JuanA. Garay, editors,
Advances in Cryptology CRYPTO 2013, volume 8043 of Lecture Notes in Computer Science,
pages 479-499. Springer Berlin Heidelberg, 2013.

Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. .J.
ACM, 33(4):792-807, August 1986.

17

[GGP10]

[GMRSS]

[Gol06]

[GVW13]

[HWO09]

[Knu81]

[KPTZ13]

[KR00]

[LW12]

[MP12]

[PHGR13]

[Seol4]

[SW14]

Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable computing: Out-
sourcing computation to untrusted workers. In Proceedings of the 30th Annual Conference on
Advances in Cryptology, CRYPTO’10, pages 465-482, Berlin, Heidelberg, 2010. Springer-Verlag.

Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput., 17(2):281-308, April 1988.

Oded Goldreich. Foundations of Cryptography: Volume 1. Cambridge University Press, New
York, NY, USA, 2006.

Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryption for
circuits. In Proceedings of the 45th annual ACM symposium on Symposium on theory of com-
puting, STOC 13, pages 545-554, New York, NY, USA, 2013. ACM.

Susan Hohenberger and Brent Waters. Short and stateless signatures from the RSA assumption.
In Shai Halevi, editor, Advances in Cryptology - CRYPTO 2009, volume 5677 of Lecture Notes
in Computer Science, pages 654-670. Springer Berlin Heidelberg, 2009.

Donald E. Knuth. The Art of Computer Programming, Volume 2 (2nd Ed.): Seminumerical
Algorithms. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1981.

Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Dele-
gatable pseudorandom functions and applications. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer €9#38; Communications Security, CCS "13, pages 669—684, New York,
NY, USA, 2013. ACM.

Hugo Krawcyzk and Tal Rabin. Chameleon signatures. In Network and Distributed Systems
Security Symposium, 2000.

Allison Lewko and Brent Waters. New proof methods for attribute-based encryption: Achieving
full security through selective techniques. In Reihaneh Safavi-Naini and Ran Canetti, editors,
Advances in Cryptology CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science,
pages 180-198. Springer Berlin Heidelberg, 2012.

Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller.
In Advances in Cryptology-EUROCRYPT 2012, pages 700-718. Springer, 2012.

B. Parno, J. Howell, C. Gentry, and M. Raykova. Pinocchio: Nearly practical verifiable compu-
tation. In Security and Privacy (SP), 2018 IEEE Symposium on, pages 238-252, May 2013.

Jae Hong Seo. Short signatures from diffie-hellman, revisited: Sublinear public key, CMA
security, and tighter reduction. Cryptology ePrint Archive, Report 2014/138, 2014. http:
//eprint.iacr.org/.

Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: Deniable encryption,
and more. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing, STOC
14, pages 475-484, New York, NY, USA, 2014. ACM.

A Puncturable PRF from Large Width GGM

There have been several prior constructions [BW13, BGI14, KPTZ13] of puncturable PRFs from the tree-
based construction of [GGMS86]. In this section we show a simple extension to a 2¢-ary tree for some constant
¢. One can view this as an application of the Dwork-Naor [DN94] put into the [GGMS86] context. The primary
motivation of this construction is in the construction of PRFs from PRGs which have a large cost to seed,
however then transform input relatively quickly. In this case is it reasonable to consider a value ¢ > 1.

18

A.1 Puncturable PRFs from [GGMS86] via [DN94]

Let the puncturable PRF have message size [bits and output size A bits. Consider a construction where
an input message is broken into /¢ words each of size ¢-bits. Thus we can write z = w; ... wy where
w; € {0,1}¢ and d = I/c.%. Let G be a PRG with input size A bits and output size A - 2¢ bits. Clearly ¢
should be a small constant, due to the exponentially dependency in the output size. We define auxiliary
functions G, : {0,1}* — {0,1}* as follows: G(x) = G1(2)||G2(z)]|.. .| Gac(x).

Construction

e Setup(1*) : Let K be a random A-bit string. Output key K.

e Puncture(K, z) :
Write z € {0, 1} as wy ... wgq.
for i=1tod do
for we {0,1}°\{w;} do
Friw — Guw(Guw,_, - Guy (G, (K)) ..)))
end for
end for
Let K{l‘} = (FK,i,w)ie[l,d],we{o,l}l\{wi}' Output key K{JJ}

e Eval(K{z},y):

if y = = then
output L
else

Let x = wq ... wy.
Write y = wy ... wi_ywwj ... w) where w # w;.
Output wai (Gw;,l (.. Gw§+1 (FK,i,w) o)

end if

Security

Theorem 2. The above scheme is a selectively secure puncturable PRF if G is a secure PRG stretching A
bits to A - 2° bits.

Proof. We prove the above theorem by defining the following sequence of hybrids.

Hybrid 1

1. Choose K at random in {0, 1}*.
2. Receive an [-bit message x, to be punctured on.
3. Puncture K on z as follows
Let £ = wy ... wy.
for i=1tod do
for we {0,1}\{w;} do
Friw < Guw(Gu;_, - Guy (G, (K)) ..)
end for
end for
Let K{x} = (Fk iw)ic[1,d)we{0,1}\ {w;}-
4. Send key K{z}.
5. Send Guy (Guy_, (- . Gy (K) .. 0)).

4Note that inputs can always be zero padded to ensure [is a multiple of ¢

19

Hybrid 2[j] : j € [0,d]

1. Choose K at random in {0, 1}*.
2. Receive an [-bit message x, to be punctured on.
3. Puncture K on x as follows
Let z = wy ... wg.
for i=1toj do
for we {0,1}\{w;} do
Fiiw < 0,11
end for
end for
Let y < {0,1}*.
for i=j+1tod do
for we {0,1}\{w;} do
Friw — Gu(Guw,_y - Guy () --2))
end for
end for
Let K{z} = (Fr,iw)ie1,d,we{0,1}\{w;}-
4. Send key K{z}.
5. Send Gy, (Guy_ 1 (.. G (y) ..).

T Wi

Hybrid 3

—

. Choose K at random in {0,1}*.
. Receive an [-bit message x, to be punctured on.
. Puncture K on x as follows

w N

Let £ = wy ... wy.
for i=1tod do

for we {0,1}\{w;} do

Friw < 0,11

end for
end for
Let K{z} = (Fk iw)ic[1,d),we{0,1}\{w;}-

. Send key K{z}.

. Let ¢/ & {0,1}*. Send y/'.

[GLEN

Hybrid 4[] : j € [0,d]

1. Choose K at random in {0, 1}*.
2. Receive an [-bit message x, to be punctured on.
3. Puncture K on z as follows
Let £ = wy ... wy.
for i=1tod—j do
for we {0,1}\{w;} do
Frimw & {0,1}}
end for
end for
Let y < 0,1}
for i=d+1—jtod do
for we {0,1}\{w;} do

20

FK,i,w — Gw(Gwi—l s ij+1 (y)) .))
end for
end for
Let K{z} = (Fi,i,w)ic[1,d),we{0,1}"\{w}-
4. Send key K{z}.

5. Let y' < {0,11*. Send y/.

Hybrid 5

1. Choose K at random in {0, 1}*.
2. Receive an [-bit message x, to be punctured on.
3. Puncture K on z as follows
Let £ = wy ... wy.
for i=1tod do
for we {0,1}\{w;} do
FK,i,w — Gw(Gwi71 s Gwz (Gw1 (K)) N))
end for
end for
Let K{x} = (Fk iw)ic[1,d),we{0,1}\ {w;}-
4. Send key K{z}.

5. Let ¢/ & {0,1}*. Send y/'.

Claim 9. Suppose there exists a PPT adversary A such that Adv:ybridw_l] — Adv:ybridQU] =e¢ forj €[1,d].
Then the advantage of A in distinguishing the output of G is at least €.

Proof. B receives point £ = wy ...wy from A. B receives PRG challenge z = 27 ... zoc, where z is either the

output of G' on string y, or is a truly random string of length A - 2¢. B sets F i & {0,1}* :i < j. B
sets Fi jw = 2w : w € {0, 1}\{w;}. Bsets Fgiw = Gu(Gu,_, (... Gu, 1y (2w).-.)) 11> j,w € {0, 1} \{w;}.
Lastly B sends Gu,(Guwy_,(-+ G,y (2w) -+). If 2= G(y), then B is in Hybrid 2[j — 1], otherwise if z is
truly random, then B is in Hybrid 2[j]. It follows the advantage of B in distinguishing the output of G is
€. O

Claim 10. Suppose there exists a PPT adversary A such that Adv:ybrid4[j_l] — Adv:ybridw] =¢€ forj€[l,d.

Then the advantage of A in distinguishing the output of G is at least €.

Proof. B receives point £ = wy ...wy from A. B receives PRG challenge z = 27 ... zoc, where z is either the
output of G' on string y, or is a truly random string of length A - 2¢. B sets Fk ;. & {0,1}*:i>d—j. B
sets Frg—jw = 2w : w € {0, 1}\{wa—;}. B sets Friw = Gu(Gu,_, (- Guyry_, (20)...) 10 >d—jw €
{0,13"\{w;}. Lastly B sends Gu,(Guy_, (- Guary_,;(2w)-..)). If 2 = G(y), then B is in Hybrid 4[j — 1],
otherwise if z is truly random, then B is in Hybrid 4[j]. It follows the advantage of B in distinguishing the
output of G is e. O

First observe that the Hybrids in each of the following pairs of are identical: (1,2[0]), (2[d],3), (3,4[0])
and (4[d],5). Thus claims 5 and 6 imply that the advantage of any PPT adversary in distinguishing Hybrids
1 and 5 is at most 2d - eprg, where epra is the maximal distinguishing adversary of any adversary in
distinguishing the output of the PRG. On the other hand, any adversary distinguishing Hybrids 1 and 5
distinguishes the output of the puncturable PRF. Since eprg is neglgible by assumption, it follows that no

adversary has more than a negligible advantage in distinguishing the output of the puncturable PRF.
O

21

B Proof of Security of Variable-Length Domain Puncturable PRF

Theorem 3. The scheme given in Section 5 is a selectively secure puncturable PRF if G is a secure PRG
stretching X\ bits to 3\ bits.

Proof. We prove the above theorem by defining the following sequence of hybrids.

Hybrid 1

1. Choose K at random in {0,1}*.
2. Receive an v-bit message x, to be punctured on.
3. Puncture K on x as follows
Write x as by ...b,, where v < [.
for i=1tov—1 do
FK,i — GEi (Gbi—l(' . (Gbl (K)) .-))
Frii1— Gl (Gp, ... (G (K))..))
end for
Ficw — Gy, (Go, (. (G, (K))...))
Frpi10 < Go(Gh, (... (Gp, (K))...)
FK,v+1,1 — Gl(GbU(~ . (Gbl (K)) ..))
Let K{z} = (Fk,i, Fr,i,1)icp1o-1) Frvs (FKv1,0)be)0,1]-
4. Send key K{z}.
5. Send G (Gp, (... (Gp, (K))...)).

Hybrid 2[j] : j € [0,]

1. Choose K at random in {0, 1}*.
2. Receive an v-bit message x, to be punctured on.
3. Puncture K on zx as follows

Write x as by ...b,, where v < [.

for i=1toj do

$

yi,() — {07 1})\
$

yi1 — {0,1}

$
yi,L = {0, 11}
end for
for i=1toj do
Fri —yio
Fri1 < Y1
end for
for i=j+1tov—1 do
Fri = Gy (Go oy - (y50))
Fri — GL(Go, (- (yj,L))
end for
Fro < G5 (Go, o (- (y5,1) -)
Frot1,0 < Go(Gp, (.- - (Y1) --+)
Fr w11 < Gi(Gp, (- (Y1) --+)
Let K{z} = (Fri, Fri,1)icp,v-1]s Fi o (FK011,0)be(0,1]-
4. Send key K{z}.
5. Send G (Go, (.. (ys.1) -..)-

22

Hybrid 3

1. Choose K at random in {0, 1}*.
2. Receive an v-bit message x, to be punctured on.
3. Puncture K on x as follows
Write x as by ...b,, where v < [.
for i=1tov—1 do
$
yio — {0,1}*
$
yi,l — {Ov 1})\
$
Yi, L < {Oa 1}>\
end for
for i=1tov—1 do
Fri—yio
Fri1 <~ yi1
end gor
Yv,0 < {05 1})\
$
Yv+1,0 < {0’ 1}/\
3
Yv+1,1 < {0, 1})\
$
Yo+1,1L — {07 1})\
FK,'U — Yu,0
Fr vt1,0 < Yor1,0
Fr o411 < Yot1,1
Let K{z} = (Fk,i, Fri,1)iepo-1] Frvs (FKv1,0)be)0,1]-
4. Send key K{z}.
5. Send Y41, -

Hybrid 4[] : j € [1,v + 1]

1. Choose K at random in {0, 1}*.
2. Receive an v-bit message x, to be punctured on.
3. Puncture K on z as follows
Write x as by ... b,, where v <.
for i=1tov+1—j do
yio < {0, 1}
yia < {0, 1))
yi < {0,1)
end for
for i=1tov+1—35 do
Fri < yio
Fril —vi1
end for
for i=v+2—jtov—1 do
Fgi— G (Goi_y oo (Yor1-41) -)
Fri1 — Gi(Gp (- (Yor1-j1)--))
end for
Frw — Gy (Gy,_, (- (Yor1-51) --2))

Yov+1,L i {07 1})\
Frv+1,0 — Go(Gp, (- - - (Yot1-5,1) --)
Froi11 +— Gi(Go, (- (Yor1-41) ---))

23

Let K{z} = (Fk,, Fri,1)icpv-1] Frvs (FKo41,0)be)0,1]-
4. Send key K{z}.
5. Send Yy41,1-

Hybrid 5

1. Choose K at random in {0, 1}*.
2. Receive an v-bit message x, to be punctured on.
3. Puncture K on x as follows
Write x as by ...b,, where v < [.
for i=1tov—1 do
Fri — Gy, (Gp,_, (- (Gp(K))...))
FK’Z"J_ — GJ_(Gbi e (Gbl(K)) ..)
end for
Fr — Gy (Go,_, (... (Gy, (K))...))

Yv+1,L i {07 1})\
Frpi1,0 < Go(Go, (... (Gp, (K))...))
Frpi11 — G1(Gy, (... (G, (K))...))
Let K{z} = (Fk.i, Fr,i,1)icpv-1] Frvs (FKv41,0)be(0,1]-
4. Send key K{z}.
5. Send Y41, -

Claim 11. Suppose there exists a PPT adversary A such that Adv:ybrid%*l] — Adv:ybridz[j] =¢€ for j € [1,v].
Then the advantage of A in distinguishing the output of G is at least e.

Proof. Simulator B receives point z = b;...b, from A. B sets y;0 & {0, 1} i1 & {0, 1} Fk,; «
Yios Fra1 — i1 4 < j. Bis given z = y;olly;,1]ly;, L as input which is either the output of G
on a random A-bit input, or is a truly random 3A-bit string. B sets Fx; < Gy (Go,, ... (yj1)--.
),FK)Z‘7J_ — GJ_(Gbi(- . (yj7J_) .)) S [j,U — 1] B sets FKﬂ, — GEU (va—l(ce (y_]}l) ce)), FK7v+1,O —
Go(va(. N (yj,l) .. ~))7FK,U+1,1 — Gl(GbU(- N (yj,l) .)) B sends K{Ji} and GL(GbU(‘e (yj,l) ‘e)) If Bis
given G(y;_1,1) for random y;_11 then it is in Hybrid 2[j — 1], otherwise if z is truly random, it is in Hybrid
2[j]. The claims follows. O

Claim 12. Suppose there exists a PPT adversary A such that Adv:ybridz[v] — Advt!‘ybrid3 = ¢. Then the
advantage of A in distinguishing the output of G is at least e.

Proof. Simulator B receives point * = by...b, from A. B sets yio & {0, 13, yi. 1 & {0, 1} Fr;i «
Yios Frei1 < Y1 11 € [1,v]. Bisgiven 2z = yy41,0||Yv+1,1]|Yv+1,1 as input which is either the output of G on
a random A-bit input, or is a truly random 3A-bit string. B sets Fi y < Yv,0s Fr,04+1,0 < Yo+1,0, Frv+1,1 <
Yu+1,1- B sends K{x} and y,41,1. If B is given G(y, 1) for random y, 1 then it is in Hybrid 2[v], otherwise
if z is truly random, it is in Hybrid 3. The claims follows. O

Claim 13. Suppose there exists a PPT adversary A such that Advij‘ybrid3 — Adv:ybrid‘l[:l] = €. Then the
advantage of A in distinguishing the output of G is at least e.

Proof. Simulator B receives point * = by...b, from A. B sets y; o & {0, 13 wi 1 & {0,1}*, Fi «
Yi0, Frei 1 < i1 i € [L,v]. Bis given 2 = y,11,0/|¥y41.11/%v+1,1 as input which is either the output of G' on
a random A-bit input, or is a truly random 3A-bit string. B sets Fik v < ¥v,0, FK,v4+1,0 < Yo+1,0, FK,v+1,1 <
Yo+1,1- Bsends K{z} and y,41,1 & {0,1}*. If B is given G(y,,1) for random y, ; then it is in Hybrid 4[1],
otherwise if z is truly random, it is in Hybrid 3. The claims follows. O

24

Claim 14. Suppose there exists a PPT adversary A such that Adv:ybﬁd‘l[j*l] —Adv:ybrid4[j] = ¢ forj € [2,v+1].

Then the advantage of A in distinguishing the output of G is at least e.

Proof. Simulator B receives point * = by...b, from A. B sets yio & {0, 13,y 1 & {0, 1} Fr;i «
Yios Fra1 «— Y1 1@ >v+1—j. Bisgiven z = ypp1-50llYv+1-j1]Yv+1—;,1 as input which is ei-
ther the output of G on a random A-bit input, or is a truly random 3A-bit string. B sets Fg,; «
GEi(Gbi—l ...(yUJrl,j’l)...), FK’i’J_ — GJ_(G[,I((varlfj,J_))) AN [U + 1 - j,?) - 1] B sets
Fro — G (Go, (oo (Yor1-51) -+)y Frot10 < Go(Go, (- (Yo1-51) -+))s Fror11 < G1(Go, (
oo (Yop1-41) ..). B sends K{z} and G| (G, (... (Yo+1-j1)--.)). If Bis given G(yy—; 1) for random
Yu—j,1 then it is in Hybrid 2[j — 1], otherwise if z is truly random, it is in Hybrid 2[j]. The claims follows. O

Observe that Hybrid 1 is identical to Hybrid 2[0]. Similiarly Hybrid 4[v + 1] is identical to Hybrid 5.
Thus claims 8 - 11 imply that the advantage of any PPT adversary in distinguishing Hybrids 1 and 5 is at
most 2(v+1) - epra, where epre is the maximal distinguishing adversary of any adversary in distinguishing
the output of the PRG. On the other hand, any adversary distinguishing Hybrids 1 and 5 distinguishes the
output of the puncturable PRF. Since eprg is negligible by assumption, it follows that no adversary has
more than a negligible advantage in distinguishing the output of the puncturable PRF.

25

