
UC Davis
UC Davis Previously Published Works

Title
WTF, GPU! Computing Twitter's Who-To-Follow on the GPU

Permalink
https://escholarship.org/uc/item/5xq3q8k0

Authors
Geil, Afton
Wang, Yangzihao
Owens, John D

Publication Date
2014-10-01

DOI
10.1145/2660460.2660481

Supplemental Material
https://escholarship.org/uc/item/5xq3q8k0#supplemental

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5xq3q8k0
https://escholarship.org/uc/item/5xq3q8k0#supplemental
https://escholarship.org
http://www.cdlib.org/

Note: This is a revision to the ACM Digital Library version of the paper (which
can be found under Supporting Material). This version includes a performance
comparison against a Cassovary CPU library implementation of WTF not included
in the original paper.

WTF, GPU! Computing Twitter’s Who-To-Follow on the GPU

Afton Geil, Yangzihao Wang, and John D. Owens
University of California, Davis

ABSTRACT
In this paper, we investigate the potential of GPUs for per-
forming link structure analysis of social graphs. Specifically,
we implement Twitter’s WTF (“Who to Follow”) recommen-
dation system on a single GPU. Our implementation shows
promising results on moderate-sized social graphs. It can
return the top-K relevant users for a single user in 172 ms
when running on a subset of the 2009 Twitter follow graph
with 16 million users and 85 million social relations. For our
largest dataset, which contains 75% of the users (30 million)
and 50% of the social relations (680 million) of the complete
follow graph, this calculation takes 1.0 s. We also propose
possible solutions to apply our system to follow graphs of
larger sizes that do not fit into the on-board memory of a
single GPU.

Categories and Subject Descriptors
H.4 [Information Systems]: World Wide Web—social net-
works; E.1 [Data]: Data Structures—graphs and networks;
D.1.3 [Software]: Programming Techniques: Concurrent
Programming—parallel programming.

Keywords
Online Social Networks; GPU Computing; Recommendation
Systems; Graph Processing; Twitter

1. INTRODUCTION
Many web service providers use recommendation systems

to sell products or to increase the value of their service.
Shopping services like Amazon suggest products users may
be interested in buying, news sites recommend articles based
on a user’s reading history, and streaming services like Netflix
recommend movies and television shows to watch. Social
networking services recommend people that the current user
may want to connect with. In a social network, where the
content is entirely user-generated, a good recommendation
system is key in retaining and engaging users.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
COSN’14, October 1–2, 2014, Dublin, Ireland.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3198-2/14/10 ...$15.00.
http://dx.doi.org/10.1145/2660460.2660481.

Twitter is a social media service that allows users to broad-
cast short, 140-character tweets to all users who choose to
follow them. Twitter’s success depends on acquiring and
maintaining an active user base. A user’s satisfaction with
the service depends almost entirely on the content gener-
ated by the other users in their social network. They need
to subscribe to the tweets of users they are interested in
reading updates from. Finding users to follow can be diffi-
cult, especially for new users, so Twitter provides them with
recommendations of accounts they may be interested in sub-
scribing to. This service is called “Who to Follow”, or WTF.
Twitter calculates these recommendations by analyzing the
link structure of the follow graph [4]. Recommendations
should be provided and updated in real time to keep up with
changes in the follower graph. For a graph with hundreds
of millions of nodes and billions of edges, this is no small
problem. Graphics processing units (GPUs) have a highly
parallel architecture that is potentially well-suited for this
kind of large-scale graph analysis.

GPUs are throughput-oriented, highly parallel architec-
tures that have proven to be very efficient for solving many
large-scale problems with plenty of available parallelism. The
modern GPU has become the most cost-effective way to per-
form massive amounts of computation. A single GPU can
often outperform a cluster of CPUs; however, they have not
yet been able to gain a foothold in data centers. This is due
to various issues, such as programmability, limited memory
size, and communication costs. GPUs have a very different
architecture from CPUs. This makes GPUs efficient at solv-
ing large problems, but also creates unique programming
challenges.

Solving graph problems on a GPU is particularly difficult
because although these problems usually have a large amount
of parallelism, that parallelism is irregular: in social graphs,
nodes typically have widely varying connectivity and thus
wildly varying work per node. As well, graph algorithms
usually involve traversing the graph, including paths that
split and join along the way; this complicates the control
flow, because paths could intersect at any time. Nonetheless,
some work has been done on implementing PageRank, a
popular graph analysis algorithm, on GPUs [12,14]; however,
this work does not confront the irregular challenges of graph
traversal because they use the linear algebra formulation of
the PageRank algorithm. GPUs can work well on native
graph representations: Merrill et al. used GPUs to achieve 4x
speedups over multicore CPUs with breadth-first search [9].
Our work leverages some of Merrill et al.’s traversal strategies,
but maps a more complex graph algorithm to GPUs. Very

0 1

2 3

4

7

8

5

9

6

Compute PPR;
Pick CoT

0 1

2

0

3

3

4

Turn CoT into
Bipartite Graph

S0=1
0 1

2

0

3

3

4

Compute
Relevance Score

using Money

R1=0.59

R3=0.15

R4=0.26

0 1

2 3

4

7

8

5

9

6

Figure 1: Overview of Twitter’s WTF algorithm. Frame 1: The initial graph (red [dark] node is the user
for whom recommendations are being computed). Frame 2: The Circle of Trust (nodes in pink [dark]) is
found using Personalized PageRank. Frame 3: The graph is pruned to include only the CoT and the users
they follow. Frame 4: The relevance scores of all users on the right side are computed with Twitter’s Money
algorithm. Node 4 will be suggested for Node 0 to follow because it has the highest value of all nodes the
user is not already following.

little work has been done using GPUs for recommendation
systems. Srinivasa et al. implemented the friends-of-friends
algorithm on a GPU [13]. Friends-of-friends is a basic recom-
mendation algorithm that takes a user and nodes adjacent
to the user and returns the set of second level nodes that are
adjacent to these nodes. Srinivasa et al. only tested their
algorithm on small graphs (fewer than 40,000 nodes), but
they did achieve a speedup of about 2x over a basic CPU
implementation.

2. TWITTER’S WTF ALGORITHM
Two main stages comprise the WTF recommender. In

the first stage, Twitter calculates a Personalized PageRank
(PPR) for the user. PPR assigns a ranking to all nodes in the
network based on how closely connected they are to the main
node (the user interested in recommendations). This ranking
is used to find the top 1000 ranking nodes. These nodes
form the user’s “Circle of Trust” (CoT), which consists of
the 1000 nodes closest to the user. Pruning the graph in this
way increases the personalization of the recommendation
and reduces spam. Next, they create a bipartite graph
with the CoT on one side, and the users followed by the
CoT on the other. All other nodes are pruned from the
graph. The final step is Twitter’s “Money” algorithm, a
graph analysis algorithm that determines which accounts the
user is most likely to be interested in following. Figure 1
shows a schematic of the entire WTF algorithm.

2.1 Personalized PageRank
PageRank is an algorithm for ranking nodes in a graph

based on the structure of the graph [11]. It was originally
used on the web graph to rank webpages for search engines.
The PageRank of a node can be thought of as the probability
that a random walker traversing the graph along the edges
will land on that node. It is a measure of how well-connected
the node is, and therefore, how important it is to the graph.
A Personalized PageRank (PPR) calculation relative to node
A is identical to the normal PageRank calculation, except all
random walks begin at node A, rather than a random node.
Overall, a Personalized PageRank calculation for A shows
which nodes are most closely related to A.

PageRank can be calculated using Monte Carlo methods
or power iteration. A Monte Carlo method for Personalized

PageRank would be to actually perform many random walks
on the graph and maintain a count of the number of times
each node is visited, then use these counts to estimate the
stationary distribution. Power iteration methods formulate
the problem as a system of linear equations and use linear
algebra techniques to solve for the ranking values. Twitter
chose a Monte Carlo method for their PPR, while we chose a
power iteration method for our implementation. We discuss
the reasoning for this decision in Section 6.

2.2 Money
Twitter’s Money algorithm [3] is similar to a combination

of Kleinberg’s HITS algorithm [5] and Lempel and Moran’s
SALSA [7]. First, the graph is transformed into a bipartite
graph, with the CoT on the left side, and the users the CoT
follows on the right side, as shown in the second and third
stages of Figure 1. If a user is both in the CoT and followed
by someone in the CoT, this node will appear on both sides of
the bipartite graph. The CoT nodes are assigned a similarity
value, and the users they follow are assigned a relevance value.
Initially, the user we are trying to get recommendations for,
C, has their similarity score set to 1, and all others have
their similarity or relevance scores set to 0. The Money
algorithm distributes each CoT member’s similarity score to
the relevance scores of all the users they follow. The followers
then distribute their relevance scores back across the graph
to all of their followers. As in PPR, the Money algorithm
can also be written as a system of linear equations. From the
solution of this system of equations, Twitter finds the nodes
with the highest relevance scores. These are the accounts
they recommend to the user in the Who to Follow feature.
The similarity scores are used for other features, such as the
“similar to you” feature and targeted advertising.

3. PARALLELIZING GRAPH ALGORITHMS
ON THE GPU

Both PPR and Money are link prediction algorithms that
traverse the graph and assign rank values for a subset of
nodes. Like many other graph algorithms, they can be
viewed as iterative convergent processes. There is a data
dependency between iterative steps, but within each step, a
large number of independent edge-centric or vertex-centric
operations can be parallelized. However, to fully exploit the

compute capabilities of GPUs, we need special strategies to
handle irregular memory access and work distribution.

For compact and efficient memory access, we use the com-
pressed sparse row (CSR) format to represent the follow
graph on the GPU. It uses a column-indices array, C, to
store a list of neighbor vertices and a row-offsets array, R,
to store the offset of the neighbor list for each vertex. This
representation enables us to use parallel primitives such as
prefix sum to reorganize sparse and uneven workloads into
dense and uniform ones in all phases of graph processing.

3.1 Graph Primitives
To solve the issue of irregular work distribution, we design

two graph primitives: graph traversal and filtering. Graph
traversal starts with a queue of vertices we call the frontier.
Traversal then takes several iterations to advance toward
other vertices by visiting the neighbor list of all vertices
in the current frontier in parallel and adding the neighbor
vertices to the new frontier. Filtering starts with a frontier
that contains either edges or vertices, does a user-defined
validation test for every item in the frontier in parallel, then
generates a new frontier containing only the items that have
passed the validation test.

In PPR, graph traversal and filtering alternate until all
the rank values converge and there are no vertices in the
frontier for the graph traversal primitive. In Money, we
use the graph traversal primitive to bounce back and forth
between two disjoint sets in a bipartite graph: the CoT and
the union of all CoT vertices’ neighbor lists. Since in graph
traversal primitives, the neighbor lists can vary greatly in
size, traversing these neighbor lists in parallel efficiently and
in a load-balanced way is critical for the performance of our
system. Merrill et al. [9] uses specialized strategies according
to neighbor list size in the context of a parallel breadth-first
search (BFS) algorithm. The algorithm efficiently reduces
the amount of overhead within each kernel and better uti-
lizes the GPU. Our implementation extends this strategy
with two important improvements. First, we add inline de-
vice functions to perform user-specific computations and to
reuse graph traversal primitives for both PPR and Money
by just replacing the function we load when visiting edges
and vertices. Second, BFS’s operations on vertices are idem-
potent, but ours are not, so we guarantee the correctness of
both algorithms by adding atomics to resolve race conditions
between edges converging on a vertex.

3.2 Application to Other Graph Algorithms
The graph traversal primitive distributes the parallel work-

load per edge or per node in a graph to tens of thousands of
threads on the GPU to process in parallel, and the filtering
primitive reorganizes the elements we want to process in
parallel for the next iteration. By reusing these two prim-
itives, we have implemented several graph-traversal-based
ranking algorithms such as PageRank, PPR, Money, HITS,
and SALSA with minimal programming cost. Several of
these algorithms run on bipartite graphs, which are key ab-
stractions in several ranking and link prediction algorithms.
As far as we know, we are the first to target bipartite graph
algorithms on the GPU.

We implement bipartite graphs in the following way. A
directed bipartite graph is similar to a normal undirected
graph, except in a directed bipartite graph, we need to
consider the outgoing edges and the incoming edges of a

vertex separately. We achieve this by reversing the source
and destination vertex ID for each edge while constructing
the CSR data structure to record the incoming edges and
using an additional prefix sum pass to compute the incoming
degree for each vertex. In our graph primitives, we also
added a feature to switch between visiting the outgoing
edges of a vertex and visiting the incoming edges of a vertex.
We use this method in our SALSA implementations. In
our Money and HITS implementation, we do not need to
calculate the in-degree of every node in the graph, but just
the ones connected to the CoT. We take advantage of this
by finding the incoming degree values for neighbors of the
CoT on the fly with an additional pass of the graph traversal
primitive. Because of the small size of the CoT, this extra
pass takes negligible time but saves us gigabytes of memory
for large datasets.

4. WTF IMPLEMENTATION
In our implementation, we start by putting all the graph

topology information on the GPU. First, we compute the
PPR value for each vertex in the follow graph with a user-
defined seed vertex. Then we radix-sort the PPR values
and take the vertices with the top k PPR values (in our
implementation, k = 1000) as the CoT and put them in a
frontier. We then run the Money algorithm, sort the vertices
that the CoT follows, and finally extract the vertices with
the top relevance scores to use for our recommendation.

4.1 Personalized PageRank
Algorithm 1 shows our implementation of PPR using the

graph primitives and functors we design. We update PPR
using the following equation:

PPR(vi) =


(1− δ) + δ ·

∑
vj∈pred(vi)

PPR(vj)

dOUT(vj)
vi is seed

δ ·
∑

vj∈pred(vi)

PPR(vj)

dOUT(vj)
otherwise

where δ is a constant damping factor (typically set to 0.85),
dOUT(vj) is the number of outbound edges on vertex vj , and
N is the total number of vertices in the graph.

The PPR algorithm starts by initializing problem data
(line 1). It assigns the initial rank value for each vertex as 1

N
,

and puts all vertices in the initial frontier. The main loop
of the algorithm contains two steps. For each iteration, we
first use GraphTraversal to visit all the edges for each vertex
in the frontier and distribute each vertex’s PPR value to its
neighbors (line 7). Then we use Filtering to update the PPR
value for the vertices that still have unconverged PPR values.
We give the seed vertex an extra value (line 10) as in the
equation. Then we remove the vertices whose PPR values
have converged from the frontier (line 12). The algorithm
ends when all the PPR values converge and the frontier is
empty.

4.2 Twitter’s Money Algorithm
Algorithm 2 shows our implementation of Twitter’s Money

algorithm. We treat people in the CoT and people they
follow as two disjoint sets X and Y in the bipartite graph
G = (X ∪ Y,E) they form. For each node in X (the CoT),
the Money algorithm computes its similarity score; for each
node in Y , the Money algorithm computes its relevance score.

Algorithm 1 Personalized PageRank

1: procedure Set Problem Data(G,P, seed, delta)
2: P.ranks curr[1..G.verts]← 1

N
3: P.src← seed, P.delta← delta
4: P.frontier.Insert(G.nodes)
5: end procedure
6: procedure DistributePPRValue(s id, d id, P)

7: atomicAdd(P.rank next[d id], P.rank curr[s id]
P.out degree[s id]

)

8: end procedure
9: procedure UpdatePPRValue(node id, P)

10: P.rank next[node id] ← (P.delta ·
P.rank next[node id]) + (P.src == node id)?(1.0 −
P.delta) : 0

11: diff ← fabs(P.rank next[node id] −
P.rank curr[node id])

12: return diff > P.threshold
13: end procedure
14: procedure Compute PPR(G,P, seed, delta,max iter)
15: Set Problem Data(G,P, seed, delta)
16: while P.frontier.Size() > 0 do
17: GraphTraversal(G,P,DistributePPRValue)
18: Filtering(G,P,UpdatePPRValue)
19: swap(P.rank next, P.rank curr)
20: end while
21: end procedure

We use the following equations in our implementation:

sim(x) =


α+ (1− α) ·

∑
(x,y)∈E

relevance(y)
dIN(y)

x is seed

(1− α) ·
∑

(x,y)∈E

relevance(y)
dIN(y)

otherwise

relevance(y) =
∑

(x,y)∈E

sim(x)

dOUT(x)

In the Money algorithm, we also initialize problem data
first (line 1). We set the similarity score for the seed vertex
to 1, and set the similarity and relevance scores for all other
vertices to 0. We then put all vertices in the CoT in the
initial frontier. The main loop of the algorithm contains
two steps of GraphTraversal, for each iteration we use the
first GraphTraversal to visit all the edges for each vertex
in the CoT and distribute each vertex’s similarity score to
its neighbors’ relevance scores (line 9). After this step, we
update the relevance scores so that they may be used in
the computation of similarity scores (line 19). The second
GraphTraversal will visit all the edges for each vertex in the
CoT again, but this time it will distribute the neighbors’
relevance scores back to each CoT vertex’s similarity score
(line 12). Again, we treat the seed vertex differently so that it
can get more similarity score during each iteration, which in
turn will affect its neighbors’ relevance scores and other CoT
vertices’ similarity scores. After the second GraphTraversal
step, we update the similarity scores (line 21). As Twitter
does in their Money algorithm [3], we end our main loop
after 1/α iterations.

5. EXPERIMENTS
We ran all experiments in this paper on a Linux work-

station with 2 × 2.53 GHz Intel 4-core E5630 Xeon CPUs,
12 GB of main memory, and an NVIDIA K40c GPU with

Algorithm 2 Twitter’s Money Algorithm

1: procedure Set Problem Data(G,P, seed, alpha)
2: P.relevance curr[1..G.verts]← 0
3: P.sim curr[1..G.verts]← 0
4: P.src← seed, P.alpha← alpha
5: P.sim curr[seed]← 1
6: P.frontier.Insert(G.cot queue)
7: end procedure
8: procedure DistributeRelevance(s id, d id, P)

9: atomicAdd(P.relevance next[d id], P.sim curr[s id]
P.out degree[s id]

)

10: end procedure
11: procedure DistributeSim(s id, d id, P)

12: val← (1− P.alpha) · P.relevance curr[d id]
P.in degree[d id]

+ (P.src ==

s id)?(P.alpha
P.out degree[s id]

) : 0

13: atomicAdd(P.sim next[d id], val)
14: end procedure
15: procedure Compute Money(G,P, seed, alpha)
16: Set Problem Data(G,P, seed, alpha)
17: for iter++ < 1/alpha do
18: GraphTraversal(G,P,DistributeRelevance)
19: swap(P.relevance next, P.relevance curr)
20: GraphTraversal(G,P,DistributeSim)
21: swap(P.sim next, P.sim curr)
22: end for
23: end procedure

Table 1: Experimental Datasets

Dataset Vertices Edges

wiki-Vote 7.1k 103.7k
twitter-SNAP 81.3k 2.4M
gplus-SNAP 107.6k 30.5M
twitter09 30.7M 680M

12 GB on-board memory. The parallel programs were com-
piled with NVIDIA’s nvcc compiler (version 6.0.1) with the
-O3 flag. The sequential programs were compiled using gcc
4.6.3 with the -O3 flag. The datasets used in our experiments
are shown in Table 1, and Table 2 shows the runtimes of our
GPU recommendation system on these datasets. Runtimes
are for GPU computation only and do not include CPU-GPU
transfer time; we discuss why in Section 6. The wiki-Vote
dataset is a real social graph dataset that contains voting
data for Wikipedia administrators; all other datasets are
follow graphs from Twitter and Google Plus [6,8]. Twitter09
contains the complete Twitter follow graph as of 2009; we
extract 75% of its user size and 50% of its social relation
edge size to form a partial graph that can fit into the GPU’s
memory.

5.1 Scalability
In order to test the scalability of our WTF-on-GPU rec-

ommendation system, we ran WTF on six differently-sized
subsets of the twitter09 dataset. The results are shown in
Figure 2. We see that the implementation scales sublinearly
with increasing graph size. As we double the graph size,
the total runtime increases by an average of 1.684x, and the
runtime for Money increases by an average of 1.454x. The
reason lies in our work-efficient parallel implementation. By
doing per-vertex computation exactly once and visiting each

Table 2: Runtimes for Different Graph Sizes

Time (ms) wiki-Vote twitter gplus twitter09

PPR 0.45 0.84 4.74 832.69
CoT 0.54 1.28 2.11 51.61

Money 2.70 5.16 18.56 158.37
Total 4.37 8.36 26.57 1044.99

20

40

60

80

100

120

140

160

M
on

ey
 R

un
tim

e(
m

s)
Total Runtime (left)
Money Runtime (right)

0 100 200 300 400 500 600 700
Edges in Follow Graph (in millions)

0

200

400

600

800

1000

1200

To
ta

l R
un

tim
e(

m
s)

Figure 2: Scalability of runtime versus edge count
for our GPU recommendation system.

edge exactly once, our parallel algorithm performs linear
O(m+ n) work. The reason that we have better scalability
for the Money algorithm is that although we are doubling
the graph size each time, the CoT size is fixed at 1000. We
address scalability beyond a single GPU in Section 6.

5.2 Comparison to Cassovary
We chose to use the Cassovary graph library for our CPU

performance comparison. The results of this comparison are
shown in Table 3. Cassovary is a graph library developed at
Twitter. It was the library Twitter used in their first WTF
implementation [4]. The parameters and Cassovary function
calls for this implementation can be found in the Appendix.

We achieve speedups of up to 1000x over Cassovary for the
Google Plus graph, and a speedup of 14x for the 2009 Twitter
graph, which is the most representative dataset for the WTF
application. One difference between the GPU algorithm and
the Cassovary algorithm is that we used the SALSA func-
tion that comes with the Cassovary library, instead of using
Twitter’s Money algorithm for the final step of the algorithm.
Both are ranking algorithms based on link analysis of bi-
partite graphs, and in the original Who-To-Follow paper [4],
Gupta et al. use a form of SALSA for this step, so this is
reasonable for a comparison.

6. DISCUSSION
On a graph with more than 175 million nodes and 20

billion edges, the WTF algorithm currently takes around
500 ms in Twitter’s data center [10]. In contrast, our imple-
mentation can process a graph with 25 million nodes and
340 million edges in a similar amount of time (524 ms), and

it takes 1 second to process our largest dataset, which is still
significantly smaller than the complete Twitter graph.

The Personalized PageRank calculation takes up the vast
majority of the runtime for larger graphs (Table 2). This
is because PPR runs on the entire graph, but Money only
runs on the pruned CoT graph, which does not grow as
quickly. One possible way to reduce the runtime would be to
precompute the CoT, and only run Money to update WTF.
In this scheme, PPR would only be run periodically, and it
could be an offline process. Alternatively, an incremental
PPR calculation, as in Bahmani et al. [2], could provide an
estimate of the new CoT without needing to iterate through
the entire graph. With the precomputed CoT, we would
only need to run Twitter’s Money algorithm to get the result.
According to our sublinear scalability model of Twitter’s
Money algorithm runtime, we could compute the result in
300 ms on Twitter’s circa-2009 follow graph.

We also note that our PPR calculation uses a power itera-
tion method, while Twitter’s is a Monte Carlo method. Both
methods are quite accurate, but there are a few trade-offs [1].
The power iteration method is deterministic. Every time the
algorithm runs on the same set of data, we will get the same
results. Monte Carlo methods involve actually performing
random walks to compute the probability distribution, so
the outcome will not be exactly the same every time. In
terms of performance, Monte Carlo methods give a reason-
able approximation after only the first iteration, but the
error decreases very slowly with more iterations. Power itera-
tion, on the other hand, starts with a much more inaccurate
estimation, but the error decreases and converges quicker
than for Monte Carlo. We chose power iteration because it is
both efficient and easy to implement on a GPU; however, it
is possible that a Monte Carlo method would perform better
on a GPU. Because Monte Carlo methods involve many
independent walks, they are potentially well-suited to the
GPU’s massively parallel architecture.

The difference between Monte Carlo and iterative methods
can be seen in the camparison with the Cassovary runtimes
in Table 3. While our GPU version is PPR-limited, the
Cassovary implementation tends to be SALSA-limited. This
is because of the difference in the way we compute Personal-
ized PageRank. The Cassovary library PPR function uses
the Monte Carlo random walks method, walking the graph
and maintaining a visit count at each node, then ranking
nodes by the number of visits. The number of steps is fixed,
so the Cassovary PPR scales well. Our method iterates until
convergence and computes the PPR for every node, not just
ones that are in the vicinity of the start node.

One major limitation of our current implementation is the
size of GPU memory. Today’s GPUs have at most 12 GB of
memory, whereas a CPU system can easily have ten times as
much memory. This means that the entire current Twitter
follow graph cannot fit in GPU memory. The twitter09
dataset is close to the maximum size that can fit on a single
GPU. To compute WTF on the full graph, we would need
to partition the graph and/or distribute it across multiple
nodes. Scaling any large-scale parallel data analysis system,
especially online social network system, beyond a single
GPU remains a major challenge today. The unstructured
and highly irregular connectivity of power-law graphs like
social graphs makes it difficult to design partitioning and
synchronization strategies for such graphs.

Table 3: Runtime comparison to Cassovary.

wiki-Vote twitter gplus twitter09

Step (runtime) Cassovary GPU Cassovary GPU Cassovary GPU Cassovary GPU

PPR (ms) 418 0.45 480 0.84 463 4.74 884 832.69
CoT (ms) 262 0.54 2173 1.28 25616 2.11 2192 51.61

Money/SALSA (ms) 357 2.70 543 5.16 2023 18.56 11216 158.37
Total (ms) 1037 4.37 3196 8.36 28102 26.57 14292 1044.99

Speedup 235.7 380.5 1056.5 13.7

Another limitation is the bandwidth of the connection be-
tween main memory and GPU memory. Results in Section 5
do not include the data transfer time from CPU memory
to the GPU. For our largest graph, the transfer time is
852.24 ms—about 85% of the compute time. In our exper-
iments, we assume that graph data will be resident on the
GPU, because it will be used to run a variety of algorithms
on the follow graph, so transfer time will not be significant
overall; however, for a different use case or very frequent
updates to the graph, data transfer time could seriously limit
performance.

Fortunately, future GPU systems have potential solutions
for the modest size of today’s GPU memories. The next
node on NVIDIA’s GPU roadmap is “Pascal” (2016), which
can be connected to the CPU via a high-speed “NVLink”
connection that allows access to the CPU’s main memory
at CPU-main-memory speeds (as well as supporting unified
virtual memory across CPU and GPU). While such systems
will still require careful memory management, they eliminate
the current performance disadvantage in the case data fits
in CPU memory but not GPU memory.

7. CONCLUSIONS AND FUTURE WORK
In this work, we have shown that it is possible to use

a GPU for recommendation algorithms on social graphs,
but there are still many ways in which the performance
could be improved. Software platforms for large-scale online
social network analysis on hybrid CPU-GPU architectures
could potentially offer better throughput and performance on
systems that are more cost-effective than today’s CPU-based
cluster architectures. However, moving workloads to GPUs
is challenging for the following reasons:

• Designing parallel algorithms for such systems is both
difficult and time consuming.

• Today, limited PCIe bandwidth is a constraint for using
discrete GPUs for communication-bounded tasks.

• The limited memory size on current GPUs makes it
difficult to run algorithms on datasets that cannot fit
in the GPU memory.

With the appearance of more graph processing libraries
on the GPU, the design and implementation of online social
network analysis software on the GPU is becoming easier and
more efficient. Today, most online social network analysis
algorithms are still compute-bound when running on large
datasets. This makes a multi-CPU/multi-GPU architecture
running across multiple nodes a promising solution.

We propose a two-layer framework running on a three-layer
memory hierarchy where GPU memory serves as the fast

cache, and CPU main memory serves as the second level
cache, sitting atop data stored on hard disks/SSDs. In our
case of building a recommendation system, the entire follow
graph will be stored in CPU memory with disk as backing
store. Multiple nodes, each containing one or more GPUs,
will store the CoT for each user in the graph. Currently
Twitter has 250 million users. If we keep the size of CoT
at 1000 and use unsigned integers for vertex IDs, then we
will need 2 TB to store CoTs for all users. That can be
easily partitioned by user ID to fit on 4 or more machines
with 512 GB or less of main memory. In this case, we
can run PPR as an offline algorithm that runs only once
per day or after a certain number of graph updates. The
recommendation system can then work in real time with
around 100 ms running time. Because the number of vertices
in CoT is a constant 1000, the pruned graph that contains
only vertices in CoT and vertices they connect to will be
much smaller than the original follow graph. This set-up
would reduce both the computational workload and GPU
memory requirements.

Acknowledgments
Thanks to Brian Larson, Aneesh Sharma, Ashish Goel, and
Pankaj Gupta (Twitter) for helpful comments and guidance
on this work. We appreciate the financial support of UC Lab
Fees Research Program Award 12-LR-238449, the DARPA
XDATA program under AFRL Contract FA8750-13-C-0002,
NSF awards CCF-1017399 and OCI-1032859, and a National
Science Foundation Graduate Research Fellowship.

8. REFERENCES
[1] K. Avrachenkov, N. Litvak, D. Nemirovsky, and

N. Osipova. Monte Carlo methods in PageRank
computation: When one iteration is sufficient. SIAM
Journal of Numerical Analysis, 45(2):890–904, Feb.
2007.

[2] B. Bahmani, A. Chowdhury, and A. Goel. Fast
incremental and personalized PageRank. Proceedings of
the VLDB Endowment, 4(3):173–184, Dec. 2010.

[3] A. Goel. The “who-to-follow” system at Twitter:
Algorithms, impact, and further research. WWW 2014
industry track, 2014.

[4] P. Gupta, A. Goel, J. Lin, A. Sharma, D. Wang, and
R. Zadeh. WTF: The who to follow service at Twitter.
In Proceedings of the International Conference on the
World Wide Web, pages 505–514, May 2013.

[5] J. M. Kleinberg. Authoritative sources in a hyperlinked
environment. Journal of the ACM, 46(5):604–632, Sept.
1999.

[6] H. Kwak, C. Lee, H. Park, and S. Moon. What is
Twitter, a social network or a news media? In
Proceedings of the International Conference on the
World Wide Web, pages 591–600, Apr. 2010.

[7] R. Lempel and S. Moran. SALSA: The stochastic
approach for link-structure analysis. ACM Transactions
on Information Systems, 19(2):131–160, Apr. 2001.

[8] J. Leskovec. SNAP: Stanford large network dataset
collection. http://snap.stanford.edu/data/.
Accessed: 2014-05-18.

[9] D. Merrill, M. Garland, and A. Grimshaw. Scalable
GPU graph traversal. In Proceedings of the 17th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’12, pages 117–128, Feb.
2012.

[10] S. A. Myers, A. Sharma, P. Gupta, and J. Lin.
Information network or social network?: The structure
of the Twitter follow graph. In Proceedings of the
Companion Publication of the International Conference
on the World Wide Web, WWW Companion ’14, pages
493–498, Apr. 2014.

[11] L. Page, S. Brin, R. Motwani, and T. Winograd. The
PageRank citation ranking: Bringing order to the web.
Technical Report 1999-66, Stanford InfoLab, Nov. 1999.

[12] A. Rungsawang and B. Manaskasemsak. Fast
PageRank computation on a GPU cluster. In
Proceedings of the 2012 20th Euromicro International
Conference on Parallel, Distributed and Network-Based
Processing (PDP), pages 450–456, Feb. 2012.

[13] K. G. Srinivasa, K. Mishra, C. S. Prajeeth, and A. M.
Talha. GPU implementation of friend recommendation
system using CUDA for social networking services. In
Proceedings of the International Conference on
Emerging Research in Computing, Information,
Communication, and Applications, pages 890–895, Aug.
2013.

[14] T. Wu, B. Wang, Y. Shan, F. Yan, Y. Wang, and
N. Xu. Efficient PageRank and SpMV computation on
AMD GPUs. In Proceedings of the 39th International
Conference on Parallel Processing, pages 81–89, Sept.
2010.

APPENDIX
Here are the parameters and function calls used in our com-
parison using the Cassovary graph library. Our inputs for
the personalized PageRank computation are as follows:

val numSteps = 100L * 1000L
val resetProb = 0.15
val maxSteps = None
val pathsSaved = Some(2)
val walkParams = RandomWalkParams(numSteps, resetProb, maxSteps, pathsSaved)
val graphUtils = new GraphUtils(graph)
val (topNeighbors, paths) = graphUtils.calculatePersonalizedReputation(startNode, walkParams)

Parameters for the SALSA calculation:

val leftResetProb = 0.2
val rightResetProb = 0
val numTopContributors = 5
val SALSA = new IterativeLinkAnalyzer(bipartiteGraphUtils, leftResetProb, rightResetProb, numTopContributors)
val numIterations = 5
val (topSimilarities, topRelevances) =

SALSA.analyze(leftNodeInfo, numIterations, {LHSNodes => LHSNodes.neighborIds(OutDir)})

