
Determining Cases of Scenarios
to Improve Coverage in Simulation-based Verification

Shuo Yang1 Robert Wille1,2 Rolf Drechsler1,2
1Institute of Computer Science, University of Bremen, 28359 Bremen, Germany

2Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany
{shuo,rwille,drechsler}@uni-bremen.de

ABSTRACT
Functional verification of complex designs is still dominated
by simulation-based approaches. In particular, Coverage-
driven Verification (CDV) is well acknowledged and applied
in industry. Here, verification gaps in terms of inadequately
checked scenarios are addressed and closed by generating
and applying dedicated stimuli. In order to ensure a good
coverage and, by this, a high verification quality, each sce-
nario is supposed to become sufficiently triggered. However,
the considered scenario may be triggered in several fashions
and information about that is hardly available in the exist-
ing CDV approaches. In this work, we propose an approach
which automatically derives this information. Examples and
experimental evaluations illustrate how this improves cover-
age in simulation-based verification.

1. INTRODUCTION
How to efficiently verify and validate the functional cor-

rectness of a Design Under Verification (DUV) remains an
important research area in the design of highly integrated
Systems on Chips (SoCs) or Networks on Chips (NoCs).
Due to the tremendous computational cost of formal ver-
ification, e.g. property checking and completeness checking
(see e.g. [1, 2]), simulation-based approaches (see e.g. [3])
still dominate functional verification. Dedicated stimuli are
thereby generated and applied to the DUV. The responses
of the design are then compared to the expected results.

However due to the exponential amount of possible stimuli
to be generated and applied, it is infeasible to exhaustively
cover the functionality of a DUV by this method. As a
consequence, simulation-based approaches aim for explicitly
focusing on certain (hard-to-reach) behaviors. For this pur-
pose, a set of scenarios is defined which abstracts the hard-
to-reach behavior and describes the respective functionality
to be checked (see e.g. [4]). Afterwards, an adequate num-
ber of directed stimuli is generated which is supposed to
sufficiently trigger the scenarios. By this, the hard-to-reach
behaviors are assumed to properly be verified.

To ensure that the generated set of stimuli indeed suffi-
ciently triggers the considered scenario, a noticeable number
of advanced technologies has been presented in the past (see
e.g. [5, 6, 7, 8, 9, 10, 11, 12, 13]). This led to Coverage-
driven Verification (CDV) which is well acknowledged and
applied in industry. Here, advanced coverage analysis meth-
ods (see e.g. [7, 8]) are applied. They analyse the coverage

of the already applied stimuli and derive further informa-
tion on which scenarios have not sufficiently been triggered
yet. Based on these information, constraint-based random
stimuli generation (see e.g. [9, 10, 11]) or Coverage-driven
Stimuli Generation (CDG, see e.g. [5, 6]) is utilized to gen-
erate dedicated stimuli ensuring a sufficient coverage.

However, guaranteeing a sufficient coverage obviously re-
lies on an appropriate definition of what is meant by suffi-
ciency. In general, a scenario may be triggered in several
fashions. Generating a set of stimuli, which triggers a con-
sidered scenario several times but always in the same fash-
ion, does not significantly improve the coverage. Instead, all
scenarios should be triggered in various fashions. Neverthe-
less thus far, information on how a scenario can be triggered
is hardly available in the existing CDV approaches. This is
discussed in more detail later in Section 2.

In this work, we aim for improving this. An approach is
presented, which aids coverage analysis of simulation-based
verification by providing explicit information about the pos-
sible fashions in which a scenario can be triggered. The
proposed approach exploits thereby the implicative power
of solvers for Boolean satisfiability (SAT). For a given DUV
and a scenario to be considered, an encoding is introduced
representing the question “Is there an assignment of c pri-
mary input and/or flip flop signals, which triggers the con-
sidered scenario?”. By determining all such assignments, all
cases triggering the scenario are derived. Since this may
lead to a significant number of cases, a dedicated blocking
scheme is introduced afterwards guiding the SAT solver so
that not all but representative cases are derived.

Experimental evaluations confirm the efficiency and use-
fulness of the proposed approach. For different DUVs and
the respectively given scenarios, representative cases to be
considered by coverage analysis are determined in negligi-
ble run-time. This provides crucial information which can
be utilized to improve coverage in simulation-based verifica-
tion.

The remainder of the paper is structured as follows: The
addressed problem is motivated and defined in the next sec-
tion. Afterwards, the general ideas of the proposed solution
are sketched in Section 3. Section 4 describes the precise
implementation, which is followed by Section 5 on possible
blocking schemes guiding the solver in order to determine
representative cases only. Finally, a summary of the con-
ducted experimental evaluations is provided in Section 6 and
conclusions are given in Section 7.



2. BACKGROUND
In this work, we are aiming for improving coverage in

simulation-based verification by proposing a method which
determines cases of a scenario to be considered. This section
motivates this goal and discusses the related work. After-
wards, a precise problem formulation is provided.

2.1 Motivation
Given a DUV, a set of scenarios is usually provided in

simulation-based verification. Each of them specifies certain
behaviour, in particular a hard-to-reach behavior, to be ver-
ified. In the following, the term scenario is formally defined
as:

Definition 1. A scenario Si (0 ≤ i < n) is a Boolean
function over variables from the set of DUV signals1. For
the specification of a scenario, a constraint is formulated
by using the typical HDL operators such as logic AND, logic
OR, arithmetic operators, or relational operators. In the fol-
lowing, scenarios and constraints are used interchangeably.
The set of scenarios is denoted by S = {S0, . . . , Sn−1}.

Afterwards, scenarios are expected to be triggered by sub-
sequently applying stimuli to the DUV. The responses of
these stimuli are compared to the expected results. By this,
the correctness of the DUV is validated. Each scenario is
thereby expected to become sufficiently triggered in order
to adequately verify the underlying behavior. The goal of
CDV is to ensure that such sufficiency can be achieved as
soon as possible, i.e. with as few stimuli as possible.

However, this goal obviously relies on an appropriate def-
inition of what is meant by sufficiency. Thus far, scenarios
are considered sufficiently covered, e.g. when they have been
triggered a certain amount of times (see also the discussion
of the related work in the next subsection). This is a weak
criterion as scenarios may be triggered in various fashions.
Generating a set of stimuli, which triggers a considered sce-
nario several times but always in the same fashion, does not
significantly improve the coverage. Hence, in this work we
are aiming for determining all possible fashions in which a
scenario can be triggered. For this purpose, we introduce
the term case of a scenario.

Definition 2. A case cSi
l (0 ≤ l < m) of the scenario Si

is a Boolean function over a (minimal) set of primary inputs
and flip flops including their assignments which propagate
through the DUV and trigger Si. In the following, the set of
cases of a scenario Si is denoted by CSi = {cSi

0 , . . . , cSi
m−1}.

The idea of cases is illustrated by the following example.

Example 1. Consider a simplified Memory Management
Unit (MMU) with the primary inputs re req (read request)
and mem ack (memory acknowledge) as well as the flip
flop state. A scenario Si = re issue is formulated in order
to monitor the issue of a memory read operation. According
to the specification, a read operation is issued if

1For sequential behavior, state signals may additionally be
considered which are processed by un-rolling the DUV the
respectively required number of times.

• the MMU is in state “idle” and a read request is pend-
ing,

• the MMU is in state “read” and a read request as well
as a memory acknowledge are pending, or

• the MMU is in state “write” and a read request as well
as a memory acknowledge are pending.

Hence, there exist three cases of Si:

1. cSi
0 :(state = idle) ∧ (re req = 1)

2. cSi
1 :(state = read) ∧ (re req = 1) ∧ (mem ack = 1)

3. cSi
2 :(state = write) ∧ (re req = 1) ∧ (mem ack = 1)

When proving the scenarios, engineers or the applied
CDV-environment are often not aware of all cases of a sce-
nario. Instead, they only focus on the targeted behavior (the
issue of a memory read operation in this case). Nevertheless
in order to sufficiently cover this scenario, all cases should
be considered.

However as discussed next, determining all cases of a sce-
nario is not obvious and has hardly been considered in cov-
erage analysis of simulation-based verification.

2.2 Related Work
The state-of-the-art CDV makes use of both, coverage

analysis and stimuli generation, in order to sufficiently ver-
ify a DUV. Coverage analysis allows engineers to focus on a
subset of scenarios with common properties (see e.g. [7]) and
to discover shorter and more meaningful hints for the gen-
eration of better stimuli (see e.g. [8]). By this, the tedious
analysis of a large set of scenarios is avoided and dedicated
stimuli are derived earlier. However since these methods
do not explicitly consider all cases of a scenario, the result-
ing hints neither pin-point to the missed cases nor provide
information e.g. on how to trigger them in the subsequent
simulations.

In constraint-based random stimuli generation (see e.g. [9,
10, 11]), constraints are formulated manually or randomly,
which are expected to address the cases of a scenario. But
since these cases are often not explicitly observable, the for-
mulation can be tedious and the quality of the constraints
strongly depends on the expertise of verification engineers.

In model-driven CDG (see e.g. [5]), methods are applied
which aim for fairly exploiting the external model. By this,
the cases of a scenario may be addressed by the resulting
stimuli. However, the computational cost is a major problem
in this field. Hence, researchers still focus on improving
the efficiency of the respective approaches (see e.g. [14, 15])
rather than explicitly considering the cases of a scenario.

Finally, data-driven CDG (see e.g. [6]) generates stimuli
by traversing the transition relationship. To date, such rela-
tionship is constructed (or trained) using machine learning
(see e.g. [12]). The effectiveness of them relies on the qual-
ity of the training samples. Since such samples are made of
data from the previous simulations, the quality of the rela-
tionship is hard to improve. Moreover, since the relationship
is gradually derived during CDV, it can not be guaranteed
that indeed all cases of a scenario are triggered.



2.3 Problem Formulation
The discussions from above motivate the explicit consid-

eration on cases of scenarios in order to improve coverage in
simulation-based verification. Overall, this

• enables coverage analysis tools to conduct a more pre-
cise evaluation on the sufficiency,

• facilitates stimuli generators to determine more dedi-
cated stimuli which aim for triggering a scenario through
specific, e.g. not covered, cases, and

• provides means to evaluate stimuli generation meth-
ods as well as evidences to convince engineers on a
simulation result.

Nevertheless, how to determine all cases of a given scenario
remains an unsolved problem. This problem is addressed
in this work. In the next section, the general ideas of the
proposed solution are presented.

3. GENERAL IDEAS
Cases represent possible fashions to trigger a scenario.

They are usually implicitly described in abstractions of the
DUV provided e.g. for Transaction Level Modeling (TLM)
or at the Register Transfer Level (RTL). In order to de-
termine these cases, formal methods particularly suited for
these abstractions can be utilized, e.g. Binary Decision Di-
agrams (BDDs) or solvers for Boolean satisfiability (SAT
solvers). In this work we consider the DUV being rep-
resented at the RTL and exploit the implicative power of
SAT solvers. Nevertheless, the proposed approach can also
be adapted to the other abstraction levels and/or solving
schemes.

Given the RTL description of a DUV and a scenario Si,
the general idea of our approach is to determine all cases
of Si by solving a sequence of decision problems. Each de-
cision problem asks whether there is an assignment of c sig-
nals (composed of primary inputs and/or flip flops) which
triggers Si. If such an assignment can be determined, it rep-
resents the first case cSi

0 according to Definition 2. In order
to determine the remaining ones, cSi

0 is blocked from further
consideration. If it can be proven that no (further) assign-
ment over c signals exists, the search continues with a c
increased by 1. By this, all cases of Si are determined. The
respective decision problems are solved using Boolean satis-
fiability, i.e. the decision problem is encoded as an proposi-
tional formula, which afterwards is passed to a SAT solver.

In order to explicitly consider only c primary inputs/flip
flops, a three-valued encoding with values from {0, 1, X}
is applied, i.e. not only the Boolean values 0 and 1, but
also X which specifies an observability don’t care are al-
lowed. Applying an X-value to a primary input/flip flop
possibly causes succeeding signals to assume the value X,
too. As obviously X-values cannot trigger the scenario, this
can be used in order to check whether a number of c pri-
mary inputs/flip flops with Boolean values already trigger
the scenario. Hence, an instance is created in which c pri-
mary inputs/flip flops are allowed to assume Boolean values,
while all remaining ones have to be set to X.

1

0X

sig sig '

ssig

=
sig,    otherwise

X,      if ssig = 0

Figure 1: Applied multiplexers

 Si 

1
0

1

sstate

x '

  sstate + sre_req + smem_ack=  c

state

re_req
1
0

mem_ack
1
0

x

x

re_req

mem_ack

'

'

state

sre_req

smem_ack DUV

Figure 2: Problem Structure of the MMU

Which primary inputs/flip flops are to assign a Boolean
value and which ones are to assign a X-value is to be deter-
mined by SAT solvers. In order to encode this, a multiplexer
structure as shown in Fig. 1 is applied for each primary in-
put/flip flop2. More precisely, each primary input/flip flop
(here, denoted by sig) is used as an input of the added mul-
tiplexer. The other multiplexer-input is set to the fixed
value X. Then, the value of the select-signal ssig decides
whether an arbitrary (Boolean) value or the observability
don’t care is assumed for this primary input/flip flop. By ad-
ditionally limiting the number of select-signals with value 1
to c, only assignments with exactly c Boolean primary in-
puts/flip flops are considered.

4. IMPLEMENTATION
Taking the general ideas sketched above, an approach

based on Boolean satisfiability results, which determines
all cases of a given scenario. In this section, the resulting
SAT encoding is described in detail. Afterwards, the overall
scheme of the proposed approach is presented.

4.1 Proposed SAT Encoding
The proposed approach relies on the encoding of a SAT

instance Φ representing the question“Is there an assignment
of c primary input and/or flip flop signals which triggers the
considered scenario Si?”. For this purpose, the respective
“ingredients” discussed above need to be encoded. Fig. 2
exemplarily illustrates them for the DUV from Example 1
realizing the MMU.

First, the DUV itself as well as the considered scenario Si

needs to be encoded. It is well known that, this can be done
in time and space linear in the size of the DUV [18]. This
leads to the sub-instances ΦDUV and ΦSi , whereby ΦDUV

2This structure is inspired from works such as [16, 17], where
a similar multiplexer-encoding is applied for the purpose of
debugging.



represents the DUV and ΦSi enforces that only assignments
are obtained which indeed trigger Si.

Then, the multiplexers as shown in Fig. 1 are added for
each primary input/flip flop. In the considered example, this
concerns re req and mem ack as well as state. Correspond-
ing encodings for the multiplexers are also well known [18].
This leads to the sub-instance ΦMUX .

Finally, the restriction on the number c of the considered
primary inputs/flip flops has to be incorporated. This de-
pends on the values of the respective select-signals ssig of
all the multiplexers. In fact, we need to enforce that ex-
actly c of those select-signals are set to 1 (ensuring a pri-
mary input/flip flop set to a Boolean value), while all re-
maining ones are set to 0 (leading to a primary input/flip
flop with an observability don’t care). That is, for all k
primary input/flip flop signals sig0, sig1, . . . , sigk, the con-
straint ssig0 + ssig1 + · · ·+ ssigk = c is added and has to be
satisfied. This is done using existing encodings for cardinal-
ity constraints [19].

The conjunction of all constraints eventually results in the
desired SAT instance, i.e.

Φ = ΦDUV ∧ ΦSi ∧ ΦMUX ∧ (

k∑
j=0

ssigj = c).

Example 2. Consider again the MMU with its scenario Si

from Example 1 and the respective illustration in Fig. 2. Ini-
tially, the value of c is set to 0, i.e. all primary inputs/flip
flops are enforced to assume an observability don’t care. Ob-
viously, this does not trigger Si and, hence, each SAT solver
proves this instance to be unsatisfiable.

The same happens when c is set to 1, i.e. even if one pri-
mary input/flip flop is allowed to contain a Boolean value.
This concurs with the disucssion from Example 1: The sce-
nario Si is only triggered if the state and at least the re req
signals have a certain (specified) value.

In fact, the first assignment satisfying all constraints for
this DUV results for c = 2. This leads to state = idle and
re req = 1 which is the first case cSi

0 triggering Si.

The resulting case is stored in a set CSi , i.e. after this first
iteration CSi = {cSi

0 }. However as we are interested in all
cases of the given scenario, the SAT solver is asked for fur-
ther assignments. For this purpose, we have to ensure that
the already obtained case is not determined again. This is
accomplished by excluding cSi

0 through a blocking constraint,
i.e. the SAT instance Φ is extended to

Φ = ΦDUV ∧ ΦSi ∧ ΦMUX ∧ (

k∑
j=0

ssigj = c) ∧ cSi
0 .

The extended SAT instance is then again passed to a SAT
solver.

Example 3. Consider again the MMU-example from above.
In order to determine further assignments and, by this, fur-
ther cases, the blocking constraint
cSi
0 = state = idle ∧ re req = 1 is added to the SAT in-

stance. Solving this new instance yields no further satisfying
assignments for c = 2. Hence, the value of c is increased
to 3. Here, two more satisfying assignments can be obtained

Algorithm 1: Scenario Case Generation

Input: DUV, Si

Output: CSi

c = 0 ;1

CSi = ∅ ;2

Φ = ΦDUV ∧ ΦSi ∧ ΦMUX3

∧ (
∑k

j=0 ssigj = c)
∧

cSi∈CSi c
Si ;

if solve (Φ) then4

cSi = derive from sat assmnt(Φ) ;5

CSi = CSi ∪ {cSi} ;6

go to Line 3 ;7

else8

if c < max then9

c++ ;10

go to Line 3 ;11

else12

return CSi ;13

from which the cases cSi
1 and cSi

2 are derived. Both are sub-
subsequently added to CSi . As no further assignments are
available and the total number of primary inputs/flip flops
has been reached by c, the whole process terminates. Even-
tually, all cases of the scenario Si have been obtained.

Taking all issues described above into account, the com-
plete SAT encoding for each iteration is composed of the en-
coding of the DUV, the encoding of the scenario, the encod-
ing of the multiplexers, the cardinality constraint restricting
the number c of the considered primary inputs/flip flops, and
the blocking constraints, i.e.

Φ = ΦDUV ∧ ΦSi ∧ ΦMUX ∧ (

k∑
j=0

ssigj = c) ∧
∧

cSi∈CSi

cSi .

4.2 Overall Flow
The proposed SAT encoding is iteratively applied in or-

der to derive all cases of a given scenario. The precise flow
is thereby provided in Algorithm 1. Given the DUV and
the scenario Si to be considered, first the variable c and the
set CSi are initialized with 0 and ∅, respectively (Lines 1-
2). Afterwards, the SAT instance Φ is created and solved
for the first time (Lines 3-4). If the instance is satisfiable, a
case cSi is derived from the satisfying assignment and added
to the set CSi (Lines 4-6). Afterwards, the process contin-
ues at Line 4, i.e. a further satisfying assignment is sought.
This process continues until no further assignments and, by
this, cases are determined, i.e. until Φ becomes unsatisfi-
able (Line 8). Then, it is checked whether c can further be
increased, i.e. if c < max (Line 9). The value of max is
thereby either the total number of primary inputs/flip flops
or a threshold provided by the designer3. If this is the case,
the algorithm continues with a c increased by one (Lines 10-
11). Otherwise, the algorithm terminates and returns the
obtained set CSi of cases of Si (Line 13).

3This is discussed in more detail in the next section.



 Si: addr < 0x00FF  

1
0

swe

x '

  swe + spc + sext =  c

pc
1
0

ext
1
0

x

x

pc

ext

'

'

we

spc

sext

we

addr

din

clock

dout

MEM

ain

1

DUV

Figure 3: Problem Structure of the ROM

5. REPRESENTATIVE CASES
The approach presented in the previous section leads to

the determination of all cases of a given scenario. However,
as illustrated by the next example often not all, but just a
set of representative cases are desired in practice.

Example 4. Consider a simple program memory unit
(i.e. a ROM) with the primary inputs we, pc, and ext. Typ-
ically, certain regions of a ROM are reserved for special op-
erations like interrupts. Hence, these regions are expected
to be checked by simulation-based verification which is why
a scenario Si=addr<0x00FF is considered. An illustration
of the corresponding SAT encoding is provided in Fig. 3.

Let’s assume that the region specified by the scenario is
accessed if

• A ROM-read operation is conducted (i.e. we = 0)
Then, addr is assigned with the address of the pc,
i.e. addr = pc. This leads to numerous cases of the
form (we = 0) ∧ (pc = 0x0000), . . . ,
(we = 0) ∧ (pc = 0x00FE).

• A ROM-write operation is conducted (i.e. we = 1)
Then, addr is assigned by the external address ext.
This leads to numerous cases of the form
(we = 1) ∧ (ext = 0x0000), . . . , (we = 1) ∧
(ext = 0x00FE).

Either way, this leads to a significant amount of cases –
way to much for an efficient coverage analysis. Instead, one
is interested in representative cases only, e.g. cases which
cover the fact that this scenario can be triggered either by
setting we = 0 and pc < 0x00FF or we = 1 and ext <
0x00FF .

A possible scheme to restrict the number of determined
cases is to simply lower the threshold max in Algorithm 1.
Then, depending on the heuristics of the SAT solver a fair
distribution of cases is determined or not.

Example 5. Consider again the DUV from Example 4.
Following Algorithm 1, the first case
cSi
0 = (we = 0) ∧ (pc = 0x0000) might result. In the next it-

eration, this case is blocked by adding the constraint cSi
0 .

Then, depending on the SAT solvers’ heuristics, e.g. either
(we = 0) ∧ (pc = 0x0001) or (we = 1) ∧ (ext = 0x0000) might
result as the second case cSi

1 . While the former one is just a

slightly changed variant of cSi
0 , the latter one shows an en-

tirely new fashion to trigger Si. By setting the value of max,
the designer can define the chances of determining represen-
tative cases. If max is set to the total maximum, all cases
and, by this, the best possible distribution is obtained. How-
ever, particularly for DUVs like the considered memory unit,
this might lead to an infeasible large number of cases. Hence,
a quality vs. efficiency trade-off has to be conducted.

As an alternative, more elaborated blocking schemes can
be applied in order to explicitly guide the SAT solver in de-
termining representative cases. For this purpose, strategies
proposed in [20] for constraint-based stimuli generation can
be applied. One possible scheme is exemplarily illustrated
next.

Example 6. Consider again the DUV from Example 4.
After a particular number of cases has been determined using
the simple blocking scheme from Algorithm 1, a brief analy-
sis on them is conducted. This may unveil that all cases de-
rived thus far are composed of the primary inputs we and pc
only. Hence, in order to increase the diversity of the deter-
mined solutions, an additional constraint swe = 0 ∨ spc = 0
might be added to the SAT instance. This forces the SAT
solver to determine an assignment where either of the corre-
sponding primary inputs assumes an observability don’t care
and, hence, is not part of a case. This would directly lead to
the derivation of a case involving ext.

Using more elaborated blocking schemes lead to a good
trade-off between the diversity of the obtained cases and
the effort required to determine them. Although those cases
provide no guarantee that the behavior is comprehensively
been triggered, they still lead to representative cases that
may improve the overall coverage of stimuli-based verifica-
tion. The trade-off between quality and efficiency has been
shown in our experimental evaluation which is summarized
next.

6. EXPERIMENTAL EVALUATION
The approach presented in the previous sections has been

implemented in C++. As SAT solver, we utilized
MiniSAT [21]. In order to evaluate the performance with
respect to both, efficiency and quality, we conducted sev-
eral experiments. In the following, we present the results
obtained by considering

• a Memory Management Unit (MMU), i.e. an interface
between a CPU and an external memory which man-
ages the respective data transactions, and

• an Arithmetic Logic Unit (ALU), i.e. a 128-bit mod-
ule which supports the standard logic and arithmetic
operations.

Both designs have previously been applied for the evaluation
of verification approaches (see e.g. [13]). For each bench-
mark, a suitable set of scenarios is considered,
e.g. READ access and WRITE access targeting on the read
and write operations of the MMU and ADD overflow and
ADD out targeting on certain behaviors of the addition op-
eration in the ALU (i.e. an overflow and the derivation of a



Table 1: Cases of Scenarios of the MMU

Simple Advanced
Scenarios |CSi | Time (s) |CSi | Time (s)

MMU idle 3 0.04 1 0.01

READ issue 3 0.03 1 0.01

WRITE issue 3 0.04 1 0.03

NO access 4 0.06 2 0.04

READ access 9 0.11 2 0.06

WRITE access 5 0.09 2 0.03

MEM data 0 5 0.09 2 0.06

MEM data 1 5 0.08 2 0.05

MEM data 2 13 0.16 2 0.04

TO idle 4 0.06 2 0.03

TO read 4 0.06 2 0.04

TO write 5 0.07 2 0.03

TO rw pend 5 0.06 2 0.04

RACK 3 0.01 2 0.01

WBUF full 0 5 0.09 2 0.06

WBUF full 1 5 0.09 2 0.06

WBUF full 2 7 0.08 2 0.04

WBUF full 3 5 0.08 2 0.06

|CSi |: Number of cases determined by the proposed
approach

specific value). Both benchmarks allow for a representative
case study including designs with scenarios inheriting a rel-
atively small set of cases (MMU) and a significantly large
set of cases (ALU). All experiments have been conducted
on a 64-bit AMD Athlon Dual Core machine with 4 GB of
memory running Linux.

6.1 Efficiency of Case Determination
In a first series of experiments, we evaluated the efficiency

of the proposed approach. For the evaluations, the thresh-
old max has been set to the total amount of primary inputs
and flip flops. Furthermore, the algorithm was terminated
after a set of 100 cases has been determined.

The results are summarized in Table 1 and Table 2 for the
MMU and the ALU, respectively. The first column (denoted
by Scenarios) gives the identifier of the respectively consid-
ered scenario. The remaining columns provide the results
obtained by the proposed approach, i.e. the number of cases
which actually have been determined by the proposed ap-
proach (denoted by |CSi |) as well as the run-time required
for that in CPU seconds (denoted by Time). We distinguish
thereby between the results obtained by applying the sim-
ple blocking scheme as discussed in Example 5 and the ones
derived by using the advanced blocking scheme as discussed
in Example 6.

The results clearly show the efficiency of the proposed ap-
proach. For both DUVs, the desired cases can be determined
in negligible runtime. The simple scheme works thereby as
a pure workhorse: All cases of the scenarios of the MMU
as well as the desired 100 cases of the scenarios of the ALU
are determined. However, as discussed in Section 5 some
of these cases only differ e.g. in their respective data inputs

Table 2: Cases of Scenarios of the ALU

Simple Advanced
Scenarios |CSi | Time (s) |CSi | Time (s)

ADD overflow 100 3.566 1 0.088

ADD out 100 5.514 1 0.072

ADC overflow 100 2.864 1 0.063

ADC out 100 4.919 1 0.087

SUB overflow 100 2.500 1 0.115

SUB out 100 7.726 1 0.136

SBC overflow 100 3.260 1 0.081

SBC out 100 4.041 1 0.093

SHR out 100 2.233 1 0.138

SHL out 100 2.160 1 0.088

ROR out 100 2.266 1 0.080

ROL out 100 2.234 1 0.104

|CSi |: Number of cases determined by the proposed
approach

and, hence, are not that helpful for coverage analysis. In
contrast, the advanced scheme is capable of detecting these
similarities and, hence, eventually returns a smaller set of
representative cases only. Either way, the results of both
schemes help to improve coverage in simulation-based veri-
fication by providing explicit information about the possible
fashions in which a scenario can be triggered.

6.2 Benefit of Case Determination
In order to illustrate the benefits of the information ob-

tained by the proposed approach, a second series of exper-
iments has been conducted. Here, we considered stimuli
generated for the MMU by the approach presented in [13].
This approach follows a coverage-driven stimuli generation
scheme as reviewed in Section 2.1, i.e. scenarios are consid-
ered to be sufficiently covered when they have been triggered
a certain amount of times (20 in this case). For the MMU,
this is accomplish after a total number of 120 stimuli have
been generated.

Having this set of stimuli, we evaluated how well they
trigger the respective cases determined by the approach pro-
posed in this work. Table 3 presents the respective numbers
for this purpose. The first two columns denote the scenar-
ios and the respective number of cases as determined in the
first series of experiments. The next two columns present the
number of stimuli which trigger the respective scenario and
how many cases are covered by those. As can clearly be seen,
the determined stimuli hardly provide a complete coverage
of the scenarios. Although all scenarios have been triggered
the given number of times, none of them got triggered by
all possible cases. Moreover, for scenarios like MMU idle,
WRITE issue, etc. always the same case got triggered.

Conclusions like those can only be drawn, if precise infor-
mation on the cases is available. The approach proposed in
this work is able of determining these information and, by
this, helps to improve coverage-driven stimuli generation.



Table 3: Distribution of Stimuli with respect to Cases

Scenarios |CSi | # |CSi
T |

MMU idle 3 20 1

READ issue 3 29 2

WRITE issue 3 20 1

NO access 4 20 1

READ access 9 60 6

WRITE access 5 40 4

MEM data 0 5 20 3

MEM data 1 5 20 1

MEM data 2 13 80 7

TO idle 4 20 1

TO read 4 20 2

TO write 5 40 4

TO rw pend 5 40 4

RACK 3 78 2

WBUF full 0 5 20 4

WBUF full 1 5 20 3

WBUF full 2 7 40 3

WBUF full 3 5 40 4

|CSi |: Number of cases of Si

#: Number of stimuli triggering the scenario
|CSi

T |: Number of triggered cases

7. CONCLUSION
In this work, we proposed an automatic approach for de-

termining all cases in which a scenario can be triggered. For
this purpose, the implicative power of solvers for Boolean
satisfiability has been utilized. Examples illustrated the ad-
vantages of the proposed method, while experimental eval-
uations confirmed its efficiency and benefits. The informa-
tion derived by the proposed approach is crucial in order
to improve coverage in simulation-based verification. In this
sense, this work represents a first step towards case determi-
nation. Future work will focus on improving the efficiency
and, hence, the applicabaility of the approach for more com-
plex circuitry.

Acknowledgments
This work was supported by the German Federal Ministry of
Education and Research (BMBF) within the project SPE-
CifIC under grant no. 01IW13001 as well as the German
Research Foundation (DFG) within a Reinhart Koselleck
project under grant no. DR 287/23-1.

8. REFERENCES
[1] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and

Y. Zhu, “Bounded model checking,” Advances in
Computers, vol. 58, pp. 118–149, 2003.

[2] D. Große, U. Kühne, and R. Drechsler, “Analyzing
functional coverage in bounded model checking,” IEEE
Trans. on CAD, vol. 27, no. 7, pp. 1305–1314, 2008.

[3] J. Bergeron, Writing Testbenches: Functional Verification
of HDL Models. Kluwer Academic Publishers, 2003.

[4] A. Piziali, Functional Verification Coverage Measurement
and Analysis. Springer, 2004.

[5] S. Ur and Y. Yadin, “Micro architecture coverage directed
generation of test programs,” in Design Automation Conf.,
1999, pp. 175–180.

[6] S. Fine and A. Ziv, “Coverage directed test generation for
functional verification using bayesian networks,” in Design
Automation Conf., 2003, pp. 286–291.

[7] S. Asaf, E. Marcus, and A. Ziv, “Defining coverage views to
improve functional coverage analysis,” in Design
Automation Conf., 2004, pp. 41–44.

[8] H. Azatchi, L. Fournier, E. Marcus, S. Ur, A. Ziv, and
K. Zohar, “Advanced analysis techniques for cross-product
coverage,” IEEE Trans. on Comp., vol. 55, no. 11, pp.
1367–1379, 2006.

[9] J. Yuan, C. Pixley, and A. Aziz, Constraint-based
Verification. Springer, 2006.

[10] Y. Naveh, M. Rimon, I. Jaeger, Y. Katz, M. Vinov,
E. Marcus, and G. Shurek, “Constraint-based random
stimuli generation for hardware verification,” AI Magazine,
vol. 28, no. 3, pp. 13–30, 2007.

[11] Y. Katz, M. Rimon, A. Ziv, and G. Shaked, “Learning
microarchitectural behavious to improve stimuli generation
quality,” in Design Automation Conf., 2011, pp. 848–853.

[12] C. Ioannides and K. Eder, “Coverage directed test
generation automated by machine learning - a review,”
ACM Trans. on Design Automation of Electronic Systems,
vol. 17, no. 1, pp. 7:1–7:21, 2012.

[13] S. Yang, R. Wille, D. Große, and R. Drechsler,
“Coverage-driven stimuli generation,” in EUROMICRO
Symp. on Digital System Design, 2012, pp. 525–528.

[14] M. Chen, X. Qin, and P. Mishra, “Efficient decision
ordering techniques for sat-based test generation,” in
Design, Automation and Test in Europe, 2010, pp. 490–495.

[15] M. Chen and P. Mishra, “Decision ordering based property
decomposition for functional test generation,” in Design,
Automation and Test in Europe, 2011, pp. 1–6.

[16] A. Sülflow, G. Fey, C. Braunstein, U. Kühne, and
R. Drechsler, “Increasing the accuracy of sat-based
debugging,” in Design, Automation and Test in Europe,
2009, pp. 1326–1331.

[17] G. Fey and R. Drechsler, “Efficient hierarchical system
debugging for property checking,” in Symposium on Design
and Diagnostics of Electronic Circuits and Systems, 2005,
pp. 41–46.

[18] G. Tseitin, “On the complexity of derivation in
propositional calculus,” in Studies in Constructive
Mathematics and Mathematical Logic, Part 2, 1968, pp.
115–125, (Reprinted in: J. Siekmann, G. Wrightson (Ed.),
Automation of Reasoning, Vol. 2, Springer, Berlin, 1983,
pp. 466-483.).

[19] N. Eén and N. Sörensson, “Translating pseudo-Boolean
constraints into SAT,” Journal on Satisfiability, Boolean
Modeling and Computation, vol. 2, pp. 1–26, 2006.

[20] R. Wille, D. Große, F. Haedicke, and R. Drechsler,
“SMT-based stimuli generation in the SystemC verification
library,” in Forum on Specification and Design Languages,
2009, pp. 1–6.

[21] N. Eén and N. Sörensson, “An extensible SAT solver,” in
Conference on Theory and Applications of Satisfiability
Testing, ser. LNCS, vol. 2919, 2004, pp. 502–518.


