
Move-To-Rear List Scheduling: a new scheduling
algorithm for providing QoS guarantees

John Bruno, Eran Gabber, Banu &den and Abraham Silberschatz
Bell Laboratories

600 Mountain Ave.
Murray Hill, NJ 07974

{ jbruno, eran, ozden, avi} @research. bell-labs.com

Abstract

In order to support multiple real-time applications on a sin-

gle platform, ,the operating system must provide Quality

of Service (&OS) guarantees so that the system resources

can be provisioned among applications to achieve desired

levels of predictable performance. The traditional QoS pa-

rameters include fairness, delay, and throughput. In this
paper we introduce a new QoS criterion called cumulative
service. The cumulative service criterion relates the total
service obtained by a process under a scheduling policy to
the ideal service that the process would have accumulated

by executing on each resource at a reserued rate. We say
that a scheuling policy provides a cumulative service guar-

antee if the performance of the real system differs from the
ideal system by at most a constant amount. A cumulative
service guarantee is vital for applications (e.g., a continous

media file service) that require multiple resources and de-

mand predictable aggregated throughput over aII these re-

sources. E.xisting scheduling algorithms that guarantee tra-

ditional QoS paramaters do not provide cumulative service
guarantees. We present a new scheduling algorithm called
Move-To-Rear List Scheduling which provides a cumulative

service guarantee as well as the traditional guarantees such

as fairness (proportional sharing) and bounded delay. The
complexity of MTR-LS is o(ln(n)) where n is the number
of processes.

1 Introduction

New multimediaapplications, which require support for
real-time processing, are pacing the demand for op-

erating system support for Quality of Service (QoS)

guarantees. The desire to support multiple real-time

Permission to mnlte digitnlhnrd copies of all or pars of this material for
~L%OII~I or cknssroom LIW is grmtcd without Ike provided IIXIL he copies
nre not tnnde or distributed for protit or conwcrcinl ndvnntnge, the copy-

right nolice, the tille of the publicnlion and its date appear, and notice is

given that copyright is by permissioll of the ACM, Inc. To copy otherwise.
to republish, to post on scnwx or to redistribute to lists, rcquircs specific
permission nndlor fee.

ACM Multinledin 97 ,%dt/~ ~f’~.d~i/@o/l USA
Copyrijj~t 1997 ACM 0-8373 I-99 I-219711 I ..fB.SO

applications on a single platform requires that the op-

erating system have the ability to provision the system

resources among applications in a manner that achieves
the desired levels of predictable performance. More-
over, computer networks are starting to provide QoS
guarantees with respect to packet delay and connec-

tion bandwidth. These &OS guarantees are of little use

if they cannot be extended to the endpoint applications

via operating system support for related QoS parame-
ters. Current general-purpose multiprogrammed oper-

ating systems do not provide &OS guarantees since the
performance of a single application is, in part, deter-

mined by the overall load on system. As a result many

users prefer to use stand-alone systems with limited de-
pendency on shared servers to achieve some semblance
of &OS by indirectly controlling the system workload.

Real-time operating systems are capable of delivering

performance guarantees such as delay bounds, but re-
quire that applications be modified to take advantage

of the real-time features. Our goal is to provide QoS
guarantees in the context of a general-purpose multi-
programmed OS, without modification to the applica-

tions, by giving the user the option to provision system

resources among applications in order to achieve the

desired performance levels.
In this paper we introduce a new QoS parameter,

which we call the Cumulatr~ve Service. Guaranteeing

cumulative service is vital for applications that require

multiple resources and demand a predictable aggre-
gate throughput over these resources. We present a
new scheduling algorithm, called Move-To-Rear List
Scheduling (MTR-LS), f or allocating operating system

resources, such as CPUs, disks, and network interfaces,

among competing processes. We show that MTR-LS
provides strict guarantees regarding the cumulative ser-

vice obtained by a process. MTR-LS also provides
guarantees for more traditional QoS parameters such

as fairness and delay.
Our results are applicable to a general model of pro-

63

http://crossmark.crossref.org/dialog/?doi=10.1145%2F266180.266336&domain=pdf&date_stamp=1997-11-01

cesses. However, for ease of exposition we define a pror
cess to be a sequence of phases (Section 3) where each
phase consists of a requirement from a parti$jr sys-
tem server. It is assumed that neither the phase re-
quirements nor the exact sequence of phases are known
ahead of time. Our model allows for new processes, to
dynamically enter the system and for processes to de-
part the system. Processes specify their &OS require-
ments by provichng a “service fraction” for each system
resource. Admission control consists of ensuring” ‘that
the service fractions of new processes along with the
service fractions of processes already in the system do
not exceed certain prescribed limits. Admission control
is necessary if we are to provide delay and cumulative
service guarantees that are independent of the number
of pr&sses in the system. ,’ ’ ”

I

Another feature of our work is that it deals with sys-
tem services that have limited preemptability. For ex-
ample, disk I/O occurs iii multiples of a basid block size
and once‘s transfer is begun, the next scheduling event
can not o$u before the transfer ‘i‘s ,complete. How-
ever, the granularity‘for CPU siheduling is taken to be
arbitrary.

I/

Our cumulabive service &OS parameter is new., The
cumulative service criterion:compares the total service
a&umulation of a process at ‘a&i&r to an ideal service
a&rmulation based on the service fraction of the pro-
cess ‘for this’ server (we Wil5’use, resources and $ervers,
interchang&bly). We say that’astheduling policy guar-
antees cumulative service ‘if thg?total service~obtained
over any time interval does not fall behihd the ideal
service accumulation, based on the service fraction, by
more than a enstant amount. In our ideal system”we
assume that a processes gets its spe&fic servi& frac-
tions of’each of the resourc’es without interference from ’
other processes. This corresponds to a pro&ssor shar-
ing model in which the servers are not overbooked, i.e. ’
the sum of the service fractions at each server is not’
greater than one. Recall that we model processes as a
sequence of phases where each phase corresponds to a
service requirement from a particular server. In spite of
the fact that the delay incurred by a phase of a p&e&
at one server is propagated tosubsequent phases of the
process at ‘the same server and other servers, we will
show that the MTR-LS, pdlicy provides a cumulative
service guarantee over every interval of time.

The &OS parameters supported by many existing
scheduling algorithms include proportional sharing of
the CPU among competing processes and delay bound
guarantees [S, 11, 5, lo]. However, they do not support
a dumulative service guarantee since neither fairness
nor delay bounds are sufficient to provide a cumulative
service guarantee. Informally, guaranteed cumulative
service means that the scheduling delays enzountered
by a process on various resources do not accumulate

.qver the lifetime of the process.

’

-The cumulative service criterion is essential for pro-
viding aggregate service for applications that require
the sequential use of multiple resources such <as CPU
and disk. It is especially vital for such applications that
act as services. A good example is a continuous media
(ClvI),,file service, which shares system resources with
other applications or services, that itself is in a position
to provide certain &OS guarantees to other applications.
A typical implementation of a streaming CM file ser-
vice assumes that it can sustain a certain amount of
disk I/O throughput. However, it also needs CPU for
tasks such as initiating disk requests, and managing its
buffers, etc.
Example 1: To make our point, let us consider the fol-
lowing overly simplified CM server: 1) An entire disk
drive with an effective bandwidth of $0 Mbps and half
of the CPU cycles are reserved for this service. 2) In
between,every 1 MB,of disk I/C, the CM server requires
1 ms of real CPU time to dispatch disk requests and
manage,the buffers. Since it reserved half of the CPU,
it expects that the execution time for each CPU phase
will take at most 2 ms, Similarly, since it reserved the
entire disk, it expects that each disk phase (i.e., 1 MB
disk I/O) will take 200 ms. Thus, the CM server ex-
pects a disk I/O throughput of lMB/202ms= 39 Mbps.
The CPU delay bound provided by existing algorithms
[ll, 5,101 depends upon, among other things, the gran-
ularity of schecluling quanta. The granularity cannot be
too small for otherwise the context switching overhead
would become excessive. It would not be unusual to
have a CPU delay bound of 75 ms, That is, the CPU
scheduler promises that each CPU phase of length t will
complete within t/0.5 + 75ms. The t/0.5 results from
reserving half of the CPU and. the 75 ms is due to an
average delay of 75 ms for other processes to get. their
timqslice. Suppose that each CPU phase of the CM
server waits 75 ms for the other, processes contending
for CPU before it executes for 1 ms on CPU, A 76 ms
delay for 1 ms CPU execution is still within the de-
lay bound promised by the CPU scheduler. However,
the disk I/O throughput of the CM server will degrade
to lMB/276ms = 28 Mbpe! This is 30% less than
expected. Under these circumstances, the CM server
could not support 26 streaming MPEG-1 sessions, each
requiring a 1.5 Mbps throughput (26 x 1.5 Mbps = 39
Mbps). Cl

The main contributions of this work are the introduc-
tion of the cumulative service criterion as an important
QoS parameter for OS scheduling and the MTR-LS pol-

icy which provides a cumulative service guarantee and
guarantees for other QoS parameters including fairness
(proportional sharing) and delay bounds.

The remainder of the paper is organized as follows.
QoS parameters and theoretical developments in terms

64

of deterministic performance bounds are well developed
in the link scheduling literature. In the next section we
review some of the relevant aspects of link scheduling
since they are closely related (both in terms of similar-
ities and differences) to their counterparts in operating
systems. Following this, we discuss the &OS parameters
that play a role in our work. In Section 3 we introduce
our system and process models and definitions of QoS
parameters. in Section 4, we present a new scheduling
policy, called Move-To-Rear List Scheduling, that is fair
and provides a cumulative service guarantee. Finally,
Section 5 summarizes our work.

2 Background and Relaied

Work

2.1 Link Scheduling

The QoS issue has received much attention in the
packet scheduling literature [2,13,4,12,6] where pack-
ets are identified with “flows” and there is a, concep-
tual, queue per flow or collection of flows. The corre-
spondence between a sequence of packets and a flow
is application-dependent, but we assume that we can
identify packets belonging to a particular flow. The

objective for the link scheduler is to determine the or-
der in which packets are scheduled for transmission on
the output link so as to achieve various performance
measures. We review some of the QoS parameters for
output link scheduling and contrast these with QoS
support for processes in the operating system context
where there are important similarities and differences.

We assume that when a packet arrives at a node a
routing table lookup is performed to determine the ap-
propriate output link and a (possibly concurrent) flow
identification lookup is done to determine the appropri-
ate queue. Although there is a delay associated with
these steps, they tend to be uniform over the packets.
We take the arrival of a packet at a queue as an in-
stantaneous event corresponding to the placement of a
record, which gives the specifics of the packet data, in
the appropriate queue data structure.

There are roughly two kinds of packet sources, open-
loop and closed-loop. For an open-loop packet source
the times-of-arrival of packets are not affected by the
delay experienced by packets that have already arrived.
A closed-loop packet source is one for which the times-
of-arrival may be affected by the delays experienced by
packets that have already arrived. Open-loop sources
include unacknowledged transmission of UDP packet
streams. Closed loop sources include TCP/IP flows. I

The QoS parameters in link scheduling include de-
lay, delay jitter, throughput, and fairness. Packet delay
can be measuredein a number of ways. The delay can
be measured from the time that the packet arrives at

its queue until it is transmitted over the link. This
measure of delay depends on the behavior of the traffic
source and the scheduling policy. Another possibility
is to measure therdelay of the packet from the time
it reaches the head of its queue until it is transmitted
over the output link. This measure of delay does not
depend on the characteristics of the traffic source. Yet
another possibility is to assume that each flow is pro-
vided a certain bandwidth reservation and calculate the
departure time of each packet based on the assumption
that all the packets in the flow are serviced at the re-
served bandwidth rate. The delay of a packet is the
difference between the packet’s actual departure time
and its calculated departure time (may be negative).
This delay measures the real system’s ability to match
the performance of an idealized system.

Delay jitter is a measure of the variability of packet
delay. The minimization of delay jitter is important
in situations where the receiver buffers packets from
a flow and plays them out at a constant rate. The
more variable the jitter, the larger the buffer needed to
regulate the flow for smooth playout.

Throughput is a measure of the rate at which the data
from a flow is transmitted over the link. Determination
of the throughput of a flow depends on the time scale
used to measure the transmission rate. For example,
the instantaneous transmission rate of data in a flow
has two possible values, 0 and the link transmission rate
(i.e., either packets from the flow are being transmitted
on the link or not). The measurement of throughput
can be tricky since we are interested in an average of
the instantaneous transmission rate over some interval
of time. A flow is said to be backlogged whenever the
corresponding queue contains packets to be transmitted
on link. The evaluation of the average transmission rate
for a flow is usually taken over a period of time during
which the flow is continuously backlogged and is given
as the number of bits transmitted over an arbitrary in-
terval during the busy period. Again, if this period is
too small, then we could see large fluctuations in the
transmission rate. Over longer periods of time, includ-
ing several periods during which a flow is backlogged,
the throughput for a “stable” flow will match the aver-
age arrival rate of the flow (the definition of stability).
Otherwise, we are in a situation in which the queue for
a particular flow can grow without bound and buffer
overflow becomes the primary concern. To ensure sta-
bility and also to meaningfully discuss packet delay (the
interval of time from which the packet enters the system
until-it is transmitted), one has to make assumptions
regarding the nature of the packet sources such as their
average and peak bandwidths. Often the assumptions
regarding source characteristics are enforced (shaped)
by an appropriate regulator such as the, so called, leaky
bucket regulator which effectively constrains the aver-

65

age bandwidth and the “burstiness” of the traffic:
Fairness is a measure of how,close the server comes to

Generalized Processor Sharing (GPS) [9] when serving
simultaneously backlogged flows! GPS is an idealized
model in which the capacity of the link is assumed to be
infinitely divisible and can be shared among an num-
ber of flows simultaneously as long as the capacity, of
the link is not. exceeded. The primary’purpose of the
fairness criterion is to isolate, the behavior of one flow
from another.

With any &OS support, it is necessary to have a
way of prescribing the level of support that is required.
Much of the research in link scheduling assumes that
the &OS requirement for each flow is specified by a sin-
gle number having the interpretation of a (dimension-
less) weight or a rate. Suppose flow i has an associated
weight given by a positive real number & and C denotes
the capacity of the output link in bits per second (bps).
Then the~usual interpretation of the &‘s,is that, ideally,
whenever a flow i is backlogged it will transmit packets
at an average rate which is no lessthan (&/Cj dj)C
(bps). The determination& QoS parameters, such as
delay, delay jitter,Gthroughput and fairness, does not
directly follow from the weights of backlogged flows
but depends on the total, weight of backlogged flows,
and on the specific algorithm used by the link sched-
uler. This indirect way of specifying QoS requirements
makes admission control diffic.ult.. Also, using weights
to guarantee delay bounds results in underutilization, \

The delay and delay jitter requirements can be some-
what decoupled, from the throughput requirements by
using regulators (shapers) which release packets to the
link scheduler at the appropriate times. Such regulator-
scheduler combinations can result in policies that may
not transmit packets even when packets are available
for transmission. Delay-earliest due date [3] provides
delay bounds independent of the bandwidth guaranteed
to a flow, however, at the cost of reserving bandwidth
at the peak rate:

2.2 Operating System SchFduling

We next turn to QoS parameters in operating systems
(OS). Unlike link scheduling, in the operating system
context there are multiple resources, such as the CPU,
disks, and network interfaces, that are shared among
competing processes. Each of, the servers (resources)
is capable of delivering “work” at a certain rate. For
e,xample, a CPU executes instructions at 100 Million
Instructions Per Second ,(MIPS); a disk can transfer a
data block (512 bytes) in 12 milliseconds, and a network
interface can deliver bits on its output link at 10 Million
bits per second (Mbps).

Processes in the OS context roughly correspond to
flows and are modeled as a sequence of phases where
each phase consists of the name of a server and the

corresponding amount of “work.” For example, (CPU,
100 million instructions) is a phase that specilles the
CPU ‘as the server and the work which consists of es-
ecuting 100 million instructions. The amount of time
taken by the phase depends on the rating of the CPU
server-a 100 MIPS CPU will take 1 second to complete
this phase. At the completion of a phase, the process
will move to the next phase which consists of a new
server and work requirement. In the actual system, the
phases (server and work requirements) are not known
in advance. ‘1.

Since we model processes as a sequence of phases,
any delay incurred while completing a phase will be
propagated to all subsequent phases, Thus we think
of a’process as a “closed-loop” source. Conversely, if a
process gains a time advantage by getting extra service,
this advantage is also passed on to subsequent phases.
One could also consider “open-loop” processes in which
the time-of-arrival of a phase is independent of previous
phases. ‘For example, if the phases of a process were
generated by’interrupts, it is possible for a new ph‘ase to
arrive before thesprevious phase~completes its service.
We do not consider ‘Lopen-loop” processes in this paper,

.aIn the link scheduling environment the scheduler
transmits one packet-at-a-time over the link. We as-
sume in the OS context that each server has a preemp
tion interval which specifies the temporal boundaries
where preemptions may occur. This means that the
“granularity” of sharing is determined by the ‘proper-
ties of the server and the scheduler.

In order to specify &OS requirements, we associate
with each~process and each server a reservation, called
a service fraction, which&gives the amount of the server
required by the process. For example, suppose a pro-
cess has a,.25 reservation on the CPU. In the case of
a 1OOMIPS CPU,, ‘this means that the process needs
at least a 25MIPS CPU to meet its performance ob-
jectives. The weights, &, defined in the section on
link scheduling determine service fractions as ratios
&/ cj dj. We choose to use service fractions since they
reflect, inlabsolute terms, the service requirement of the
process and thereby simplify admission control.

The performance objectivk most readily specified by
reservations is a cumulative service guarantee, which
means a guarantee that the real system will keep pace
with an ideal execution based on the server reserva-
tions. For example, suppose a process reserves 20% of
the CPIJand 50% of the disk I/O subsystem and sup
pose the CPU is rated at IO0 MIPS and the disk I/O
subsystem can do single block (4 Kbytes) transfer in 12
milliseconds! According to the reservation, this process
should&e& at least a 20 MIPS CPU and a disk I/O
subsystem capable of transferring a single block in 24
milliseconds. Suppose ‘the process alternates between
CPU and disk I/O phases where each CPU phase re-

: I

66

quires the execution of 4 million instructions and each
disk I/O phase consists of 6 random block transfers.
Accordingly, the process should take no more than 200
ms for each CPU phase and 144 ms for each disk I/O
phase regardless of the number of process phases and
competing processes.

Other QoS parameters for processes can be defined.
If we were to associate the phases of a process with
the packets of a flow we obtain the following notion of
delay. The delay of a phase at a particular server is the
cumulative time spent by the phase either waiting for
the server or running on the corresponding server. It
is not difficult to see that guaranteeing delay bounds
(i.e., bounding the time it takes to complete a phase) is
not sufficient to provide a cumulative service guarantee.
This is because the phase delays can accumulate (in
the closed-loop case) over multiple phase3 leading to
an unbounded discrepancy between the actual and the
ideal cumulative service. For example, phase delays
on one server may reduce the the service rate of other
servers in a closed loop system.

We also define the notion of fairness which measures
the ability of the system to ensure that processes simul-
taneously contending for the same server will “share”
that server in proportion to their reservations. Fair-
ness in the OS context, sometimes referred to as pro-
portional sharing [ll, 5, lo], is problematic since the
cost of providing fairness (context switching) increases
as the granularity of server sharing decreases. It is
also not clear that fine-grain sharing is always desirable
in a general-purpose operating system, particularly for
“batch” processes where coarse-grain sharing is accept-
able and substantially reduces the context switching
overhead.

Recently proposed scheduling algorithms which are
most closely related to our work are: Stride schedul-
ing [ll], which attempts to provide each process with
a share of the server in proportion to its corresponding
weight (number of “tickets”); start-time fair queuing
[5], which is based on the corresponding link schedul-
ing algorithm [6]; and earliest eligible virtual deadline
first [lo], which p rovides each process with a share of
the server in proportion to its corresponding weight;
and the CPU scheduling policy presented in [8], which
provides each process with its reserved share. These
algorithms were not designed with our cumulative ser-
vice measure in mind, so it is not surprising that the
properties they do enjoy are not sufficient to provide a
cumulative service guarantee.

In the next section we introduce our system and pro-
cess models and give formal definitions of the terms
used in the remainder of this paper.

3 Servers, Processes, and QoS
Parameters

. A system consists of a collection, S, of servers (e.g.,
CPU, disk, and network). Each server s E S is charac-
terized by a service rate B, and a preemption interval,
At, 2 0. If w is an amount of work to be accomplished
by server s, then the time to complete w on server s is
w/B,. When a “process” is run on a server with a pos-
itive preemption interval At,, the running time must
be an integral multiple of At, and the process can only
be preempted at integral multiples of.At,. The limit-
ing case of At, = 0 corresponds to a server for which
running times are arbitrary and preemptions are not
restricted.

A phase is a server-duration pair, (s, t), where s E S
and t is the amount of time it would take server s to
complete the phase running alone on the server. An
equivalent definition of a phase (s,t) is a server-work
pair, (s, w), where t = w/B,.

A process is a sequence’ (finite or infinite) of phases,

P = (Sl,tl),(Sz,t2),-* ** The phases of a process are
not known in advance. Initially, the only thing we
know about a process is the identity of the first server,
i.e., P = (~1, .). By running P on server sr we will
eventually learn tl, the duration of the first phase,
and ss, the server required for the second phase, i.e.,

P = (Ml),(s2,-). BY
running P on server ss we even-

- tually discover tz and the server required for the third
phase, viz., P = (sl, tl), (ss,tz), (ss, e), and so on.

Let 0 5 al 5 a2 < . . . denote the sequence of times
that processes 5, P2, . . . enter the system. The depar-
ture time of a process depends upon the process and
the scheduling discipline. We assume that each process
has a (possibly infinite) departure time. A process Pi
is active at time t if ai 5 t and the departure time of
process Pi is greater that t. Let d(t) denote the set of
indices of active processes at time t.

We assume that each process Pi, before being admit-
ted to the system, specifies a service fraction for each
server s, namely, 0 _< (Ysj.5 1. We require for all s E S

that CjEA(t)asi - < 1. That is, the sum of the service
fractions of all active proce&es with respect to server s
does not exceed 1.

Even though we are interested in the performance
of our system over all servers it is sufficient to study
the performance at a single server. From the point of
view .of server s, a process is denoted by a sequence
of phases that alternate between server s and else-
where, i.e., P = (s, tl), (elsewhere, t2), (s, ta), . . . or
P = (elsewhere,t~), (s,tp), (elsewhere, t3), (s, t4),
The “elsewhere” server represents the phases of pro-
cesses at servers other than s.

1 Our results can be extended to a more general process model

based on partial orders.

67

A process arrives at server-s if it enters the system at
server s or it requires server s after completing a phase
at the elsewhere server. The process arrival times at
server s depend upon the duration of the phases and
the scheduling policies used at, the various servers. A
process leaves server s ,whenever it completes a phase
at server s. When a process leaves server s it will either
eventually depart the system or arrive at server s for,
another phase.

Since we are considering the performance at a single;
server, say s, we can drop references to server s since it
is understood. Therefore B denotes the service rate of
the’server, At denotes the preemption interval of the
server, and oj denotes the service fraction of process
Pj-

When a process is run on a server it is assigned a
maximum running time which we call a quantum. The
scheduling algorithm is not required to use a fixed size
quantum. Scheduling decisions are made at points in-
time called decision epochs which correspond to the ex-
piration of the current quantum, the completion of the
phase of the current running process, or the end of the
current preemption interval following the arrival of b
process at the server. In the latter case, if the arrival-of,
a process occurs at time, r while the server is in’ the
midst of a preemption interval, [t,t + At], then the
scheduler must wait until t + At, that is, the decision
epoch occurs at t + At. At each decision ep!och, the
current process can be preempted and the the sihed-’
uler can assign a new process to the server.

Realizable scheduling policies require that we run at’
most one process at a time on the server. This means
that if there is more than one process waiting to ru[n on
the server, then one or both of the processes will experi-
ence (queuing) delay. Although we do not show the de-
pendency of the following quantities on the scheduling
policy, it is important to keep this dependency in mind.
Let [T, t] be an arbitrary real time interval. We define
wj(T, t) and Sj(T, t) to be the cumulative re$ waitin$’
timk (blocked by other processes running on the server)
and real service time (running on the server), respec-’
tively, obtained by process Pj in the interval [T, t]. For,
t 3 ej we define ‘wj (t) = wj (sj, t) and sj (t) = sj (aj, t).

Let rj(r, t) = wj(T, t) + sj(T,t) and for t > sj de-
fine Pi(t) = Wj(oj, t) + Sj(oj, t). By definition, rj(t) is
the total time spent by process Pj at the server in the
interval [T, t]

The quantities just defined are illustrated in Figure 1.
The heavy line denotes ‘the accumulation of waiting
time and service time of a process at the server. The
slope of this curve is either 1 or 0 depending on whether
the process is at the server or elsewhere, respectively.
From the figure we see that the process arrives at the
server at time 4 and leaves at time 17 for elsewhere.
The process arrives again at time 23. The lower lighter,

68

curve, labeled with 1, represents the service obtained by
the process (an explanation for the curve labeled with
l/2 is coming). This curve has slope 1 or 0 depending
on whether the process is being served or waiting, re
spectively. Since the process leaves at time 17, it means
that the service requirement of the phase is 6. Intervals
on the time axis are labeled with,e, w, or s, depending
on whether the process is elsewhere, waiting, or be-
ing served, respectively. We can read off the following
quantities from the figure: r(4,17) = 13; w(4,17) = 7;
s(4,17) = 6; r(12,23) = 5; w(12,, 23) = 2; s(12,23) = 3.

To evaluate the performance of our scheduling algo-
rithm, we introduce a processor sharing model in which
the server can run any number of processes simultane-
ously as long as the sum of their service fractions does
not exceed one. In the processor sharing model, prod
cesses do not block one another since they can run si-
multaneously on the server, albeit at a reduced rate.
We refer to the service time in the processor sharing
model as vi&al service time.

A process with service fraction cr that receives t units
of real service time would take t/a virtual service time
units to obtain the same amount of service under pro-
cessor sharing running at rate 01. Conversely, a phase
taking v units of virtual service time to complete under
the processor sharing model requires cy * u real service
time on the real server.

Let vj (T, t) denote the cumulative virtual service time
obtained by .process >Pj in the interval [r, t]. For t >
uj we define vj(t) = uj(sj,t). Note that ojuj(r,t) =
sj (T, t) and ojvj (t) = sj (t) for t 3 sj.

/

Figure 1: Example of Cumulative Service.

In Figure 1 the curve label l/2 denotes the virtual
service time accrued by a process with a service frac-
tion equal to l/2. Accordingly, the slope of this curve
is either 2 or 0 depending on whether the process is
being served or not, respectively. Therefore the phase

of duration G (from time 4 to 17) requires 12 units of
virtual service time to complete.
Definition 1: We say that a scheduling policy provides
a cumulative service guarantee if there exists a constant
Ii such that for all processes F’j and r 5 t, we have
Vj(TI2) > rj(r,t) -IiT. Cl

From Figure 1 we have: u(4,9) = 0; r(4,9) = 5, and
v(9,14) = 6; r(9,14) = 5, and v(4,23) = 12; r(4,23) =
13. Considering the portion of the process illustrated
in Figure 1, we conclude that v(T,~) 3 r(r.,t) -5 for all
r ,< t and r, t E [O, 271.

Another interpretation of the cumulative service
guarantee is that the total real time taken to provide
a process with service (including the waiting time and
the service time) is no more than a constant amount of
time more than the virtual service time required for an
equivalent amount of real service.

Although the definition of cumulative service guar-
antee is in terms of a single server, it implies a “global”
cumulative service guarantee (using cumulative virtual
service time &nd cumulative reaI time over all servers)
in the multi-server case where there is a constant num-
ber of servers.
Example 2: Consider a process P = (sl,tl), (sz, tz),

(w3), (32,t4), * * ** that requires servers s1 and ~2, and
reserves c~ and p fractions of s1 and sg, respectively.
Also, let 1il and K2 be the cumulative service bound
on servers sl and ~2, respectively. In a system that
guarantees cumulative service, the total real time for
the servers to provide 2i ” 1 1

c tzi-1+ tai c
id i=l

time units of service, (waiting plus service time) is
bounded by

”
1 =

n 1
-.

c t2i-1+
CY ~-i=,

c
tzi + K1 + r-2 .

i=l

This is in contrast to other scheduling policies (e.g.,
[8, 11,5, lo]) that provide delay bounds on a per phase
basis. In this case the discrepancy between the cu-
mulative service obtained and the time to acquire this
service can grow with n, the number of phases. 0
Definition 2: We say that a scheduling policy provides
delay bound if, for any process Pi, the real waiting time
plus service time to complete a phase of duration d
takes at most a constant amount more than d/aj. m

A “fair” scheduling policy ensures that multiple pro-
cesses requiring the same server share the server in pro-
portion to their reservations, independent of their pre-
vious usage of the resource [2]. That is, a fair schedul-
ing policy does not penalize a process that utilized an
idle server beyond its reservation when other processes
become active on that server.

Definition 3: A scheduling policy is fair if there exists
a constant D such that for any time interval [r, t] during
which a pair of processes, Pi and Pi, both continuously
require the server, we have Isi(r, t)/cxi - sj (7; t)/aj 1 _<
D. cl

Processor sharing provides ideal fairness [9]. How-
ever, processor sharing cannot be implemented and
thus a host of scheduling policies that aim to provide
bounded fairness and/or delay properties have been de-
vised for link scheduling [2, 13, 4, 51. As we mentioned
earlier, the cost of providing fine-grain fairness (propor-
tional sharing [ll, 5, lo]) is high and not always justi-
fied in the OS context. However, fairness is important
when services are overloaded and it is necessary for all
impacted processes to make steady, and proportional,
progress.

4 Move-To-Rear List Schedul-
ing

In this section we present a new scheduling policy,
called Move-To-Rear List Scheduling, which provides a
cumulative service guarantee, is fair, and has bounded
delay. In the following subsection we present the MTR-
LS policy followed by a subsection which contains for-
mal statements and proofs of the properties of the
MRT-LS policy.

4.1 The Move-To-Rear List Scheduling
Policy

Central to the MTR-LS policy is an ordered list, ,C, of
the processes that are active at any time. We say a
process on the list .C is runnable if it is not elsewhere.
The MTR-LS policy services the runnable processes in
the order that they appear on the list 13.

The MTR-LS policy makes use of a constant T, which
we call the virtual time quantum. Associated with each
process Pj on the list .C is a value leftj. The initial
value of leftj is ajT. When processes are serviced,
they run for a quantum which is bounded by the value
in leftj. At the end of the service period, leftj is decre-
mented by the actual amount of service time that the
process obtained and if the result is zero, then Pj is
moved to the rear of the list L and the value of leftj
is reset to ajT. The value o.jT is the real time quan-
tum. A process that advances by OjT real service time,
advances by T virtual service time.

The service obtained by a process can be less than the
allocated quantum due to the termination of a phase or
the arrival of a process. In the former case, the phase
terminates, the process goes elsewhere, and the first
runnable process on .C is serviced next. In the latter
case, if the arriving process is ahead of the current run-

69

ping process in the list .C, then the running process is
preempted (as soon as the preemption interval permits)
and the first runnable process on C is serviced nest:

The description of the MTR-LS policy depends on -a
few mechanisms which we give next. Whenever a new
process, Pj, enters the system ,it is added to the -end
of ,C and leftj is set equal to ajT where T is a,sys-
tern constant. As long as the process is in the system,
whether it is at the server or elsewhere, it appears in
the list t. Whenever a process departs the system it is
removed from C.

Whenever all the processes in ,C are elsewhere the
server is idle. Otherwise the server is running a process
and the state is busy. Decision epochs correspond, to
the expiration of the current quantum, the completion
of the phase of the current running process, or the end
of the current preemption interval following the arrival
of a process at the server. In the latter case, if the
arrival of a process occurs at time 7 while the server is
in the midst:of a preemption interval, [t, t + At], then
the scheduler must wait until t+At, that is, the decision
epoch occurs at t + At.

The command wait causes the scheduler to -“sleep”
until the next decision epoch. Whenever a process
starts running, a timer, called elapsed, is started” from
zero. elapsed can be used to determine the service
obtained by the currently running process.

Runa-F’rocess
* !

if there is no runnable process on the list .C then
state = idle;

else a_
Let Pj be the first runnable process r

on the list .C; ‘.
‘

state = busy;
.;

run Pj. on the server for at most
leftj time units (current quantum)
and start elapsed timer;

wait; iI

Figure 2: Routine Run-a-Process.

.The routine RunaJ?roce& shown ‘in, Figure 2, is
called to select the next process’to run on the server.
Run-a_Process looks for the first runnable process on
the list L. If the list .C does not contain a runnable pro-
cess then the server state is set to idle and the scheduler
waits for the next decision epoch. Otherwise the,first
runnable process on L is selected and run for a quan-
tum of at most lefti time’units: The server state is set
to busy and the scheduler waits for the next decision
epoch. The variable elapsed will record the elapsed
time to the next decision epoch.

The Move-To-Rear List ‘Scheduling policy is shown
in Figure 3. The MTR-LS policy is called at each de-

70

cision epoch. It determines if a process was running in
the interval leading up to this decision epoch by check-
ing to see if the state is busy. If so, it decrements the
,corresponding lefti by the elapsed time since the pre-
vious decision epoch. If the resulting value of,leftj is
zero the corresponding process is moved to the end of
the list .C and leftj is reset to &jT.

Under the MTR-LS policy there are two ways,for a
runnable process to be blocked. First, it can be blocked
!by runnable processes ahead of it on the list ,C, Second,
for servers with a positive preemption interval (At > 0),
a runnable process can be blocked by processes that are
behind it on the list .Cc. This happens when a process
arrives at the server while another process is running
and in the midst, of a preemption interval. If the ar-
,riving process is ahead of the running process in the
list .L, then the arriving process. will be blocked at least
until the end of the current preemption interval. This
kind of blocking is called A-blocking. It is important to
notice that if a process is A-blocked then, because of its
,position in the list L; it will obtain service before the
process that caused the A-blocking returns to service,

Move-To-Rear List Scheduling (MTR-LS)
‘INITIALIZATION
For each process, Pj, which is active at time 0, put P’
on the list ,C(in any order) and set lefti = aj’I’;
Run-aProcess; ’

T’HE METHOD (Runs at each decision epoch)
Decision epochs correspond to the expiration of the cur-
rent quantum, the completion of the phase of the cur-
rent running process, or the end of the current preemp
tion interval following the arrival of a process at the
server; ‘8

if state == busy then
Let Pj be the current running process;
leftj = lefti - elapsed;
if leftj == 0 then

Move Pj to the rear of the list l;
leftj = &jT;

Run,+Process; 1 ’ .

Figure 3: Move-To-Rear List Scheduling.

A straight-forward implementation of MTR-LS
stores the runnable processes in i in a heap [l]. When a
process is moved to the rear of L it is given a new largest
timestamp. Arriving processes and runnable processes
that are moved to the rear of the list are inserted into
the heap in O(ln(n)) time where n is the number of
runnable processes in L. The runnable process with the
smallest timestamp (corresponds to the first runnable
process in the list ,C) can be found in constant time.

It takes O(ln(n)) t ime to rebuild the heap when the
first process is removed from the heap and is no longer
runnable (i.e., gone elsewhere).
Lemma 1: The complexity of MTR-LS is O(ln(n))
where n is the number of active processes. cl

4.2 Properties of the MTR-LS Policy

The MTR-LS policy provides a fairness guarantee
whose “granularity” depends on T, the virtual quan-
tum. Unlike other &OS parameters, the fairness guar-
antee does not depend on the length of the preemption
interval or whether the sum of the service fractions is
less than or equal to one.
Lemma 2: The MTR-LS policy is fair with a bound
of 2T. That is, for any real time interval [~,t] during
which Pi and Pj are both continuously runnable

Proof: The”;vorst case situation occurs when one of
the processes, say Pi, is ahead of Pj on the list and
leftj is extremely’small (At). It is possible for Pi to
gain T units of virtual time, then for Pj to run for
leftj/oj units of virtual time and be placed at the back
of the list. If Pi were to run for another T units of
virtual time, then the accrued virtual time of Pi would
be ahead of the accrued virtual time of Pj by a value
which is bounded by 2T. 0

It is easy to see from the proof that the MTR-LS
policy supports proportional sharing for processes with
arbitrary, non-negative service fractions. However, the
cumulative service and delay guarantees are dependent
upon the service fractions and the Iength of the pre-
emption interval. In the next subsection we treat the
case of a zero-length preemption interval followed by a
subsection on the case At > 0.

4.2.1 The At = 0 Case

Throughout we assume that we are using the MTR-LS
policy. Assuming j E d(t), leftj(t) denotes the value
of the variable leftj at real time t.

The following is the basic lemma for the case At = 0.
Lemma 3: Assume f 3 oj and j E d(r). Then for all
t >, r we have

vj(Trt) 2 rj(Tat) - (1 - aj)(ST - le.& (T)/aj) (1)

Proof: The idea of the proof is to construct a sce-
nario, C, whereby process Pj obtains service only af-
ter being blocked to the maximum extent possible by
the other processes. It will follow from the construc-
tion that for any other execution in which Pj obtains
the same amount of service,jthe amount of blocking by

other processes will be no greater that C. We show
that in this extremal case that the lemma holds and
therefore it holds for all other executions. The nota-
tion vj(r, .) means that the second argument has some
appropriate value. We use this notation to avoid having
to create new symbols for these vahres.

The execution C is designed to insure that Pj is
blocked from running to the maximum extent possi-
ble. With this in mind;we assume that at time r all
processes Pi with i E d(r) and i # j are ahead of Pi
in the list L. Also assume that all of these processes
run to their maximum extent, a$’ while preventing Pj
from running. Thus rjt the real time spent by pro-
cess Pj waiting to run, without running, is bounded by

(I- oj)T. At this point we have:

rj(T, *) < (1 - aj)T + vj(r, -)

From this point on Pj cannot be blocked further un-
til Pj obtains reftj(r) real service time. At the point
where Pj obtains leftj(T) service time we have:

Now Pj is at the back of the list and SO the worst case
is for all the active processes to run to their maximum
extent while blocking Pj from running. At the point
when Pj reaches the head of the list and can no longer
be blocked we have:

T~(T, *) 2 (1 - aj)(2T - lefti (T)/aj) + uj(T, *)

Continuing as above, after every time vj advances by
T the other processes can only biock Pj by at most (l-
oj)T. Since the real running time is ajT, the virtual
time advance equals the worst-case real-time blocking
and service times. Thus the above inequality is the
worst case for the execution C.

Finally, it is easy to observe that for any other execu-
tion the amount of blocking by other processes for the
same amount of running time for Pj is no larger than
the scenario X given above. The lemma follows. 0
Corollary 1: The MTR-LS policy provides a cumula-
tive service guarantee. 0

From Lemma 4.2.1 we ca: write uj(T, t) 2 rj(r, t) -
2T for all j and r 5 t. We obtain this worst-case bound
by setting lefti = 0 and oj = 0. For the case where
T = aj we get vi(t) 1 rj(t) -T since lefti = ajT.
Corollary 2: The MTR-LS poIicy provides bounded
delay.
Proof: Consider a phase of process Pj that requires
w work. The duration of the phase is w/B and the
allotted virtual time is equal to w/(qB). Let T be the
beginning of the phase and t the time the phase ends
under the MTR-LS policy. Using Equation 1 we get

rj(T, t) S W/(QjB) + (1 - aj)(2T - le& (T)/Ck’j) ,

71

This equation states that the amount of real time taken
to complete this’ phase is at most a constant ,amount of
time more than J/oj times, the duration; of the phase.
cl ,,,*,*, ‘,

4.2.2 The At > 0 Case

Assume that the server has a positive preemption in-
terval (i.e., At > 0). As we described above, when the
preemption interval is positive, we have to deal with the
case in which ‘a’pro&& Pj arrives. at the server while
the server is running procesfs Pi and is in the midst of
a preemption interval. In this case the next de&si$n
epoch occurs at ‘the end of the Furrent preemption m-
terval.

d’

For example, let’s consider a system in which there
are two processes PI and P2, In this system, process
Pz runs continuously on the server and process PI al-
ternates between the’server and the elsewhere server.
We also assume that whenever process PI runs on the
server it runs for exactly one preemption interval and
then goes to elsewhere for a while. Due to incredible
bad luck, whenever process PI arrives at the server,
the server is running process P2 and is esactly at the
beginning of the current preemption interval. There-
fore process PI has to wait (this is A-blocking) At
real time units before running on the server. This se-
quence of A-blocking can persist for arT time units
before PI is put to the rear of L. In addition to the
bad luck with A-blocking, whenever PI is put at the
end of the list ,C, process Pz blocks ‘PI for c&T time
units. Thus we find that, ~1, the real time spent at the
server in pursuit of T units of virtual time se&ice, can
be as iarge ,as 2cqT f- a2T. From this’it a??ears that
err 5 1 -(or +a$ is sufficient $0 h,ave a cumulatrve ser-
vice guarantee for process PI on the server. Intkrchang-
ing the roles of Pi and P2, welget that 02’5 &(o++az)
is sufficient to have a cumulatj\re service guarantee for
process Pz on the server.

A,, .
I 1

As this example shows, in order to have a cumulative
service guarantee we need additional restri’c’tions on the
service fractions associated with servers having a posi-
tive preemption intervals. ‘The following result gives a
sufficient condition on the servipe fractions associated
,$th the server such that the MTR-LS policy supports
a cumulative service guarantee.
Lemma 4: Assume At 5 O.i”∑k that for all t and
all j E d(t) we have Olij 2 ‘i $‘&Jtt) oi: Then for all
t 2 T we have

aj(T,t)z Tj(T,t)-(l- pLj)ST’-‘(2oj - 1)leftj (T)/aj .
J ,,c

(2) /I(I ,.’ ’

Proof: The proof on this lemma is similar to the
proof of Lemma 4.2.1. ’ We’construct a scenario, C,
whereby process ,Pj obtains service only after being

blocked to the maximum extent possible by the other
processes. .Ip addition to the,blocking used in the proof
of Lemma 4.2.1, this construction uses A-blocking (See

I Step 2 of the MTR-LS policy) tomcrease the amount of
blocking that process Pj incurs. It follows from the con-
struction that for any other execution in which Pj ob-
tains the same amount of service, the amount of block-
ing by other processes will be no greater than C. We
show that in this extremal case that the lemma holds
and therefore it holds for all other executions.

The execution C is designed to insure that Pj is
blocked from running to the maximum extent possible.
Assume that at time 7 all processes Pi with i E d(T)
and i # j are ahead of Pj in the list L. Also assume

j that all of these processes run to their maximum ex-
tent; giT while preventing Pj from running. Thus rjr
the real time spent by process Pj waiting to run, with-
out running, is bounded by (1 - aj)T. At this point we
have:

rj(T,*) < (1 -aj)T+~j(~,*)

In the proof of Lemma 4.2.1 process Pj could no longer
I be blocked’until is obtained leftj(r) real service time.
However, due to the positive preemption interval of the
server, process Pj can suffer A-blocking while attain-
ing leftj(T) servibe time. Since process Pj has been
blocked up to this point it has to run a minimum of
At, before it goes to the elsewhere server. When pro-
cess Pj ,arrives from the elsewhere server we assume

rthat some other process is in service and that Pj is A-
-blocked for at most & time units. Then Pj runs for At
real time units and again goes to the elsewhere server.
This pattern repeats until Pj acquires leftj (r) units of

; processing time at which time we have:

: -ri(~,.) < (i - aj)T +‘(2oj - l)leftj(T)/oj + uj(rt *) .
I’.

Once again all the,other processes are ahead of Pj on
the list and can block Pj up to (1 - oj)T time units.
The result is that Pj is once more at the head of the
list and we have:

rj(T,!-) < (l-oj)2T+ (2Crj - l)leftj(r)/CYj +Vj(r,‘) s

From this point onward, Pj fs A-blocked every time it
gains T units of virtual time and then blocked by all the
processes until it is reaches the head of the list, Every
iteration results in a gain of T virtual time for process
Pj during which it acquires

/ ‘,
. $-At+2 c cy;

GA(,)

real time (A-blocking, ordinary blocking, and service
time):, By assumption, ‘the above quantity is less than

. ,T, and the lemma follows. cl

Corql!ary 3: Assume At > 0. Assume that for all 2
and all j E d(t) we have oj 5 1 - zied(t) o;. Then

72

the MTR-LS policy provides a cumulative service guar-
antee. Cl

By setting leftj = 0 and oj = 0 we get Vj(r,t) >
r(r, t) - 2T for all j and r _< t. In the case r = ej, we
have uj(t) 2 rj(t) - T.

Corollary 4: Assume At > 0. Assume that for all t
and all j E d(t) we have oj 5 1 - CieAtr) oi. The
MTR-LS policy provides bounded delay. cl

5 Summary

The major contributions of this paper are as follows:
We introduced a new &OS parameter-cumulative
service-for operating system scheduling to provide
predictable performance for applications requiring mul-
tiple resources. The system we treat is dynamic,
namely, processes enter and depart the system. Exist-
ing scheduling policies [S, 11, 5, lo] that provide delay
or fairness do not guarantee cumulative service.

We have presented a new scheduling algorithm, called
Move-To-Rear List Scheduling, which provides a cu-
mulative service guarantee. Our results show that the
MTR-LS policy provides a fairness bound of 2T, where
T is the virtual quantum of the server, regardless of the

V choice of service fractions. In a recent paper by Lund,
Phillips, and Reingold [7], they mention an output link
scheduling policy for ATM cells calIed “Idea1 Round
Robin” which is related to MTR-LS. They do not ana-
lyze the properties of “Ideal Round Robin”, but instead
they use an approximation to “Ideal Round Robin,”
called Fair Prioritized Round Robin, as a benchmark
for comparison with a fair scheduling policy for an
input-buffered switch [7].

The provision of other &OS parameters requires cer-
tain restrictions on the service fractions. These require-
ments provide the constraints for admission control.
When arbitrary preemption is allowed (At = 0), we re-

quire that the sum of the service fractions is less than
or equal to one. When processes can preempted only at
integral multiples of the preemption interval (At > 0),
we require that for all j, oj 5 1 - CieAttl (pi, where

d(t) is the set of active processes at time t. This con-
dition is easy to check since one need only check the
inequality for the largest service fraction. As long as
the above conditions on the service fractions hold, the
MTR-LS poIicy meets the cumulative service guaran-
tee within 2T and the delay bound is 2T in the worst
case. The implementation complexity of MTR-LS is
O(ln(n)) where n is the number of processes.

[z] A. Demers, S. Keshav, and S. Shenker. “Design and
Analysis of a Fair Queuing Algorithm”. In Proceed-
ings of the ACM SIGCOMM Austin, Texas, September
1989, September 1989.

[3] D. Ferrari and Verma D. C. A scheme for real-

time channel establishment in wide-area networks.
IEEE Journal on Selected Areas in Communications,

8(3):3682379, April 1990.

[4] J. Golestani. “A Self-Clocked Fair Queueing Scheme

for Broadband Applications”. In Proceedings of the
IEEE INFOCOM Toronto, June 1994, pages 636-646,

June 1994.

[S] P. GoyaI, X. Guo, and H. M. Vin. “A Hierarchical CPU

Scheduler for Multimedia Operating Systems”. In Pro-
ceedings of the USENIX 2nd Symposium on Operating
System Design and Implementation Seattle, Washing-
ton, October 1996, October 1996.

[S] P. GoyaI, H. Vin, and H. Chen. ‘Start-Time Fair
Queueing: A Scheduling Algorithm for Integrated Ser-
vices Packet Switching Networks”. In Proceedings
IEEE SIGCOMM’96, August 1996.

[7] C. Lund, S. J. Phillips, and N. Reingold. Fair Pri-
oritized Scheduling in an Input-Bufiered Switch, pages
258-369. Chapman & Ha& London, 1996.

[8] C. Mercer, S. Savage, and H. Tokuda. Processor ca-

pacity reserves: Operating system support for multi-
media applications. In Proceedings of IEEE Interna-
tional Conference on Multimedia Computing and Sys-
tems, May 1994.

[9] A. K. Parekh and R. G. ‘GaiIager. A generalized pro-
cessor sharing approach to flow control in integrated
services networks-the single node case. IEEE/ACM
Transactions on Networking, pages 344-357, June

1993.

[lo] I. Stoica and etai. “A Proportional Share Resource kl-
location Algorithm For Real-Time, Time-Shared Sys-
tern?. In Proceedings of IEEE Real-Time Systems

Symposium, December 1996.

[11] C. A. Waldspurger and W. Weihl. Stride schedul-
ing: Deterministic proportional-share resource man-

agement. Technical Report TM-528, MIT, Laboratory
for Computer Science, June 1995.

[12] H. Zhang. Service disciplines for guaranteed perfor-
mance service in packet-switching networks. Proceed-
ings of the IEEE, 83(10), October 1995.

[13] L. Zhang. “Virtual Clock: A New Traffic Control Al-

gorithm for Packet Switching Networks”. In Proceed-
ings of the ACM SIGCOMM Austin, Texas, September
1989, September 1990.

References

[l] T. Cormen, C. Leiserson, and R. Rivest. Introduction
to Algorithms. McGraw-Hill Book Company, 1990.

73

