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Abstract 

In order to support multiple real-time applications on a sin- 

gle platform, ,the operating system must provide Quality 

of Service (&OS) guarantees so that the system resources 

can be provisioned among applications to achieve desired 

levels of predictable performance. The traditional QoS pa- 

rameters include fairness, delay, and throughput. In this 
paper we introduce a new QoS criterion called cumulative 
service. The cumulative service criterion relates the total 
service obtained by a process under a scheduling policy to 
the ideal service that the process would have accumulated 

by executing on each resource at a reserued rate. We say 
that a scheuling policy provides a cumulative service guar- 

antee if the performance of the real system differs from the 
ideal system by at most a constant amount. A cumulative 
service guarantee is vital for applications (e.g., a continous 

media file service) that require multiple resources and de- 

mand predictable aggregated throughput over aII these re- 

sources. E.xisting scheduling algorithms that guarantee tra- 

ditional QoS paramaters do not provide cumulative service 
guarantees. We present a new scheduling algorithm called 
Move-To-Rear List Scheduling which provides a cumulative 

service guarantee as well as the traditional guarantees such 

as fairness (proportional sharing) and bounded delay. The 
complexity of MTR-LS is o(ln(n)) where n is the number 
of processes. 

1 Introduction 

New multimediaapplications, which require support for 
real-time processing, are pacing the demand for op- 

erating system support for Quality of Service (QoS) 

guarantees. The desire to support multiple real-time 
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applications on a single platform requires that the op- 

erating system have the ability to provision the system 

resources among applications in a manner that achieves 
the desired levels of predictable performance. More- 
over, computer networks are starting to provide QoS 
guarantees with respect to packet delay and connec- 

tion bandwidth. These &OS guarantees are of little use 

if they cannot be extended to the endpoint applications 

via operating system support for related QoS parame- 
ters. Current general-purpose multiprogrammed oper- 

ating systems do not provide &OS guarantees since the 
performance of a single application is, in part, deter- 

mined by the overall load on system. As a result many 

users prefer to use stand-alone systems with limited de- 
pendency on shared servers to achieve some semblance 
of &OS by indirectly controlling the system workload. 

Real-time operating systems are capable of delivering 

performance guarantees such as delay bounds, but re- 
quire that applications be modified to take advantage 

of the real-time features. Our goal is to provide QoS 
guarantees in the context of a general-purpose multi- 
programmed OS, without modification to the applica- 

tions, by giving the user the option to provision system 

resources among applications in order to achieve the 

desired performance levels. 
In this paper we introduce a new QoS parameter, 

which we call the Cumulatr~ve Service. Guaranteeing 

cumulative service is vital for applications that require 

multiple resources and demand a predictable aggre- 
gate throughput over these resources. We present a 
new scheduling algorithm, called Move-To-Rear List 
Scheduling (MTR-LS), f or allocating operating system 

resources, such as CPUs, disks, and network interfaces, 

among competing processes. We show that MTR-LS 
provides strict guarantees regarding the cumulative ser- 

vice obtained by a process. MTR-LS also provides 
guarantees for more traditional QoS parameters such 

as fairness and delay. 
Our results are applicable to a general model of pro- 
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cesses. However, for ease of exposition we define a pror 
cess to be a sequence of phases (Section 3) where each 
phase consists of a requirement from a parti$jr sys- 
tem server. It is assumed that neither the phase re- 
quirements nor the exact sequence of phases are known 
ahead of time. Our model allows for new processes, to 
dynamically enter the system and for processes to de- 
part the system. Processes specify their &OS require- 
ments by provichng a “service fraction” for each system 
resource. Admission control consists of ensuring” ‘that 
the service fractions of new processes along with the 
service fractions of processes already in the system do 
not exceed certain prescribed limits. Admission control 
is necessary if we are to provide delay and cumulative 
service guarantees that are independent of the number 
of pr&sses in the system. ,’ ’ ” 

I 

Another feature of our work is that it deals with sys- 
tem services that have limited preemptability. For ex- 
ample, disk I/O occurs iii multiples of a basid block size 
and once‘s transfer is begun, the next scheduling event 
can not o$u before the transfer ‘i‘s ,complete. How- 
ever, the granularity‘for CPU siheduling is taken to be 
arbitrary. 

I/ 

Our cumulabive service &OS parameter is new., The 
cumulative service criterion:compares the total service 
a&umulation of a process at ‘a&i&r to an ideal service 
a&rmulation based on the service fraction of the pro- 
cess ‘for this’ server (we Wil5’use, resources and $ervers, 
interchang&bly). We say that’astheduling policy guar- 
antees cumulative service ‘if thg?total service~obtained 
over any time interval does not fall behihd the ideal 
service accumulation, based on the service fraction, by 
more than a enstant amount. In our ideal system”we 
assume that a processes gets its spe&fic servi& frac- 
tions of’each of the resourc’es without interference from ’ 
other processes. This corresponds to a pro&ssor shar- 
ing model in which the servers are not overbooked, i.e. ’ 
the sum of the service fractions at each server is not’ 
greater than one. Recall that we model processes as a 
sequence of phases where each phase corresponds to a 
service requirement from a particular server. In spite of 
the fact that the delay incurred by a phase of a p&e& 
at one server is propagated tosubsequent phases of the 
process at ‘the same server and other servers, we will 
show that the MTR-LS, pdlicy provides a cumulative 
service guarantee over every interval of time. 

The &OS parameters supported by many existing 
scheduling algorithms include proportional sharing of 
the CPU among competing processes and delay bound 
guarantees [S, 11, 5, lo]. However, they do not support 
a dumulative service guarantee since neither fairness 
nor delay bounds are sufficient to provide a cumulative 
service guarantee. Informally, guaranteed cumulative 
service means that the scheduling delays enzountered 
by a process on various resources do not accumulate 

.qver the lifetime of the process. 

’ 

-The cumulative service criterion is essential for pro- 
viding aggregate service for applications that require 
the sequential use of multiple resources such <as CPU 
and disk. It is especially vital for such applications that 
act as services. A good example is a continuous media 
(ClvI),,file service, which shares system resources with 
other applications or services, that itself is in a position 
to provide certain &OS guarantees to other applications. 
A typical implementation of a streaming CM file ser- 
vice assumes that it can sustain a certain amount of 
disk I/O throughput. However, it also needs CPU for 
tasks such as initiating disk requests, and managing its 
buffers, etc. 
Example 1: To make our point, let us consider the fol- 
lowing overly simplified CM server: 1) An entire disk 
drive with an effective bandwidth of $0 Mbps and half 
of the CPU cycles are reserved for this service. 2) In 
between,every 1 MB,of disk I/C, the CM server requires 
1 ms of real CPU time to dispatch disk requests and 
manage,the buffers. Since it reserved half of the CPU, 
it expects that the execution time for each CPU phase 
will take at most 2 ms, Similarly, since it reserved the 
entire disk, it expects that each disk phase (i.e., 1 MB 
disk I/O) will take 200 ms. Thus, the CM server ex- 
pects a disk I/O throughput of lMB/202ms= 39 Mbps. 
The CPU delay bound provided by existing algorithms 
[ll, 5,101 depends upon, among other things, the gran- 
ularity of schecluling quanta. The granularity cannot be 
too small for otherwise the context switching overhead 
would become excessive. It would not be unusual to 
have a CPU delay bound of 75 ms, That is, the CPU 
scheduler promises that each CPU phase of length t will 
complete within t/0.5 + 75ms. The t/0.5 results from 
reserving half of the CPU and. the 75 ms is due to an 
average delay of 75 ms for other processes to get. their 
timqslice. Suppose that each CPU phase of the CM 
server waits 75 ms for the other, processes contending 
for CPU before it executes for 1 ms on CPU, A 76 ms 
delay for 1 ms CPU execution is still within the de- 
lay bound promised by the CPU scheduler. However, 
the disk I/O throughput of the CM server will degrade 
to lMB/276ms = 28 Mbpe! This is 30% less than 
expected. Under these circumstances, the CM server 
could not support 26 streaming MPEG-1 sessions, each 
requiring a 1.5 Mbps throughput (26 x 1.5 Mbps = 39 
Mbps). Cl 

The main contributions of this work are the introduc- 
tion of the cumulative service criterion as an important 
QoS parameter for OS scheduling and the MTR-LS pol- 

icy which provides a cumulative service guarantee and 
guarantees for other QoS parameters including fairness 
(proportional sharing) and delay bounds. 

The remainder of the paper is organized as follows. 
QoS parameters and theoretical developments in terms 
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of deterministic performance bounds are well developed 
in the link scheduling literature. In the next section we 
review some of the relevant aspects of link scheduling 
since they are closely related (both in terms of similar- 
ities and differences) to their counterparts in operating 
systems. Following this, we discuss the &OS parameters 
that play a role in our work. In Section 3 we introduce 
our system and process models and definitions of QoS 
parameters. in Section 4, we present a new scheduling 
policy, called Move-To-Rear List Scheduling, that is fair 
and provides a cumulative service guarantee. Finally, 
Section 5 summarizes our work. 

2 Background and Relaied 

Work 

2.1 Link Scheduling 

The QoS issue has received much attention in the 
packet scheduling literature [2,13,4,12,6] where pack- 
ets are identified with “flows” and there is a, concep- 
tual, queue per flow or collection of flows. The corre- 
spondence between a sequence of packets and a flow 
is application-dependent, but we assume that we can 
identify packets belonging to a particular flow. The 

objective for the link scheduler is to determine the or- 
der in which packets are scheduled for transmission on 
the output link so as to achieve various performance 
measures. We review some of the QoS parameters for 
output link scheduling and contrast these with QoS 
support for processes in the operating system context 
where there are important similarities and differences. 

We assume that when a packet arrives at a node a 
routing table lookup is performed to determine the ap- 
propriate output link and a (possibly concurrent) flow 
identification lookup is done to determine the appropri- 
ate queue. Although there is a delay associated with 
these steps, they tend to be uniform over the packets. 
We take the arrival of a packet at a queue as an in- 
stantaneous event corresponding to the placement of a 
record, which gives the specifics of the packet data, in 
the appropriate queue data structure. 

There are roughly two kinds of packet sources, open- 
loop and closed-loop. For an open-loop packet source 
the times-of-arrival of packets are not affected by the 
delay experienced by packets that have already arrived. 
A closed-loop packet source is one for which the times- 
of-arrival may be affected by the delays experienced by 
packets that have already arrived. Open-loop sources 
include unacknowledged transmission of UDP packet 
streams. Closed loop sources include TCP/IP flows. I 

The QoS parameters in link scheduling include de- 
lay, delay jitter, throughput, and fairness. Packet delay 
can be measuredein a number of ways. The delay can 
be measured from the time that the packet arrives at 

its queue until it is transmitted over the link. This 
measure of delay depends on the behavior of the traffic 
source and the scheduling policy. Another possibility 
is to measure therdelay of the packet from the time 
it reaches the head of its queue until it is transmitted 
over the output link. This measure of delay does not 
depend on the characteristics of the traffic source. Yet 
another possibility is to assume that each flow is pro- 
vided a certain bandwidth reservation and calculate the 
departure time of each packet based on the assumption 
that all the packets in the flow are serviced at the re- 
served bandwidth rate. The delay of a packet is the 
difference between the packet’s actual departure time 
and its calculated departure time (may be negative). 
This delay measures the real system’s ability to match 
the performance of an idealized system. 

Delay jitter is a measure of the variability of packet 
delay. The minimization of delay jitter is important 
in situations where the receiver buffers packets from 
a flow and plays them out at a constant rate. The 
more variable the jitter, the larger the buffer needed to 
regulate the flow for smooth playout. 

Throughput is a measure of the rate at which the data 
from a flow is transmitted over the link. Determination 
of the throughput of a flow depends on the time scale 
used to measure the transmission rate. For example, 
the instantaneous transmission rate of data in a flow 
has two possible values, 0 and the link transmission rate 
(i.e., either packets from the flow are being transmitted 
on the link or not). The measurement of throughput 
can be tricky since we are interested in an average of 
the instantaneous transmission rate over some interval 
of time. A flow is said to be backlogged whenever the 
corresponding queue contains packets to be transmitted 
on link. The evaluation of the average transmission rate 
for a flow is usually taken over a period of time during 
which the flow is continuously backlogged and is given 
as the number of bits transmitted over an arbitrary in- 
terval during the busy period. Again, if this period is 
too small, then we could see large fluctuations in the 
transmission rate. Over longer periods of time, includ- 
ing several periods during which a flow is backlogged, 
the throughput for a “stable” flow will match the aver- 
age arrival rate of the flow (the definition of stability). 
Otherwise, we are in a situation in which the queue for 
a particular flow can grow without bound and buffer 
overflow becomes the primary concern. To ensure sta- 
bility and also to meaningfully discuss packet delay (the 
interval of time from which the packet enters the system 
until-it is transmitted), one has to make assumptions 
regarding the nature of the packet sources such as their 
average and peak bandwidths. Often the assumptions 
regarding source characteristics are enforced (shaped) 
by an appropriate regulator such as the, so called, leaky 
bucket regulator which effectively constrains the aver- 
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age bandwidth and the “burstiness” of the traffic: 
Fairness is a measure of how,close the server comes to 

Generalized Processor Sharing (GPS) [9] when serving 
simultaneously backlogged flows! GPS is an idealized 
model in which the capacity of the link is assumed to be 
infinitely divisible and can be shared among an num- 
ber of flows simultaneously as long as the capacity, of 
the link is not. exceeded. The primary’purpose of the 
fairness criterion is to isolate, the behavior of one flow 
from another. 

With any &OS support, it is necessary to have a 
way of prescribing the level of support that is required. 
Much of the research in link scheduling assumes that 
the &OS requirement for each flow is specified by a sin- 
gle number having the interpretation of a (dimension- 
less) weight or a rate. Suppose flow i has an associated 
weight given by a positive real number & and C denotes 
the capacity of the output link in bits per second (bps). 
Then the~usual interpretation of the &‘s,is that, ideally, 
whenever a flow i is backlogged it will transmit packets 
at an average rate which is no lessthan (&/Cj dj)C 
(bps). The determination& QoS parameters, such as 
delay, delay jitter,Gthroughput and fairness, does not 
directly follow from the weights of backlogged flows 
but depends on the total, weight of backlogged flows, 
and on the specific algorithm used by the link sched- 
uler. This indirect way of specifying QoS requirements 
makes admission control diffic.ult.. Also, using weights 
to guarantee delay bounds results in underutilization, \ 

The delay and delay jitter requirements can be some- 
what decoupled, from the throughput requirements by 
using regulators (shapers) which release packets to the 
link scheduler at the appropriate times. Such regulator- 
scheduler combinations can result in policies that may 
not transmit packets even when packets are available 
for transmission. Delay-earliest due date [3] provides 
delay bounds independent of the bandwidth guaranteed 
to a flow, however, at the cost of reserving bandwidth 
at the peak rate: 

2.2 Operating System SchFduling 

We next turn to QoS parameters in operating systems 
(OS). Unlike link scheduling, in the operating system 
context there are multiple resources, such as the CPU, 
disks, and network interfaces, that are shared among 
competing processes. Each of, the servers (resources) 
is capable of delivering “work” at a certain rate. For 
e,xample, a CPU executes instructions at 100 Million 
Instructions Per Second ,(MIPS); a disk can transfer a 
data block (512 bytes) in 12 milliseconds, and a network 
interface can deliver bits on its output link at 10 Million 
bits per second (Mbps). 

Processes in the OS context roughly correspond to 
flows and are modeled as a sequence of phases where 
each phase consists of the name of a server and the 

corresponding amount of “work.” For example, (CPU, 
100 million instructions) is a phase that specilles the 
CPU ‘as the server and the work which consists of es- 
ecuting 100 million instructions. The amount of time 
taken by the phase depends on the rating of the CPU 
server-a 100 MIPS CPU will take 1 second to complete 
this phase. At the completion of a phase, the process 
will move to the next phase which consists of a new 
server and work requirement. In the actual system, the 
phases (server and work requirements) are not known 
in advance. ‘1. 

Since we model processes as a sequence of phases, 
any delay incurred while completing a phase will be 
propagated to all subsequent phases, Thus we think 
of a’process as a “closed-loop” source. Conversely, if a 
process gains a time advantage by getting extra service, 
this advantage is also passed on to subsequent phases. 
One could also consider “open-loop” processes in which 
the time-of-arrival of a phase is independent of previous 
phases. ‘For example, if the phases of a process were 
generated by’interrupts, it is possible for a new ph‘ase to 
arrive before thesprevious phase~completes its service. 
We do not consider ‘Lopen-loop” processes in this paper, 

.aIn the link scheduling environment the scheduler 
transmits one packet-at-a-time over the link. We as- 
sume in the OS context that each server has a preemp 
tion interval which specifies the temporal boundaries 
where preemptions may occur. This means that the 
“granularity” of sharing is determined by the ‘proper- 
ties of the server and the scheduler. 

In order to specify &OS requirements, we associate 
with each~process and each server a reservation, called 
a service fraction, which&gives the amount of the server 
required by the process. For example, suppose a pro- 
cess has a,.25 reservation on the CPU. In the case of 
a 1OOMIPS CPU,, ‘this means that the process needs 
at least a 25MIPS CPU to meet its performance ob- 
jectives. The weights, &, defined in the section on 
link scheduling determine service fractions as ratios 
&/ cj dj. We choose to use service fractions since they 
reflect, inlabsolute terms, the service requirement of the 
process and thereby simplify admission control. 

The performance objectivk most readily specified by 
reservations is a cumulative service guarantee, which 
means a guarantee that the real system will keep pace 
with an ideal execution based on the server reserva- 
tions. For example, suppose a process reserves 20% of 
the CPIJand 50% of the disk I/O subsystem and sup 
pose the CPU is rated at IO0 MIPS and the disk I/O 
subsystem can do single block (4 Kbytes) transfer in 12 
milliseconds! According to the reservation, this process 
should&e& at least a 20 MIPS CPU and a disk I/O 
subsystem capable of transferring a single block in 24 
milliseconds. Suppose ‘the process alternates between 
CPU and disk I/O phases where each CPU phase re- 

: I 
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quires the execution of 4 million instructions and each 
disk I/O phase consists of 6 random block transfers. 
Accordingly, the process should take no more than 200 
ms for each CPU phase and 144 ms for each disk I/O 
phase regardless of the number of process phases and 
competing processes. 

Other QoS parameters for processes can be defined. 
If we were to associate the phases of a process with 
the packets of a flow we obtain the following notion of 
delay. The delay of a phase at a particular server is the 
cumulative time spent by the phase either waiting for 
the server or running on the corresponding server. It 
is not difficult to see that guaranteeing delay bounds 
(i.e., bounding the time it takes to complete a phase) is 
not sufficient to provide a cumulative service guarantee. 
This is because the phase delays can accumulate (in 
the closed-loop case) over multiple phase3 leading to 
an unbounded discrepancy between the actual and the 
ideal cumulative service. For example, phase delays 
on one server may reduce the the service rate of other 
servers in a closed loop system. 

We also define the notion of fairness which measures 
the ability of the system to ensure that processes simul- 
taneously contending for the same server will “share” 
that server in proportion to their reservations. Fair- 
ness in the OS context, sometimes referred to as pro- 
portional sharing [ll, 5, lo], is problematic since the 
cost of providing fairness (context switching) increases 
as the granularity of server sharing decreases. It is 
also not clear that fine-grain sharing is always desirable 
in a general-purpose operating system, particularly for 
“batch” processes where coarse-grain sharing is accept- 
able and substantially reduces the context switching 
overhead. 

Recently proposed scheduling algorithms which are 
most closely related to our work are: Stride schedul- 
ing [ll], which attempts to provide each process with 
a share of the server in proportion to its corresponding 
weight (number of “tickets”); start-time fair queuing 
[5], which is based on the corresponding link schedul- 
ing algorithm [6]; and earliest eligible virtual deadline 
first [lo], which p rovides each process with a share of 
the server in proportion to its corresponding weight; 
and the CPU scheduling policy presented in [8], which 
provides each process with its reserved share. These 
algorithms were not designed with our cumulative ser- 
vice measure in mind, so it is not surprising that the 
properties they do enjoy are not sufficient to provide a 
cumulative service guarantee. 

In the next section we introduce our system and pro- 
cess models and give formal definitions of the terms 
used in the remainder of this paper. 

3 Servers, Processes, and QoS 
Parameters 

. A system consists of a collection, S, of servers (e.g., 
CPU, disk, and network). Each server s E S is charac- 
terized by a service rate B, and a preemption interval, 
At, 2 0. If w is an amount of work to be accomplished 
by server s, then the time to complete w on server s is 
w/B,. When a “process” is run on a server with a pos- 
itive preemption interval At,, the running time must 
be an integral multiple of At, and the process can only 
be preempted at integral multiples of.At,. The limit- 
ing case of At, = 0 corresponds to a server for which 
running times are arbitrary and preemptions are not 
restricted. 

A phase is a server-duration pair, (s, t), where s E S 
and t is the amount of time it would take server s to 
complete the phase running alone on the server. An 
equivalent definition of a phase (s,t) is a server-work 
pair, (s, w), where t = w/B,. 

A process is a sequence’ (finite or infinite) of phases, 

P = (Sl,tl),(Sz,t2),-* ** The phases of a process are 
not known in advance. Initially, the only thing we 
know about a process is the identity of the first server, 
i.e., P = (~1, .). By running P on server sr we will 
eventually learn tl, the duration of the first phase, 
and ss, the server required for the second phase, i.e., 

P = (Ml),(s2,-). BY 
running P on server ss we even- 

- tually discover tz and the server required for the third 
phase, viz., P = (sl, tl), (ss,tz), (ss, e), and so on. 

Let 0 5 al 5 a2 < . . . denote the sequence of times 
that processes 5, P2, . . . enter the system. The depar- 
ture time of a process depends upon the process and 
the scheduling discipline. We assume that each process 
has a (possibly infinite) departure time. A process Pi 
is active at time t if ai 5 t and the departure time of 
process Pi is greater that t. Let d(t) denote the set of 
indices of active processes at time t. 

We assume that each process Pi, before being admit- 
ted to the system, specifies a service fraction for each 
server s, namely, 0 _< (Ysj.5 1. We require for all s E S 

that CjEA(t)asi - < 1. That is, the sum of the service 
fractions of all active proce&es with respect to server s 
does not exceed 1. 

Even though we are interested in the performance 
of our system over all servers it is sufficient to study 
the performance at a single server. From the point of 
view .of server s, a process is denoted by a sequence 
of phases that alternate between server s and else- 
where, i.e., P = (s, tl), (elsewhere, t2), (s, ta), . . . or 
P = (elsewhere,t~), (s,tp), (elsewhere, t3), (s, t4), . . . . 
The “elsewhere” server represents the phases of pro- 
cesses at servers other than s. 

1 Our results can be extended to a more general process model 

based on partial orders. 
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A process arrives at server-s if it enters the system at 
server s or it requires server s after completing a phase 
at the elsewhere server. The process arrival times at 
server s depend upon the duration of the phases and 
the scheduling policies used at, the various servers. A 
process leaves server s ,whenever it completes a phase 
at server s. When a process leaves server s it will either 
eventually depart the system or arrive at server s for, 
another phase. 

Since we are considering the performance at a single; 
server, say s, we can drop references to server s since it 
is understood. Therefore B denotes the service rate of 
the’server, At denotes the preemption interval of the 
server, and oj denotes the service fraction of process 
Pj- 

When a process is run on a server it is assigned a 
maximum running time which we call a quantum. The 
scheduling algorithm is not required to use a fixed size 
quantum. Scheduling decisions are made at points in- 
time called decision epochs which correspond to the ex- 
piration of the current quantum, the completion of the 
phase of the current running process, or the end of the 
current preemption interval following the arrival of b 
process at the server. In the latter case, if the arrival-of, 
a process occurs at time, r while the server is in’ the 
midst of a preemption interval, [t,t + At], then the 
scheduler must wait until t + At, that is, the decision 
epoch occurs at t + At. At each decision ep!och, the 
current process can be preempted and the the sihed-’ 
uler can assign a new process to the server. 

Realizable scheduling policies require that we run at’ 
most one process at a time on the server. This means 
that if there is more than one process waiting to ru[n on 
the server, then one or both of the processes will experi- 
ence (queuing) delay. Although we do not show the de- 
pendency of the following quantities on the scheduling 
policy, it is important to keep this dependency in mind. 
Let [T, t] be an arbitrary real time interval. We define 
wj(T, t) and Sj(T, t) to be the cumulative re$ waitin$’ 
timk (blocked by other processes running on the server) 
and real service time (running on the server), respec-’ 
tively, obtained by process Pj in the interval [T, t]. For, 
t 3 ej we define ‘wj (t) = wj (sj, t) and sj (t) = sj (aj, t). 

Let rj(r, t) = wj(T, t) + sj(T,t) and for t > sj de- 
fine Pi(t) = Wj(oj, t) + Sj(oj, t). By definition, rj(t) is 
the total time spent by process Pj at the server in the 
interval [T, t] 

The quantities just defined are illustrated in Figure 1. 
The heavy line denotes ‘the accumulation of waiting 
time and service time of a process at the server. The 
slope of this curve is either 1 or 0 depending on whether 
the process is at the server or elsewhere, respectively. 
From the figure we see that the process arrives at the 
server at time 4 and leaves at time 17 for elsewhere. 
The process arrives again at time 23. The lower lighter, 

68 

curve, labeled with 1, represents the service obtained by 
the process (an explanation for the curve labeled with 
l/2 is coming). This curve has slope 1 or 0 depending 
on whether the process is being served or waiting, re 
spectively. Since the process leaves at time 17, it means 
that the service requirement of the phase is 6. Intervals 
on the time axis are labeled with,e, w, or s, depending 
on whether the process is elsewhere, waiting, or be- 
ing served, respectively. We can read off the following 
quantities from the figure: r(4,17) = 13; w(4,17) = 7; 
s(4,17) = 6; r(12,23) = 5; w(12,, 23) = 2; s(12,23) = 3. 

To evaluate the performance of our scheduling algo- 
rithm, we introduce a processor sharing model in which 
the server can run any number of processes simultane- 
ously as long as the sum of their service fractions does 
not exceed one. In the processor sharing model, prod 
cesses do not block one another since they can run si- 
multaneously on the server, albeit at a reduced rate. 
We refer to the service time in the processor sharing 
model as vi&al service time. 

A process with service fraction cr that receives t units 
of real service time would take t/a virtual service time 
units to obtain the same amount of service under pro- 
cessor sharing running at rate 01. Conversely, a phase 
taking v units of virtual service time to complete under 
the processor sharing model requires cy * u real service 
time on the real server. 

Let vj (T, t) denote the cumulative virtual service time 
obtained by .process >Pj in the interval [r, t]. For t > 
uj we define vj(t) = uj(sj,t). Note that ojuj(r,t) = 
sj (T, t) and ojvj (t) = sj (t) for t 3 sj. 

/ 

Figure 1: Example of Cumulative Service. 

In Figure 1 the curve label l/2 denotes the virtual 
service time accrued by a process with a service frac- 
tion equal to l/2. Accordingly, the slope of this curve 
is either 2 or 0 depending on whether the process is 
being served or not, respectively. Therefore the phase 



of duration G (from time 4 to 17) requires 12 units of 
virtual service time to complete. 
Definition 1: We say that a scheduling policy provides 
a cumulative service guarantee if there exists a constant 
Ii such that for all processes F’j and r 5 t, we have 
Vj(TI2) > rj(r,t) -IiT. Cl 

From Figure 1 we have: u(4,9) = 0; r(4,9) = 5, and 
v(9,14) = 6; r(9,14) = 5, and v(4,23) = 12; r(4,23) = 
13. Considering the portion of the process illustrated 
in Figure 1, we conclude that v(T,~) 3 r(r.,t) -5 for all 
r ,< t and r, t E [O, 271. 

Another interpretation of the cumulative service 
guarantee is that the total real time taken to provide 
a process with service (including the waiting time and 
the service time) is no more than a constant amount of 
time more than the virtual service time required for an 
equivalent amount of real service. 

Although the definition of cumulative service guar- 
antee is in terms of a single server, it implies a “global” 
cumulative service guarantee (using cumulative virtual 
service time &nd cumulative reaI time over all servers) 
in the multi-server case where there is a constant num- 
ber of servers. 
Example 2: Consider a process P = (sl,tl), (sz, tz), 

(w3), (32,t4), * * ** that requires servers s1 and ~2, and 
reserves c~ and p fractions of s1 and sg, respectively. 
Also, let 1il and K2 be the cumulative service bound 
on servers sl and ~2, respectively. In a system that 
guarantees cumulative service, the total real time for 
the servers to provide 2i ” 1 1 

c tzi-1+ tai c 
id i=l 

time units of service, (waiting plus service time) is 
bounded by 

” 
1 = 

n 1 
-. 

c t2i-1+ 
CY ~-i=, 

c 
tzi + K1 + r-2 . 

i=l 

This is in contrast to other scheduling policies (e.g., 
[8, 11,5, lo]) that provide delay bounds on a per phase 
basis. In this case the discrepancy between the cu- 
mulative service obtained and the time to acquire this 
service can grow with n, the number of phases. 0 
Definition 2: We say that a scheduling policy provides 
delay bound if, for any process Pi, the real waiting time 
plus service time to complete a phase of duration d 
takes at most a constant amount more than d/aj. m 

A “fair” scheduling policy ensures that multiple pro- 
cesses requiring the same server share the server in pro- 
portion to their reservations, independent of their pre- 
vious usage of the resource [2]. That is, a fair schedul- 
ing policy does not penalize a process that utilized an 
idle server beyond its reservation when other processes 
become active on that server. 

Definition 3: A scheduling policy is fair if there exists 
a constant D such that for any time interval [r, t] during 
which a pair of processes, Pi and Pi, both continuously 
require the server, we have Isi(r, t)/cxi - sj (7; t)/aj 1 _< 
D. cl 

Processor sharing provides ideal fairness [9]. How- 
ever, processor sharing cannot be implemented and 
thus a host of scheduling policies that aim to provide 
bounded fairness and/or delay properties have been de- 
vised for link scheduling [2, 13, 4, 51. As we mentioned 
earlier, the cost of providing fine-grain fairness (propor- 
tional sharing [ll, 5, lo]) is high and not always justi- 
fied in the OS context. However, fairness is important 
when services are overloaded and it is necessary for all 
impacted processes to make steady, and proportional, 
progress. 

4 Move-To-Rear List Schedul- 
ing 

In this section we present a new scheduling policy, 
called Move-To-Rear List Scheduling, which provides a 
cumulative service guarantee, is fair, and has bounded 
delay. In the following subsection we present the MTR- 
LS policy followed by a subsection which contains for- 
mal statements and proofs of the properties of the 
MRT-LS policy. 

4.1 The Move-To-Rear List Scheduling 
Policy 

Central to the MTR-LS policy is an ordered list, ,C, of 
the processes that are active at any time. We say a 
process on the list .C is runnable if it is not elsewhere. 
The MTR-LS policy services the runnable processes in 
the order that they appear on the list 13. 

The MTR-LS policy makes use of a constant T, which 
we call the virtual time quantum. Associated with each 
process Pj on the list .C is a value leftj. The initial 
value of leftj is ajT. When processes are serviced, 
they run for a quantum which is bounded by the value 
in leftj. At the end of the service period, leftj is decre- 
mented by the actual amount of service time that the 
process obtained and if the result is zero, then Pj is 
moved to the rear of the list L and the value of leftj 
is reset to ajT. The value o.jT is the real time quan- 
tum. A process that advances by OjT real service time, 
advances by T virtual service time. 

The service obtained by a process can be less than the 
allocated quantum due to the termination of a phase or 
the arrival of a process. In the former case, the phase 
terminates, the process goes elsewhere, and the first 
runnable process on .C is serviced next. In the latter 
case, if the arriving process is ahead of the current run- 
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ping process in the list .C, then the running process is 
preempted (as soon as the preemption interval permits) 
and the first runnable process on C is serviced nest: 

The description of the MTR-LS policy depends on -a 
few mechanisms which we give next. Whenever a new 
process, Pj, enters the system ,it is added to the -end 
of ,C and leftj is set equal to ajT where T is a,sys- 
tern constant. As long as the process is in the system, 
whether it is at the server or elsewhere, it appears in 
the list t. Whenever a process departs the system it is 
removed from C. 

Whenever all the processes in ,C are elsewhere the 
server is idle. Otherwise the server is running a process 
and the state is busy. Decision epochs correspond, to 
the expiration of the current quantum, the completion 
of the phase of the current running process, or the end 
of the current preemption interval following the arrival 
of a process at the server. In the latter case, if the 
arrival of a process occurs at time 7 while the server is 
in the midst:of a preemption interval, [t, t + At], then 
the scheduler must wait until t+At, that is, the decision 
epoch occurs at t + At. 

The command wait causes the scheduler to -“sleep” 
until the next decision epoch. Whenever a process 
starts running, a timer, called elapsed, is started” from 
zero. elapsed can be used to determine the service 
obtained by the currently running process. 

Runa-F’rocess 
* ! 

if there is no runnable process on the list .C then 
state = idle; 

else a_ 
Let Pj be the first runnable process r 

on the list .C; ‘. 
‘ 

state = busy; 
.; 

run Pj. on the server for at most 
leftj time units (current quantum) 
and start elapsed timer; 

wait; iI 

Figure 2: Routine Run-a-Process. 

.The routine RunaJ?roce& shown ‘in, Figure 2, is 
called to select the next process’to run on the server. 
Run-a_Process looks for the first runnable process on 
the list L. If the list .C does not contain a runnable pro- 
cess then the server state is set to idle and the scheduler 
waits for the next decision epoch. Otherwise the,first 
runnable process on L is selected and run for a quan- 
tum of at most lefti time’units: The server state is set 
to busy and the scheduler waits for the next decision 
epoch. The variable elapsed will record the elapsed 
time to the next decision epoch. 

The Move-To-Rear List ‘Scheduling policy is shown 
in Figure 3. The MTR-LS policy is called at each de- 
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cision epoch. It determines if a process was running in 
the interval leading up to this decision epoch by check- 
ing to see if the state is busy. If so, it decrements the 
,corresponding lefti by the elapsed time since the pre- 
vious decision epoch. If the resulting value of,leftj is 
zero the corresponding process is moved to the end of 
the list .C and leftj is reset to &jT. 

Under the MTR-LS policy there are two ways,for a 
runnable process to be blocked. First, it can be blocked 
!by runnable processes ahead of it on the list ,C, Second, 
for servers with a positive preemption interval (At > 0), 
a runnable process can be blocked by processes that are 
behind it on the list .Cc. This happens when a process 
arrives at the server while another process is running 
and in the midst, of a preemption interval. If the ar- 
,riving process is ahead of the running process in the 
list .L, then the arriving process. will be blocked at least 
until the end of the current preemption interval. This 
kind of blocking is called A-blocking. It is important to 
notice that if a process is A-blocked then, because of its 
,position in the list L; it will obtain service before the 
process that caused the A-blocking returns to service, 

Move-To-Rear List Scheduling (MTR-LS) 
‘INITIALIZATION 
For each process, Pj, which is active at time 0, put P’ 
on the list ,C(in any order) and set lefti = aj’I’; 
Run-aProcess; ’ 

T’HE METHOD (Runs at each decision epoch) 
Decision epochs correspond to the expiration of the cur- 
rent quantum, the completion of the phase of the cur- 
rent running process, or the end of the current preemp 
tion interval following the arrival of a process at the 
server; ‘8 

if state == busy then 
Let Pj be the current running process; 
leftj = lefti - elapsed; 
if leftj == 0 then 

Move Pj to the rear of the list l; 
leftj = &jT; 

Run,+Process; 1 ’ . 

Figure 3: Move-To-Rear List Scheduling. 

A straight-forward implementation of MTR-LS 
stores the runnable processes in i in a heap [l]. When a 
process is moved to the rear of L it is given a new largest 
timestamp. Arriving processes and runnable processes 
that are moved to the rear of the list are inserted into 
the heap in O(ln(n)) time where n is the number of 
runnable processes in L. The runnable process with the 
smallest timestamp (corresponds to the first runnable 
process in the list ,C) can be found in constant time. 



It takes O(ln(n)) t ime to rebuild the heap when the 
first process is removed from the heap and is no longer 
runnable (i.e., gone elsewhere). 
Lemma 1: The complexity of MTR-LS is O(ln(n)) 
where n is the number of active processes. cl 

4.2 Properties of the MTR-LS Policy 

The MTR-LS policy provides a fairness guarantee 
whose “granularity” depends on T, the virtual quan- 
tum. Unlike other &OS parameters, the fairness guar- 
antee does not depend on the length of the preemption 
interval or whether the sum of the service fractions is 
less than or equal to one. 
Lemma 2: The MTR-LS policy is fair with a bound 
of 2T. That is, for any real time interval [~,t] during 
which Pi and Pj are both continuously runnable 

Proof: The”;vorst case situation occurs when one of 
the processes, say Pi, is ahead of Pj on the list and 
leftj is extremely’small (At). It is possible for Pi to 
gain T units of virtual time, then for Pj to run for 
leftj/oj units of virtual time and be placed at the back 
of the list. If Pi were to run for another T units of 
virtual time, then the accrued virtual time of Pi would 
be ahead of the accrued virtual time of Pj by a value 
which is bounded by 2T. 0 

It is easy to see from the proof that the MTR-LS 
policy supports proportional sharing for processes with 
arbitrary, non-negative service fractions. However, the 
cumulative service and delay guarantees are dependent 
upon the service fractions and the Iength of the pre- 
emption interval. In the next subsection we treat the 
case of a zero-length preemption interval followed by a 
subsection on the case At > 0. 

4.2.1 The At = 0 Case 

Throughout we assume that we are using the MTR-LS 
policy. Assuming j E d(t), leftj(t) denotes the value 
of the variable leftj at real time t. 

The following is the basic lemma for the case At = 0. 
Lemma 3: Assume f 3 oj and j E d(r). Then for all 
t >, r we have 

vj(Trt) 2 rj(Tat) - (1 - aj)(ST - le.& (T)/aj) (1) 

Proof: The idea of the proof is to construct a sce- 
nario, C, whereby process Pj obtains service only af- 
ter being blocked to the maximum extent possible by 
the other processes. It will follow from the construc- 
tion that for any other execution in which Pj obtains 
the same amount of service,jthe amount of blocking by 

other processes will be no greater that C. We show 
that in this extremal case that the lemma holds and 
therefore it holds for all other executions. The nota- 
tion vj(r, .) means that the second argument has some 
appropriate value. We use this notation to avoid having 
to create new symbols for these vahres. 

The execution C is designed to insure that Pj is 
blocked from running to the maximum extent possi- 
ble. With this in mind;we assume that at time r all 
processes Pi with i E d(r) and i # j are ahead of Pi 
in the list L. Also assume that all of these processes 
run to their maximum extent, a$’ while preventing Pj 
from running. Thus rjt the real time spent by pro- 
cess Pj waiting to run, without running, is bounded by 

(I- oj)T. At this point we have: 

rj(T, *) < (1 - aj)T + vj(r, -) 

From this point on Pj cannot be blocked further un- 
til Pj obtains reftj(r) real service time. At the point 
where Pj obtains leftj(T) service time we have: 

Now Pj is at the back of the list and SO the worst case 
is for all the active processes to run to their maximum 
extent while blocking Pj from running. At the point 
when Pj reaches the head of the list and can no longer 
be blocked we have: 

T~(T, *) 2 (1 - aj)(2T - lefti (T)/aj) + uj(T, *) 

Continuing as above, after every time vj advances by 
T the other processes can only biock Pj by at most (l- 
oj)T. Since the real running time is ajT, the virtual 
time advance equals the worst-case real-time blocking 
and service times. Thus the above inequality is the 
worst case for the execution C. 

Finally, it is easy to observe that for any other execu- 
tion the amount of blocking by other processes for the 
same amount of running time for Pj is no larger than 
the scenario X given above. The lemma follows. 0 
Corollary 1: The MTR-LS policy provides a cumula- 
tive service guarantee. 0 

From Lemma 4.2.1 we ca: write uj(T, t) 2 rj(r, t) - 
2T for all j and r 5 t. We obtain this worst-case bound 
by setting lefti = 0 and oj = 0. For the case where 
T = aj we get vi(t) 1 rj(t) -T since lefti = ajT. 
Corollary 2: The MTR-LS poIicy provides bounded 
delay. 
Proof: Consider a phase of process Pj that requires 
w work. The duration of the phase is w/B and the 
allotted virtual time is equal to w/(qB). Let T be the 
beginning of the phase and t the time the phase ends 
under the MTR-LS policy. Using Equation 1 we get 

rj(T, t) S W/(QjB) + (1 - aj)(2T - le& (T)/Ck’j) , 
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This equation states that the amount of real time taken 
to complete this’ phase is at most a constant ,amount of 
time more than J/oj times, the duration; of the phase. 
cl ,,,*,*, ‘, 

4.2.2 The At > 0 Case 

Assume that the server has a positive preemption in- 
terval ( i.e., At > 0). As we described above, when the 
preemption interval is positive, we have to deal with the 
case in which ‘a’pro&& Pj arrives. at the server while 
the server is running procesfs Pi and is in the midst of 
a preemption interval. In this case the next de&si$n 
epoch occurs at ‘the end of the Furrent preemption m- 
terval. 

d’ 

For example, let’s consider a system in which there 
are two processes PI and P2, In this system, process 
Pz runs continuously on the server and process PI al- 
ternates between the’server and the elsewhere server. 
We also assume that whenever process PI runs on the 
server it runs for exactly one preemption interval and 
then goes to elsewhere for a while. Due to incredible 
bad luck, whenever process PI arrives at the server, 
the server is running process P2 and is esactly at the 
beginning of the current preemption interval. There- 
fore process PI has to wait (this is A-blocking) At 
real time units before running on the server. This se- 
quence of A-blocking can persist for arT time units 
before PI is put to the rear of L. In addition to the 
bad luck with A-blocking, whenever PI is put at the 
end of the list ,C, process Pz blocks ‘PI for c&T time 
units. Thus we find that, ~1, the real time spent at the 
server in pursuit of T units of virtual time se&ice, can 
be as iarge ,as 2cqT f- a2T. From this’it a??ears that 
err 5 1 -(or +a$ is sufficient $0 h,ave a cumulatrve ser- 
vice guarantee for process PI on the server. Intkrchang- 
ing the roles of Pi and P2, welget that 02’5 &(o++az) 
is sufficient to have a cumulatj\re service guarantee for 
process Pz on the server. 

A,, . 
I 1 

As this example shows, in order to have a cumulative 
service guarantee we need additional restri’c’tions on the 
service fractions associated with servers having a posi- 
tive preemption intervals. ‘The following result gives a 
sufficient condition on the servipe fractions associated 
,$th the server such that the MTR-LS policy supports 
a cumulative service guarantee. 
Lemma 4: Assume At 5 O.i”&sum;k that for all t and 
all j E d(t) we have Olij 2 ‘i $‘&Jtt) oi: Then for all 
t 2 T we have 

aj(T,t)z Tj(T,t)-(l- pLj)ST’-‘(2oj - 1)leftj (T)/aj . 
J ,,c 

(2) /I( I ,.’ ’ 

Proof: The proof on this lemma is similar to the 
proof of Lemma 4.2.1. ’ We’construct a scenario, C, 
whereby process ,Pj obtains service only after being 

blocked to the maximum extent possible by the other 
processes. .Ip addition to the,blocking used in the proof 
of Lemma 4.2.1, this construction uses A-blocking (See 

I Step 2 of the MTR-LS policy) tomcrease the amount of 
blocking that process Pj incurs. It follows from the con- 
struction that for any other execution in which Pj ob- 
tains the same amount of service, the amount of block- 
ing by other processes will be no greater than C. We 
show that in this extremal case that the lemma holds 
and therefore it holds for all other executions. 

The execution C is designed to insure that Pj is 
blocked from running to the maximum extent possible. 
Assume that at time 7 all processes Pi with i E d(T) 
and i # j are ahead of Pj in the list L. Also assume 

j that all of these processes run to their maximum ex- 
tent; giT while preventing Pj from running. Thus rjr 
the real time spent by process Pj waiting to run, with- 
out running, is bounded by (1 - aj)T. At this point we 
have: 

rj(T,*) < (1 -aj)T+~j(~,*) 

In the proof of Lemma 4.2.1 process Pj could no longer 
I be blocked’until is obtained leftj(r) real service time. 
However, due to the positive preemption interval of the 
server, process Pj can suffer A-blocking while attain- 
ing leftj(T) servibe time. Since process Pj has been 
blocked up to this point it has to run a minimum of 
At, before it goes to the elsewhere server. When pro- 
cess Pj ,arrives from the elsewhere server we assume 

rthat some other process is in service and that Pj is A- 
-blocked for at most & time units. Then Pj runs for At 
real time units and again goes to the elsewhere server. 
This pattern repeats until Pj acquires leftj (r) units of 

; processing time at which time we have: 

: -ri(~,.) < (i - aj)T +‘(2oj - l)leftj(T)/oj + uj(rt *) . 
I’. 

Once again all the,other processes are ahead of Pj on 
the list and can block Pj up to (1 - oj)T time units. 
The result is that Pj is once more at the head of the 
list and we have: 

rj(T,!-) < (l-oj)2T+ (2Crj - l)leftj(r)/CYj +Vj(r,‘) s 

From this point onward, Pj fs A-blocked every time it 
gains T units of virtual time and then blocked by all the 
processes until it is reaches the head of the list, Every 
iteration results in a gain of T virtual time for process 
Pj during which it acquires 

/ ‘, 
. $-At+2 c cy; 

GA(,) 

real time (A-blocking, ordinary blocking, and service 
time):, By assumption, ‘the above quantity is less than 

. ,T, and the lemma follows. cl 

Corql!ary 3: Assume At > 0. Assume that for all 2 
and all j E d(t) we have oj 5 1 - zied(t) o;. Then 
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the MTR-LS policy provides a cumulative service guar- 
antee. Cl 

By setting leftj = 0 and oj = 0 we get Vj(r,t) > 
r(r, t) - 2T for all j and r _< t. In the case r = ej, we 
have uj(t) 2 rj(t) - T. 

Corollary 4: Assume At > 0. Assume that for all t 
and all j E d(t) we have oj 5 1 - CieAtr) oi. The 
MTR-LS policy provides bounded delay. cl 

5 Summary 

The major contributions of this paper are as follows: 
We introduced a new &OS parameter-cumulative 
service-for operating system scheduling to provide 
predictable performance for applications requiring mul- 
tiple resources. The system we treat is dynamic, 
namely, processes enter and depart the system. Exist- 
ing scheduling policies [S, 11, 5, lo] that provide delay 
or fairness do not guarantee cumulative service. 

We have presented a new scheduling algorithm, called 
Move-To-Rear List Scheduling, which provides a cu- 
mulative service guarantee. Our results show that the 
MTR-LS policy provides a fairness bound of 2T, where 
T is the virtual quantum of the server, regardless of the 

V choice of service fractions. In a recent paper by Lund, 
Phillips, and Reingold [7], they mention an output link 
scheduling policy for ATM cells calIed “Idea1 Round 
Robin” which is related to MTR-LS. They do not ana- 
lyze the properties of “Ideal Round Robin”, but instead 
they use an approximation to “Ideal Round Robin,” 
called Fair Prioritized Round Robin, as a benchmark 
for comparison with a fair scheduling policy for an 
input-buffered switch [7]. 

The provision of other &OS parameters requires cer- 
tain restrictions on the service fractions. These require- 
ments provide the constraints for admission control. 
When arbitrary preemption is allowed (At = 0), we re- 

quire that the sum of the service fractions is less than 
or equal to one. When processes can preempted only at 
integral multiples of the preemption interval (At > 0), 
we require that for all j, oj 5 1 - CieAttl (pi, where 

d(t) is the set of active processes at time t. This con- 
dition is easy to check since one need only check the 
inequality for the largest service fraction. As long as 
the above conditions on the service fractions hold, the 
MTR-LS poIicy meets the cumulative service guaran- 
tee within 2T and the delay bound is 2T in the worst 
case. The implementation complexity of MTR-LS is 
O(ln(n)) where n is the number of processes. 
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