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Abstract

We propose a new probabilistic approach for multi-label classification that aims to represent the 

class posterior distribution P(Y|X). Our approach uses a mixture of tree-structured Bayesian 

networks, which can leverage the computational advantages of conditional tree-structured models 

and the abilities of mixtures to compensate for tree-structured restrictions. We develop algorithms 

for learning the model from data and for performing multi-label predictions using the learned 

model. Experiments on multiple datasets demonstrate that our approach outperforms several state-

of-the-art multi-label classification methods.
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1. INTRODUCTION

In many real-world applications, a data instance is naturally associated with multiple class 

labels. For example, a document can cover multiple topics [21, 42], an image can be 

annotated with multiple tags [6, 29] and a single gene may be associated with several 

functional classes [9, 42]. Multi-label classification (MLC) formulates such situations by 

assuming each data instance is associated with a subset of d labels. Alternatively, this 

problem can be defined by associating each instance with d binary class variables Y1, …Yd, 

where Yi denotes whether or not the i-th label is present in the instance. The goal is to learn a 

function that assigns to each instance, represented by a feature vector x = (x1, …, xm), the 

most probable assignment of the class variables y = (y1, …, yd). However, learning of such a 

function can be very challenging because the number of possible label configurations is 

exponential in d.

A simple solution to the above problem is to assume that all class variables are conditionally 

independent of each other and learn d functions to predict each class separately [9, 6]. 
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However, this may not suffice for many real-world problems where dependences among 

output variables exist. To overcome this limitation, multiple machine learning methods that 

model class relations have been proposed in recent years. These include two-layer 

classification models [14, 8], classifier chains [31, 41, 10], output coding methods [18, 34, 

44, 45] and multi-dimensional Bayesian network classifiers [38, 5, 1].

In this work, we develop and study a new probabilistic approach for modeling and learning 

an MLC. Our approach aims to represent the class posterior distribution P(Y1, …, Yd|X) such 

that it captures multivariate dependences among features and labels. Our proposed model is 

defined by a mixture of Conditional Tree-structured Bayesian Networks (CTBNs) [2]. A 

CTBN defines P(Y1, …, Yd|X) using a directed tree structure to model the relations among 

the class variables conditioned on the feature variables. The main advantage of CTBN is that 

it allows efficient learning and inference. A mixture of CTBNs leverages the computational 

advantages of CTBNs and the ability of a mixture to compensate for the tree-structure 

restriction.

Our new mixture model extends the work by [26] that models and learns the joint 

distribution over many variables using tree-structured distributions and their mixtures, to 

learn conditional distributions where the multivariate relations among Y components are 

conditioned on inputs X. To support learning and inference in the new model, we develop 

and test new algorithms for: (1) learning the parameters of conditional trees mixtures, (2) 

selecting individual tree structures and (3) inferring the maximum a posteriori (MAP) output 

label configurations.

An important advantage of our method compared to existing MLC methods is that it gives a 

well-defined model of posterior class probabilities. That is, our model lets us calculate P(Y 
= y|X = x) for any (x, y) input-output pair. This is extremely useful not only for prediction, 

but also for decision making [30, 3], conditional outlier analysis [15, 16, 17], or for 

performing any inference over subsets of output class variables. In contrast to our approach, 

the majority of existing MLC methods aim to only identify the best output configuration for 

the given x.

2. PROBLEM DEFINITION

In Multi-Label Classification (MLC), each instance is associated with d binary class 

variables Y1, …Yd. We are given labeled training data , where 

 is a m-dimensional feature vector representing the n-th instance (the 

input) and  is its corresponding d-dimensional class vector (the output). 

We want to learn a function h (from D) that assigns to each instance, represented by its 

feature vector, a class vector:

One way to approach this task is to model and learn the conditional joint distribution P(Y|

X), where Y = (Y1, …, Yd) is a random variable for the class vector and X is a random 
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variable for the feature vector. Assuming the 0–1 loss function, the optimal classifier h* 

assigns to each instance x the maximum a posteriori (MAP) assignment of class variables:

(1)

A key challenge for modeling and learning P(Y|X) from data, as well as for defining the 

corresponding MAP classifier, is that the number of all possible class assignments one has to 

consider is 2d. The goal of this paper is to develop a new, efficient model and methods for 

its learning and inference that overcome this difficulty.

Notation

For notational convenience, we will omit the index superscript (n) when it is not necessary. 

We may also abbreviate the expressions by omitting variable names; e.g., P(Y1 = y1, …, Yd 

= yd|X= x) = P (y1, …, yd|x).

3. RELATED RESEARCH

In this section, we briefly review the research work related to our approach and pinpoint the 

main differences.

MLC method based on learning independent classifiers was studied by [9, 6]. Zhang and 

Zhou [43] presented a multi-label k-nearest neighbor method, which learns a classifier for 

each class by combining k-nearest neighbor with Bayesian inference. To model possible 

class dependences, [14, 8] proposed adding a second layer of classifiers that combine input 

features with the outputs of independent classifiers. The limitation of these early approaches 

is that class dependences are either not modeled at all, or modeled in a very limited way.

The classifier chains (CC) method [31] models the class posterior distribution P(Y|X) by 

decomposing the relations among class variables using the chain rule:

(2)

Each component in the chain is a classifier that is learned separately by incorporating the 

predictions of preceding classifiers as additional features. Zhang and Zhang [41] realized 

that the performance of CC is influenced by the order of classes in the chain and presented a 

method to learn such ordering from data. Dembczynski et al. [10] discussed the 

suboptimality of CC and presented probabilistic classifier chains to estimate the entire 

posterior distribution of classes. However, this method has to evaluate exponentially many 

label configurations, which greatly limits its applicability.

Another approach for modeling P(Y|X) relies on conditional random fields (CRFs) [24]. 

Ghamrawi and McCallum [13] presented a method called collective multi-label with 

features classifier (CMLF) that captures label co-occurrences conditioned on features. 
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However, CMLF assumes a fully connected CRF structure which results in a high 

computational cost. Later, Shahaf et al. [32] and Bradley et al. [7] proposed to learn tractable 

(low-treewidth) structures of class variables for CRFs using conditional mutual information. 

More recently, Pakdaman et al. [28] used pairwise CRFs to model the class dependences and 

presented L2-optimization-based structure and parameter learning algorithms. Although the 

later methods share similarities with our approach by modeling the conditional dependences 

in Y space using restricted structures, their optimization of the likelihood of data is 

computationally more costly. To alleviate this, CRF-based methods often resort to 

optimization of a surrogate objective function (e.g., the pseudo-likelihood of data [28]) or 

include specific assumptions (e.g., features are assumed to be discrete [13]; relevant features 

for each class are assumed to be known [32, 7]), which complicate the application of the 

methods.

Multi-dimensional Bayesian network classifiers (MBC) [38, 5, 1] build a generative model 

of P(X, Y) using special Bayesian network structures that assume all class variables are top 

nodes and all feature variables are their descendants. Although our approach can be 

compared to MBC, there are significant differences and advantages: (1) MBC only handles 

discrete features and, thus, all features should be a priori discretized; while we handle both 

continuous and discrete features. (2) MBC defines a joint distribution over both feature and 

class variables and the search space of the model increases with the input dimensionality m; 

while our search space does not depend on m. (3) Feature selection in MBC is done 

explicitly by learning the individual relationships between features and class variables; while 

we perform feature selection by regularizing the base classifiers. (4) MBC requires 

expensive marginalization to obtain class conditional distribution P(Y|X); while we directly 

estimate P(Y|X).

An alternative approach for MLC is based on output coding. The idea is to compress the 

output into a codeword, learn how to predict the codeword and then recover the correct 

output from the noisy predictions. A variety of approaches have been devised by using 

different compression techniques, such as compressed sensing [18], principal component 

analysis [34] and canonical correlation analysis [44]. The state-of-the-art in output coding 

utilizes a maximum margin formulation [45] that promotes both discriminative and 

predictable codes. The limitation of output coding methods is that they can only predict the 

single “best” output for a given input, and they cannot compute probabilities for different 

input-output pairs.

Several researchers proposed using ensemble methods for MLC. Read et al. [31] presented a 

simple method that averages the predictions of multiple random classifier chains trained on a 

random subset of the data. Antonucci et al. [1] proposed an ensemble of multi-dimensional 

Bayesian networks combined via simple averaging. These networks represent different Y 
relations (the structures are set a priori and not learned) and all of the networks adopt the 

naïve Bayes assumption (the features are independent given the classes). Unlike these 

methods, our approach learns the structures in the mixture, its parameters and mixing 

coefficients from data in a principled way.
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4. PRELIMINARY

The MLC solution we propose in this work combines multiple base MLC classifiers using 

the mixtures-of-trees (MT) [26, 39] framework, which uses a mixture of multiple trees to 

define a generative model of P(Y) for discrete multidimensional domains. The base 

classifiers we use are based on the conditional tree-structured Bayesian networks (CTBN) 

[2]. To begin with, we briefly review the basics of MT and CTBN.

MT consists of a set of trees that are combined using mixture coefficients λk to represent the 

joint distribution P(y). The model is defined by the following decomposition:

(3)

where P(y|Tk) are called mixture components that represent the distribution of outputs 

defined by the k-th tree Tk. Note that a mixture can be understood as a soft-multiplexer, 

where we have a hidden selector variable which takes a value k ∈ {1, …, K} with 

probability λk. That is, by having a convex combination of mutually complementary tree-

structured models, MT aims at achieving a more expressive and accurate model.

While MT is not as computationally efficient as individual trees, it has been considered as a 

useful approximation at a fraction of the computational cost learning general graphical 

models [22]. MT has been successfully adopted in a range of applications, including 

modeling of handwriting patterns, medical diagnostic network, automated application 

screening, gene classification and identification [26], face detection [20], video tracking 

[19], road traffic modeling [39] and climate modeling [22].

In this work, we apply the MT framework in context of MLC. In particular, we combine MT 

with CTBN to model individual trees. CTBN is a recently proposed probabilistic MLC 

method that has been shown to be competitive and efficient on a range of domains. CTBN 

defines P(Y|X) using a collection of classifiers modeling relations in between features and 

individual labels that are tied together using a special Bayesian network structure that 

approximates the dependence relations among the class variables. In modeling of the 

dependences, it allows each class variable to have at most one other class variable as a 

parent (without creating a cycle) besides the feature vector X.

A CTBN T defines the joint distribution of class vector (y1, …, yd) conditioned on feature 

vector x as:

(4)

where π(i, T) denotes the parent class of class Yi in T (by convention, π(i, T) = {} if Yi does 

not have a parent class). For example, the conditional joint distribution of class assignment 

(y1, y2, y3, y4) given x according to the network T in Figure 1 is defined as:

Hong et al. Page 5

Proc ACM Int Conf Inf Knowl Manag. Author manuscript; available in PMC 2015 April 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Although our proposed method is motivated by MT, there are significant extensions and 

differences. We summarize the key distinctions below.

1. Model: Our model represents P(Y|X), the class posterior distribution for MLC, 

using CTBNs that each consists of a collection of logistic regression models, linked 

together by a directed tree; on the other hand, the MT model [26] represents the 

joint distribution P(Y) using standard tree-structured Bayesian networks.

2. Structure learning: Our structure learning algorithm optimizes P(Y|X) using 

weighted conditional log-likelihood criterion; while MT relies on the standard 

Chow-Liu algorithm [23] that optimizes P(Y) using mutual information.

3. Parameter learning: Not surprisingly, both our parameter learning method and that 

of MT rely on the EM algorithm. However, the criteria and how to optimize them 

are very different. For example, the M-step of our algorithm corresponds to 

learning of instance-weighted logistic regression classifiers; while that of MT is 

based on simple (weighted) counting.

5. OUR METHOD

In this section, we describe Mixture of Conditional Tree-structured Bayesian Networks 

(MC), which uses the MT framework in combination with the CTBN classifiers to improve 

the classification accuracy of MLC tasks, and develop algorithms for its learning and 

predictions. In section 5.1, we describe the mixture defined by the MC model. In section 5.2 

through 5.4, we present the learning and prediction algorithms for the MC model.

5.1 Representation

By following the definition of MT in Equation (3), MC defines the multivariate posterior 

distribution of class vector y = (y1, …, yd) as:

(5)

where λk ≥ 0, ∀k; and . Here each mixture component P(y|x, Tk) is the 

distribution defined by CTBN Tk (as in Equation (4)) and mixture coefficients are denoted by 

λk. Figure 2 depicts an example MC model, which consists of K CTBNs and the mixture 

coefficients λk.

5.2 Parameter Learning

In this section, we describe how to learn the parameters of MC by assuming the structures of 

individual CTBNs are known and fixed. The parameters of the MC model are the mixture 

coefficients {λ1, …, λK} as well as the parameters of each CTBN in the mixture {θ1, …, 

θK}.
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Given training data D = {x(n), y(n)} : n ∈ 1, …, N, the objective is to optimize the log-

likelihood of D, which we refer to as the observed log-likelihood.

However, this is very difficult to directly optimize because it contains the log of the sum. 

Hence, we cast this optimization in the expectation-maximization (EM) framework. Let us 

associate each instance (x(n), y(n)) with a hidden variable z(n) ∈ {1, …, K} indicating which 

CTBN it belongs. The complete log-likelihood (assuming z(n) are observed) is:

(6)

(7)

where [z(n) = k] is the indicator function, which is one if the n-th instance belongs to the k-

th CTBN and zero otherwise; and λk is the mixture coefficient of CTBN Tk, which can be 

interpreted as its prior probability in the data.

The EM algorithm iteratively optimizes the expected complete log-likelihood, which is 

always a lower bound to the observed log-likelihood [27]. In the E-step, the expectation is 

computed with the current set of parameters; in the M-step, the parameters of the mixture 

(λk, θk : k = {1, …, K}) are relearned to maximize the expected complete log-likelihood. In 

the following, we describe our parameter learning algorithm by deriving the E-step and the 

M-step for MC.

5.2.1 E-step—In the E-step, we compute the expectation of the hidden variables. Let γk(n) 

denote P(z(n) = k|y(n), x(n)), the posterior of the hidden variable z(n) given the observations 

and the current parameters. Using Bayes rule, we write:

(8)

5.2.2 M-step—In the M-step, we learn the model parameters {λ1, …, λK, θ1, …, θK} that 

maximize the expected complete log-likelihood, which is a lower bound of the observed log-

likelihood. Let us first define the following two quantities:
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Γk can be interpreted as the number of observations that belongs to the k-th CTBN (hence, 

), and wk(n) is the renormalized posterior γk(n), which can be interpreted as the 

weight of the n-th instance on the k-th CTBN.

Note that when taking the expectation of the complete log-likelihood (Equation (6)), only 

the indicator [z(n) = k] is affected by the expectation. By using the notations introduced 

above, we rewrite the expected complete log-likelihood:

(9)

We wish to maximize (9) with respect to {λ1, …, λK, θ1, …, θK} subject to the constraint 

. Notice that (9) consists of two terms and each term has a disjoint subset of 

parameters – which allows us to maximize (9) term by term. By maximizing the first term 

with respect to λj (the mixture coefficient of Tj), we obtain:

To maximize the second term, we train θj (the parameters of Tj) to maximize:

(10)

It turns out (10) is the instance-weighted log-likelihood, and we use instance-weighted 

logistic regression to optimize it. Algorithm 1 outlines our parameter learning algorithm.

5.2.3 Complexity

E-step: We compute γk(n) for each instance on every CTBN. To compute γk(n), we should 

estimate P(y (n)|x(n), Tk), which requires applying the logistic regression classifiers for each 

node of Tk, which requires O(md) multiplications. Hence, the complexity of the E-step is 

O(KNmd).

M-step: The major computational cost of the M-step is to learn the instance-weighted 

logistic regression models for the nodes of every CTBN. Hence, the complexity is O(Kd) 

times the complexity of learning logistic regression.
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5.3 Structure Learning

In this section, we describe how to automatically learn multiple CTBN structures from data. 

We apply a sequential boosting-like heuristic, where in each iteration we learn the structure 

that focuses on the instances that are not well predicted by the previous structures (i.e., the 

MC model learned so far). In the following, we first describe how to learn a single CTBN 

structure from instance-weighted data. After that, we describe how to re-weight the 

instances and present our algorithm for learning the overall MC model.

Algorithm 1

learn-MC-parameters

Input: Training data D; base CTBNs T1, …, TK

Output: Model parameters {θ1, …, θK, λ1, …, λK}

1: repeat

2:  E-step:

3:  for k = 1 to K, n = 1 to N do

4:   Compute γk(n) using Equation (8)

5:  end for

6:  M-step:

7:  for k = 1 to K do

8:

   

9:   wk(n) = γk(n)/Γk

10:   λk = Γk/N

11:

   

12:  end for

13: until convergence

5.3.1 Learning a Single CTBN Structure on Weighted Data—The goal here is to 

discover the CTBN structure that maximizes the weighted conditional log-likelihood 

(WCLL) on {D, Ω}, where  is the data and  is the weight 

for each instance. We do this by partitioning D into two parts: training data Dtr and hold-out 

data Dh. Given a CTBN structure T, we train its parameters using Dtr and the corresponding 

instance weights. On the other hand, we use WCLL of Dh to score T.

(11)

In the following, we describe our algorithm for obtaining the CTBN structure that optimizes 

Equation (11) without having to evaluate all of the exponentially many possible tree 

structures.
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Let us first define a weighted directed graph G = (V, E), which has one vertex Vi for each 

class label Yi and a directed edge Ej→i from each vertex Vj to each vertex Vi (i.e., G is 

complete). In addition, each vertex Vi has a self-loop Ei→i. The weight of edge Ej→i, 

denoted as Wj→i, is the WCLL of class Yi conditioned on X and Yj:

The weight of self-loop Ei→i, denoted as Wϕ→i, is the WCLL of class Yi conditioned only on 

X. Using the definition of edge weights, Equation (11) can be simplified as the sum of the 

edge weights:

Now we have transformed the problem of finding the optimal tree structure into the problem 

of finding the tree in G that has the maximum sum of edge weights. The solution can be 

obtained by solving the maximum branching (arborescence) problem [11], which finds the 

maximum weight tree in a weighted directed graph.

5.3.2 Learning Multiple CTBN Structures—In order to obtain multiple CTBN 

structures for the MC model, we apply the algorithm described above multiple times with 

different sets of instance weights. We assign the weights such that we give higher weights 

for poorly predicted instances and lower weights for well-predicted instances.

We start with assigning all instances uniform weights (i.e., all instances are equally 

important a priori).

Using this initial set of weights, we find the initial CTBN structure T1 (and its parameters 

θ1) and set the current model M to be T1. We then estimate the prediction error margin ω(n) 

= 1 − P(y(n)|x(n), M) for each instance and renormalize such that . We use 

{ω(n)} to find the next CTBN structure T2. After that, we set the current model to be the MC 

model learned by mixing T1 and T2 according to Algorithm 1.

We repeat the process by incrementally adding trees to the mixture. To stop the process, we 

use internal validation approach. Specifically, the data used for learning are split to internal 

train and test sets. The structure of the trees and parameters are always learned on the 

internal train set. The quality of the current mixture is evaluated on the internal test set. The 

mixture growth stops when the log-likelihood on the internal test set for the new mixture is 

worse than for the previous mixture. The trees included in the previous mixture are then 

fixed, and the parameters of the mixture are relearned on the full training data.
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5.3.3 Complexity—In order to learn a single CTBN structure, we compute edge weights 

for the complete graph G, which requires estimating P(Yi|X, Yj) for all d2 pairs of classes. 

Finding the maximum branching in G can be obtained in O(d2) using [35]. To learn K 

CTBN structures for the mixture, we repeat these steps K times. Therefore, the overall 

complexity is O(d2) times the complexity of learning logistic regression.

5.4 Prediction

In order to make a prediction for a new instance x, we want to find the MAP assignment of 

the class variables (see Equation (1)). In general, this requires to evaluate all possible 

assignments of values to d class variables, which is exponential in d.

One important advantage of the CTBN model is that the MAP inference can be done more 

efficiently by avoiding blind enumeration of all possible assignments. More specifically, the 

MAP inference on a CTBN is linear in the number of classes (O(d)) when implemented 

using a variant of the max-sum algorithm [23] on a tree structure.

However, our MC model consists of multiple CTBNs and the MAP solution may, at the end, 

require enumeration of exponentially many class assignments. To address this problem, we 

rely on approximate MAP inference. Two commonly applied MAP approximation 

approaches are convex programming relaxation via dual decomposition [33], and simulated 

annealing using a Markov chain [40]. In this work, we use the latter approach. Briefly, we 

search the space of all assignments by defining a Markov chain that is induced by local 

changes to individual class labels. The annealed version of the exploration procedure [40] is 

then used to speed up the search. We initialize our MAP algorithm using the following 

heuristic: first, we identify the MAP assignments for each CTBN in the mixture 

individually, and after that, we pick the best assignment from among these candidates. We 

have found this (efficient) heuristic to work very well and it often results in the true MAP 

assignment.

6. EXPERIMENTS

We perform experiments on ten publicly available multi-label datasets. These datasets are 

obtained from different domains such as music recognition (emotions [36]), semantic image 

labeling (scene [6] and image [10]), biology (yeast [12]) and text classification (enron [4] 

and RCV1 [25] datasets). Table 1 summarizes the characteristics of the datasets. We show 

the number of instances (N), number of feature variables (m) and number of class variables 

(d). In addition, we show two statistics: label cardinality (LC), which is the average number 

of labels per instance, and distinct label set (DLS), which is the number of all distinct 

configurations of classes that appear in the data. Note that, for RCV1 datasets, we have used 

the ten most common labels.

6.1 Methods

We compare the performance of our proposed mixture-of-CTBNs (MC) model with simple 

binary relevance (BR) independent classification [9, 6] as well as several state-of-the-art 

MLC methods. These methods include classification with heterogeneous features (CHF) 

[14], multi-label k-nearest neighbor (MLKNN) [43], instance-based learning by logistic 
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regression (IBLR) [8], classifier chains (CC) [31], ensemble of classifier chains (ECC) [31], 

probabilistic classifier chains (PCC) [10], ensemble of probabilistic classifier chains (EPCC) 

[10], multi-label conditional random fields (ML-CRF) [28], and maximum margin output 

coding (MMOC) [45]. We also compare MC with a single CTBN (SC) [2] model without 

creating a mixture.

For all methods, we use the same parameter settings as suggested in their papers: For 

MLKNN and IBLR, which use the k-nearest neighbor (KNN) method, we use Euclidean 

distance to measure similarity of instances and we set the number of nearest neighbors to 10 

[43, 8]; for CC, we set the order of classes to Y1 < Y2, … < Yd [31]; for ECC and EPCC, we 

use 10 CCs in the ensemble [31, 10]; finally for MMOC, we set the decoding parameter to 1 

[45]. Also note that all of these methods except MLKNN and MMOC are considered as 

meta-learners because they can work with several base classifiers. To eliminate additional 

effects that may bias the results, we use L2-penalized logistic regression for all of these 

methods and choose their regularization parameters by cross validation. For our MC model, 

we decide the number of mixture components using our stopping criterion (Section 5.3.2) 

and we use 150 iterations of simulated annealing for prediction.

6.2 Evaluation Measures

Evaluating the performance of MLC methods is more difficult than evaluating simple 

classification methods. The most suitable performance measure is the exact match accuracy 

(EMA), which computes the percentage of instances whose predicted label vectors are 

exactly the same as their true label vectors.

However, this measure could be too harsh, especially when the output dimensionality is 

high. Another very useful measure is the conditional log-likelihood loss (CLL-loss), which 

computes the negative conditional log-likelihood of the test instances:

CLL-loss evaluates how much probability mass is given to the true label vectors (the higher 

the probability, the smaller the loss).

Other evaluation measures used commonly in MLC literature are based on F1 scores. Micro 

F1 aggregates the number of true positives, false positives and false negatives for all classes 

and then calculates the overall F1 score. On the other hand, macro F1 computes the F1 score 

for each class separately and then averages these scores. Note that both measures are not the 

best for MLC because they do not account for the correlations between classes (see [10] and 

[41]). However, we report them in our performance comparisons as they have been used in 

other MLC literature [37].
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6.3 Results

6.3.1 Performance Comparisons—We have performed ten-fold cross validation for all 

of our experiments. To evaluate the statistical significance of performance difference, we 

apply paired t-tests at 0.05 significance level. We use markers */⊛ to indicate whether MC 

is significantly better/worse than the compared method.

Tables 2, 3, 4 and 5 show the performance of the methods in terms of EMA, CLL-loss, 

micro F1 and macro F1, respectively. We only show the results of MMOC on four datasets 

(emotions, yeast, scene and image) because it did not finish on the remaining data (MMOC 

did not finish one round of the learning within a 24 hours time limit). For the same reason, 

we do not report the results of PCC, EPCC and MLCRF on the enron dataset. Also note that 

we do not report CLL-loss for MMOC, ECC and EPCC because they do not compute a 

probabilistic score for a given class assignment.

In terms of EMA (Table 2), MC clearly outperforms the other methods on most datasets. 

MC is significantly better than BR, CHF, MLKNN and CC on all ten datasets, significantly 

better than IBLR, ECC and MLCRF on nine datasets, significantly better than EPCC and SC 

on five datasets and significantly better than PCC on four datasets (see the last row of Table 

2). Although not statistically significant, MC performs better than MMOC on all datasets 

MMOC is able to finish. MLKNN and IBLR perform poorly on the high-dimensional (m > 

1, 000) datasets because Euclidean distances between data instances become indiscernible in 

high dimensions.

Interestingly, MC shows significant improvements over SC (a single CTBN) on five 

datasets, while SC produces competitive results as well. We attribute the improved 

performance of MC to the ability of mixtures to compensate for the restricted dependences 

modeled by CTBNs, and that of individual CTBNs to better fit the data with different weight 

sets. On the contrary, ECC and EPCC do not show consistent improvements over their base 

methods (CC and PCC, respectively) and sometimes even deteriorate the accuracy. This is 

due to the ad-hoc nature of their ensemble learning and prediction (see Section 3) that limits 

the potential improvement and disturbs the prediction of the ensemble classifiers.

Table 3 compares MC to other probabilistic MLC methods using CLL-loss. The results 

show that MC outperforms all other methods. This is expected because MC is tailored to 

optimize the conditional log-likelihood. Among the compared probabilistic methods, only 

PCC produces comparable results with MC because PCC explicitly evaluates all possible 

class assignments to compute the entire class conditional distribution. On the other hand, CC 

greedily seeks the mode of the class conditional distribution (Equation (2)) and results in 

large losses. In addition, CHF and MLKNN perform very poorly because they apply ad-hoc 

classification heuristics without performing proper probabilistic inference. Again, MC 

shows consistent improvements over SC because mixing multiple CTBNs allows us to 

account for different patterns in the data and, hence, improves the generalization of the 

model.

Lastly, Tables 4 and 5 show that MC is also very competitive in terms of micro and macro 

F1 scores, although optimizing them was not our immediate objective. One noteworthy 
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observation is that ECC and EPCC do particularly well in terms of F1 scores. We consider 

averaging out the predictions on each class variable enhances BR-like characteristics in their 

ensemble decision. In the future, we will crossbreed these two different ensemble 

approaches (e.g., MCC/MPCC by applying our mixture framework and algorithms to CC/

PCC; ECTBN using randomly structured CTBNs and simple averaging) and compare the 

performances.

6.3.2 Effect of the Number of Mixture Components—In the second part of our 

experiments, we investigate the effect of different number of mixture components in the MC 

model. Using three of the benchmark datasets (emotions, scene and image), we study how 

the performance of MC changes while we increase the number of trees in a model from 1 to 

20. In particular, we use ten-fold cross validation and trace the average CLL-loss and EMA 

across the folds.

Figure 3 summarizes the results. Figures 3(a), 3(b) and 3(c) show how CLL-loss changes on 

emotions, scene and image, respectively. On all three datasets, adding first few trees brings 

the CLL-loss of a mixture model in a rapid improvement. Then the growth becomes slower 

until it reaches its first peak. After it passes the first peak, CLL-loss stops improving and 

becomes stable.

Figures 3(d), 3(e) and 3(f) show the performance changes in EMA. Notice that EMA is 

closely correlated with CLL-loss on all three datasets, and our stopping criteria is useful in 

optimizing EMA as well as CLL-loss. That is, EMA improves significantly while CLL-loss 

increases rapidly. Once CLL-loss becomes stable, EMA also seems to be stable and does not 

show any signs of fluctuation or overfitting.

7. CONCLUSION

In this work, we proposed a new probabilistic approach to multi-label classification based on 

the mixture of Conditional Tree-structured Bayesian Networks. We devised and presented 

algorithms for learning the parameters of the mixture, finding multiple tree structures and 

inferring the maximum a posteriori (MAP) output label configurations for the model. Our 

experimental evaluation on a range of datasets shows that our approach outperforms the 

state-of-the-art multi-label classification methods in most cases.
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Figure 1. 
An example CTBN
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Figure 2. 
An example MC
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Figure 3. 
Conditional log-likelihood loss and exact match accuracy of MC with different number of 

mixture components
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