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ABSTRACT

The ubiquity of smartphones has led to the emergence of mobile
crowdsourcing tasks such as the detection of spatial events when
smartphone users move around in their daily lives. However, the
credibility of those detected events can be negatively impacted by
unreliable participants with low-quality data. Consequently, a ma-
jor challenge in quality control is to discover true events from di-
verse and noisy participants’ reports. This truth discovery problem
is uniquely distinct from its online counterpart in that it involves
uncertainties in both participants’ mobility and reliability. Decou-
pling these two types of uncertainties through location tracking will
raise severe privacy and energy issues, whereas simply ignoring
missing reports or treating them as negative reports will signifi-
cantly degrade the accuracy of the discovered truth. In this paper,
we propose a new method to tackle this truth discovery problem
through principled probabilistic modeling. In particular, we in-
tegrate the modeling of location popularity, location visit indica-
tors, truth of events and three-way participant reliability in a uni-
fied framework. The proposed model is thus capable of efficiently
handling various types of uncertainties and automatically discover-
ing truth without any supervision or the need of location tracking.
Experimental results demonstrate that our proposed method out-
performs existing state-of-the-art truth discovery approaches in the
mobile crowdsourcing environment.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—Data Min-
ing; H.4 [Information Systems Applications]: Miscellaneous
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1. INTRODUCTION
The growing smartphone user base has enabled mobile crowd-

sourcing applications on a large scale [15]. Several commercial
markets such as Field Agent [3], Gigwalk [4] and TaskRabbit [5]
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have emerged, which represent the mobile equivalent of online crowd-
sourcing markets such as the AmazonMechanical Turk [1]. Crowd-
sourced detection of spatial events is one such application where
participants detect events while moving around in their daily lives.
These events are arbitrary phenomena that the task requester is in-
terested in, e.g., potholes on streets [14], graffiti on walls [17] and
bike racks in public places [23].

Consider the task of detecting the locations of potholes as an ex-
ample, where Figure 1a shows a user interface for task instruction.
Since the number of possible event locations is huge and most loca-
tions normally do not have an event (e.g., no potholes), a participant
uses her smartphone to make a report (tagged with time and loca-
tion as shown in Figure 1b) only when she detects an event. In other
words, a participant either reports a detection (a positive report) or
does not report at all (a missing report), but never reports a “lack
of an event” (a negative report). As participants may erroneously
report events due to misunderstanding, confusion, carelessness, in-
competence or even intent to deceive (Figure 1c), there is a demand
for efficient algorithms to handle these diverse and noisy partici-
pants’ reports and automatically discover the truth (Figure 1d).

This truth discovery problem is uniquely distinct from its on-
line counterpart in that it involves uncertainties in both participants’
mobility and reliability. Since participants only sporadically reveal
their locations when reporting events for the geotagging purpose,
we cannot obtain their detailed trajectories. This imposes a signif-
icant challenge in interpreting missing reports at candidate event
locations, which consequently impacts the quality of truth discov-
ery (shown in Figure 1e where a positive and a missing report are
annotated as a “1” and a blank space respectively). A missing re-
port is ambiguous since it can be due to either the mobility issue
that a participant did not visit a location and thus could not assess
the event there, or a negative event assessment when she visited
that location. It is important to distinguish these two cases, as the
former does not carry any information about the truth of the event
and the participant reliability while the latter does.

A possible solution to this problem is to continuously track par-
ticipants’ locations such that the missing reports corresponding to
unvisited locations are ignored and those corresponding to visited
locations are treated as negative. We illustrate this strategy in Fig-
ure 2a, where reports that are taken into consideration (as partic-
ipants visited the corresponding locations) are marked with gray
backgrounds and the inferred “negative” reports are annotated as
“-1”s. After eliminating the uncertainty in mobility, we can apply
existing truth discovery methods for online crowdsourcing. How-
ever, location tracking is impractical as it raises severe privacy and
energy issues [6, 30]. Alternatively, one can try to reconstruct a
participant’s mobility path. Nevertheless, machine learning-based
path reconstruction methods [16] require historical location traces
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Figure 1: (a) Example user interface for task instruction. (b) Example user interface for reporting a spatial event. (c) Illustration

of the space of all true events (in the red circle, at locations l0, l1, l2) and participant-reported events (in the blue circle, at locations

l1, l2, l3). (d) Input into the truth discovery algorithm and the expected output. (e) Participants (u) and reported events (represented

by their locations l) shown in a matrix form, where a “1” and a blank space represent a positive and a missing report respectively.

(a) Location tracking (b) Ignoring missing (c) Missing as neg.

Figure 2: Different strategies of handling missing reports. A

entry with a gray (white) background means that the corre-

sponding report is (not) taken into consideration for truth dis-

covery. A “1” indicates a positive report, a “-1” indicates that

the missing report is treated as negative and a blank space in-

dicates that the missing report is ignored. (a) Tracking partic-

ipants’ locations. (b) Ignoring all missing reports. (c) Treating

all missing reports as negative reports.

which can only be obtained through tracking and such methods will
easily fail when a participant deviates from her usual paths. Map-
matching-based path reconstruction methods [13] require road net-
work information and they will easily fail if the time interval be-
tween consecutively revealed locations is larger than 5 minutes.

Strategies used for tackling missing data in related domains may
be useful. For example, Raykar et al. [22] simply ignore the miss-
ing data for online crowdsourced binary image classification. This
is because online crowd workers are required to provide either a
positive or a negative response, and the missing data simply imply
that workers did not choose the images to work on. By applying
this strategy to crowdsourced event detection, however, we will end
up with only positive reports without any conflict (Figure 2b). This
will lead to a trivial conclusion that every reported event is true,
which is obviously erroneous. In tackling conflicting Web infor-
mation for data integration, Zhao et al. [29] treat missing reports
as negative reports if a source did not make claims on some of the
facts (e.g., did not claim that Emma Watson is a cast) but on others
(e.g., claimed that Daniel Radcliffe is a cast) about an entity (e.g.,
the movie Harry Potter). By applying this strategy to crowdsourced
event detection, we can regard the spatial area of interest as an en-
tity and events inside it as multiple facts, each can be either true or
false. Each missing report will then become a negative report and
imply a lack of an event (Figure 2c). If none of the events receives
positive reports from more than half of the participants due to mo-
bility issues, we will then conclude that all the events are false by
majority voting, which is again erroneous. A work on social sens-
ing [24] similarly treats missing reports as negative reports.

In this paper, we propose a newmethod to tackle the truth discov-
ery problem in crowdsourced event detection through principled
probabilistic modeling. We observe that a participant’s likelihood

of reporting an event depends on three factors: 1) whether the par-
ticipant visited the event location, 2) whether the event at that loca-
tion is true or false, and 3) how reliable the participant is. Based on
these observations, we model that each event location has certain
popularity, which influences the possibility of a randomly selected
participant to visit that location. This is motivated by the fact that
some locations (e.g., shopping malls) naturally attract more people
while others (e.g., country roads) attract fewer. Moreover, we treat
the truth of events as latent variables and model three-way partic-
ipant reliability, including true positive rate and false positive rate
while present at a location and reporting rate while absent from a
location. By doing so, positive and missing reports become random
variables generated by conditioning on all these factors. Our ap-
proach thus directly incorporates the mobility issues in the model,
can efficiently handle missing reports and can automatically infer
the truth of events and different aspects of participant reliability.
Moreover, it is unsupervised and avoids location tracking.

In summary, this paper makes the following contributions:

1. We propose to address the truth discovery problem in crowd-
sourced detection of spatial events.

2. We propose an unsupervised Bayesian probabilistic approach
which models location popularity, location visit indicators,
truth of events and three-way participant reliability in an inte-
grated framework. Moreover, this approach does not require
location tracking.

3. We develop an efficient algorithm for model inference via
collapsed Gibbs sampling.

The remainder of this paper is organized as follows. We for-
malize the problem in Section 2. We then introduce our proposed
model and develop the inference algorithm in Sections 3 and 4.
Experimental setup and results are presented in Sections 5 and 6.
Several possible improvements and related work are discussed in
Sections 7 and 8. Finally, we conclude the paper in Section 9.

2. PROBLEM STATEMENT
We formally define the truth discovery problem in this section.

Consider a scenario where a group of participants joins a task to
report a specific type of spatial events (e.g., potholes). A participant
uses her smartphone to make a report r upon detection. Each report
r = (u, l, t) contains the participant ID u, the location l of the event
(e.g., by GPS) and the time t of the report.
The set of related reports within a time window T and a spatial

region of interest S is given by

R = {r|r.t ∈ T , r.l ∈ S}.
The proper sizes of T and S are application-dependent and can
be specified via domain knowledge or through data-driven spatio-



temporal clustering. From these reports, we can extract the set of
all participants U and the set of all reported event locations L as

U = {u|u = r.u, r ∈ R}, L = {l|l = r.l, r ∈ R}.
We use ui and lj to denote the ith participant and the jth event
location respectively. We assume that all events last for the duration
of the time window and thus can be distinguished by their locations.
We denote M = |U| and N = |L|.
We construct a report matrix X = {xi,j} from U and L as fol-

lows

xi,j = 1 if ∃r|r.u = ui, r.l = lj ,

which indicates that participant ui made a report claiming that an
event was detected at location lj ; xi,j = 0 otherwise. We term
xi,j = 1 as a positive report and xi,j = 0 as a missing report. A
missing report is ambiguous since it can be due to either the mo-
bility issue that ui did not visit lj and could not assess the event
there, or a negative event assessment made by ui when she visited
lj . The former case does not relate to the event truth and the par-
ticipant’s reliability, while the latter does. However, participants’
detailed mobility traces, which can be used to distinguish these two
cases, are not available due to privacy and energy issues.

Our problem of truth discovery in mobile crowdsourced detec-
tion of spatial events is to infer 1) which reported events with loca-
tions in L are true and which are false and 2) which participants in
U are reliable, based on the report matrixX with only positive and
missing reports. This problem is visually illustrated in Figure 1d.

3. GRAPHICAL MODEL
In this section, we present our proposed probabilistic graphical

model for the truth discovery problem in crowdsourced detection of
spatial events. We first discuss our intuitions and the model com-
ponents, and then illustrate some properties of the proposed model.

3.1 Model Details
We consider the process of how a report is generated. In order

to make a report, a participant first needs to be physically present
at a location, observes whether there is any target event, and then
decides to make a report or not based on her judgment. If a par-
ticipant is not present at a location, she cannot make a report there
since her location is recorded by her mobile device when reporting.

This process motivates us to model the following aspects: 1) lo-
cation popularity, 2) participant’s location visit indicators, 3) event
labels, 4) participant reliability and 5) reports on events.

Figure 3 shows the graphical structure of our proposed model.
Each node in the graph represents a random variable. Dark shaded
nodes indicate observed variables, and light nodes represent latent
variables and model parameters. Hyperparameters that correspond
to the prior distributions are omitted for simplicity. A plate with a
number such asM as its label means that there areM nodes of this
kind. For ease of illustration, we list the notations used in this paper
in Table 1. We summarize the generation process of our model in
Algorithm 1 and detail its components below.

xi,j
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bi

ci
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gj

sai
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Figure 3: Graphical model.

Algorithm 1 Generation process
1. For each event at location lj

1.1 Draw the location’s popularity gj ∼ Beta(λgj,1 , λgj,0 )

1.2 Draw the event’s prior truth probability s ∼ Beta(λs,1, λs,0)
1.3 Draw the event’s true label zj ∼ Bernoulli(s)

2. For each participant ui

2.1 Draw her true positive rate while present ai ∼ Beta(λai,1 , λai,0 )

2.2 Draw her false positive rate while present bi ∼ Beta(λbi,1 , λbi,0 )

2.3 Draw her reporting rate while absent ci ∼ Beta(λci,1 , λci,0 )
3. For each participant ui and event at lj
3.1 Draw a location visit indicator hi,j ∼ Bernoulli(gj)
3.2 Draw a report xi,j

3.2.1 If hi,j = 1 and zj = 1, draw xi,j ∼ Bernoulli(ai)
3.2.2 If hi,j = 1 and zj = 0, draw xi,j ∼ Bernoulli(bi)
3.2.3 If hi,j = 0, draw xi,j ∼ Bernoulli(ci)
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Figure 4: (a) Location heat map in the northeast part of San

Francisco (latitude: 37.75 to 37.79; longitude: −122.44 to

−122.40; each point represents an approximately 20m by 20m
grid cell). Each point shows the number of distinct people (to-

tally 100) that visited that location. (b) Distribution (PDF and

CDF) of the number of people that visited a specific location.

3.1.1 Location Popularity
It is clear that in the physical world, participants do not randomly

visit different locations but with certain patterns. For example,
shopping malls are generally visited by a large number of people,
but a residence area will only be visited by a few people who live
there. This motivates us to model location popularity, which is the
probability that a randomly chosen participant will visit a location.

Our intuition is supported by the findings from a public mobility
dataset which contains time-stamped GPS location traces for 536
taxicabs over a span of roughly one month in the city of San Fran-
cisco [20]. Figure 4a plots the location heat map in the northeast
part of the city generated from the dataset, where each point shows
the number of distinct people (we randomly choose 100) who have
visited that location. It is clear that some locations are visited by
more people while some by much fewer. We find that locations
with high popularity mostly correspond to gas stations, crossroads
and popular highways. Figure 4b plots the distribution of the num-
ber of people that visited a specific location. It can be observed
that around 80% of locations are visited by at most 20% of all the
people. This suggests that mobility issues could result in a large
proportion of missing reports in crowdsourced event detection.

Formally, we model that each event location lj has a location
popularity gj , representing the probability that a randomly chosen
participant will visit it. gj is generated from a Beta distribution with
hyperparameters (λgj,1 , λgj,0), representing the prior counts of the
number of distinct participants visited and did not visit location lj
respectively from a population.

3.1.2 Participants’ Location Visit Indicators
We use hi,j = 1 and hi,j = 0 to denote that participant ui

visited and did not visit location lj respectively. We then model



Table 1: Notations.
Notation Meaning

ui, lj ith participant and jth event location
M ,N number of participants and event locations

zj ; z;
z−j

label of the event at location lj (zj ∈ {0, 1}); all the
event labels (z = {zj}); z except zj

hi,j ; H;
H−i,j

indicator of whether participant ui visited location lj
(hi,j ∈ {0, 1}); H = {hi,j};H except hi,j

xi,j ; X report made by participant ui on the event at lj (xi,j ∈
{0, 1}); X = {xi,j}

n−j
1 ; n−j

0 number of z = 1 and z = 0 in z−j

n−i
j,1; n

−i
j,0 number of h = 1 and h = 0 in the jth column of H

except the ith element
n−j
i,k,q,v number of tuples (h = k, z = q, x = v) associated with

participant ui except that for the jth event

s probability that an event is true
gj ; g probability that lj is visited by any participant; g = {gj}
ai; a ui’s true positive rate while present; a = {ai}
bi; b ui’s false positive rate while present; b = {bi}
ci; c ui’s reporting rate while absent; c = {ci}
λv,1;λv,0 hyperparameters for the Beta distribution (prior) for vari-

able v, v ∈ {s, gj , ai, bi, ci}

that a participant’s location visit indicator hi,j is generated from a
Bernoulli distribution parameterized by the location popularity gj ,
i.e., hi,j ∼ Bernoulli(gj). In this way, a participant has a higher
chance to visit more popular locations.

3.1.3 Event Labels
Since each reported event can be either true or false, we view

them as binary random variables. We model that each event has a
prior probability s of being true, and s is generated from a Beta dis-
tribution. We use zj = 1 and zj = 0 to denote that the ground truth
label of the event at lj is true and false respectively. The binary la-
bel zj is then modeled as being generated from zj ∼ Bernoulli(s).

3.1.4 Participant Reliability
In crowdsourced detection of spatial events, a participant’s reli-

ability depends on two factors: hi,j (a participant’s location visit
indicator) and zj (an event’s true label), where the former factor
does not exist in an online setting. It is desirable to model different
aspects of participant reliability due to the following reasons.

First, it is likely that different participants will have different at-
titudes towards reporting true and false events upon observation. A
reliable participant will mostly report detection for true events but
seldom make reports for false events, which results in a high true
positive rate and a high true negative rate. On the other hand, a
conservative participant is likely to report only when she is very
confident that an event is true or when she is willing to report,
which results in a low true positive rate but a high true negative
rate. In other words, it is not reasonable to use a single correct
rate (e.g., as that in [19, 27, 28]) to model participant reliability in
crowdsourced event detection. Moreover, the true positive rate and
the true negative rate in crowdsourced event detection make sense
only with respect to the reports for events that a participant has an
opportunity to observe (i.e., visited the event locations).

Second, as has been discussed previously, if a participant did not
visit a location lj , she cannot make a report there. As a conse-
quence, such a missing report is due to the participant’s mobility
issue rather than her bias or carelessness when judging an event’s
label. Therefore, it is desirable to use a parameter to characterize
the participant’s reporting rate without visiting a location.

Formally, we model three-way participant reliability as follows.
1) True positive rate while present (TPR): We use ai to de-

note the probability that participant ui reports that the event at lj
is true when she is present at lj and the event there is indeed true,
i.e., ai = p(xi,j = 1|hi,j = 1, zj = 1). The TPR ai is mod-
eled to be generated from a Beta distribution with hyperparameters
(λai,1 , λai,0), representing the prior counts of positive and missing
reports when ui is present at an event location and the event there
is true. It is clear that TPR makes sense only when a participant
really visited an event location (hi,j = 1). Without such a con-
sideration, missing reports resulted from mobility issues can easily
bias a participant’s TPR.

2) False positive rate while present (FPR): We use bi to de-
note the probability that participant ui reports that event at lj is
true when she is present at lj and the event there is actually false,
i.e., bi = p(xi,j = 1|hi,j = 1, zj = 0). The choice to model the
false positive rate rather than the true negative rate is for the ease
of illustration. The FPR bi is modeled to be generated from a Beta
distribution with hyperparameters (λbi,1 , λbi,0), representing the
prior counts of positive and missing reports when ui is present at
an event location and the event there is false. Similarly, FPR makes
sense only when a participant really visited an event location. Oth-
erwise, missing reports attributed to mobility issues can also easily
bias a participant’s FPR.

3) Reporting rate while absent (RRA): We use ci to denote the
probability that participant ui reports that event at lj is true when
she is not at lj , i.e., ci = p(xi,j = 1|hi,j = 0). Since a participant
cannot evaluate the event label when she is not at the event loca-
tion, we model this probability to be independent of the event label
zj . The RRA ci is modeled to be generated from a Beta distri-
bution with hyperparameters (λci,1 , λci,0), representing the prior
counts of positive and missing reports when ui is absent from an
event location. Since the participant’s location is recorded when a
report is made, the probability ci that ui made a report with a geo-
tag lj but was not physically at lj (within the localization accuracy
bound) should be close to zero. Therefore, we specify a large λci,0

and a small λci,1 to make ci conform to such real-world physical
constraints. The introduction of this probability also ensures that
the model inference procedure only allows the presence of the case
(xi,j = 0|hi,j = 0) (missing reports due to mobility issues) but not
(xi,j = 1|hi,j = 0) (positive reports without visiting locations).

As can be seen, the modeling of TPR ai, FPR bi and RRA ci
can fully specify the confusion matrix for reports under different
combinations of hi,j and zj . Note that each participant may have
different reliability in different types of crowdsourcing tasks.

3.1.5 Reports
Finally, we consider how reports are generated. Take a missing

report from a participant as an example. It can be resulted from
several cases: i) the participant visited the event location which
had a target event, but she did not report, ii) the participant visited
the event location which did not have any target event, and she did
not report, and iii) the participant did not visit the event location
and thus could not report. Therefore, we model each report xi,j

as a Boolean random variable generated from a Bernoulli distribu-
tion that depends on the participant’s location visit indicator hi,j

and the event label zj , and is parameterized by different participant
reliability ai, bi and ci.

Formally, we model

xi,j ∼ Bernoulli(ai) if hi,j = 1, zj = 1

xi,j ∼ Bernoulli(bi) if hi,j = 1, zj = 0

xi,j ∼ Bernoulli(ci) if hi,j = 0.



3.2 Model Analysis
We discuss several properties of our proposed model below.
1) Missing reports are well explained. According to the model

structure shown in Figure 3, the probability of a missing report from
participant ui on event at lj is given by

p(xi,j = 0) =
1∑

k=0

1∑
q=0

p(hi,j = k)p(zj = q)p(xi,j = 0|hi,j = k, zj = q)

= (1− gj)(1− ci) + gj [(1− s)(1− bi) + s(1− ai)].

This expression clearly captures the composite effect of various
factors that can result in a missing report. When the location popu-
larity gj → 1, we have p(xi,j = 0)→ (1−s)(1−bi)+s(1−ai).
It indicates that for a very popular location, the probability of ob-
serving a missing report is mainly due to the event’s truth and a
participant’s TPR and FPR. On the other hand, when the location
popularity gj → 0, we have p(xi,j = 0) → 1 − ci. It indicates
that for a very unpopular location, the probability of observing a
missing report is then mainly due to a participant’s limited mobil-
ity and RRA. In more general scenarios, these two possibilities for
a missing report are combined through gj . Positive reports can be
explained similarly.

2) Location tracking is avoided. Our model does not require
continuous location tracking for each participant to disambiguate
the cause of missing reports, and thus it avoids the privacy and en-
ergy issues. Instead, we model location popularity which is the
probability that a randomly chosen participant will visit a loca-
tion. On the one hand, location popularity can be directly estimated
through domain knowledge. For example, we can specify proper
prior parameters (λgj,1 , λgj,0) to impose a high location popular-
ity for shopping malls, gas stations, and popular highways. On the
other hand, since location popularity is a collective rather than a
personal measure, its prior counts can be estimated once from any
other resources where location tracking is not a concern (e.g., ex-
periments about taxis or for studying human mobility). Moreover,
location popularity for each specific task can be jointly estimated
with other model parameters from the corresponding data. In con-
trast, location tracking needs to be performed repeatedly for all the
participants in each specific task (as new participants may join and
existing participants may change mobility paths over time).

3) Different aspects of participant reliability are handled. We
model three-way participant reliability which covers all the cases
conditioned on different combinations of hi,j and zj . As a conse-
quence, our model separates the effect of mobility and the effect of
character on participants’ reports. It can also efficiently handle dif-
ferent aspects of participants’ attitudes towards reporting true and
false events upon observation.

4) Prior belief can be easily incorporated. We take a Bayesian
approach and specify prior distributions for model parameters. This
allows us to easily incorporate domain knowledge in the truth dis-
covery process. In the absence of such knowledge, we can simply
use uniform priors. The Beta distribution is utilized as the prior
distribution because it is the conjugate prior of the Bernoulli dis-
tribution. It can lead to posterior distributions having the same
functional form as the prior, resulting in a greatly simplified and
efficient Bayesian analysis [7].

4. INFERENCE ALGORITHM
In this section, we discuss how to perform inference to estimate

1) latent variables: event labels and participant’s location visit indi-
cators and 2) model parameters: participant reliability and location
popularity from the model, given the report matrixX. Algorithm 2
summarizes the model inference procedure.

Algorithm 2 Model Inference
Input: Reports xi,j

Output: Latent variables zj , hi,j and model parameters ai, bi, gj
1: {Initialization}
2: For all zj , sample zj ∼ Bernoulli(0.5)
3: For all xi,j = 0, sample hi,j ∼ Bernoulli(0.5)
4: For all xi,j = 1, set hi,j = 1

5: Calculate all the counts n−j
q , n−i

j,k , n
−j
i,k,q,v

6: {Sampling for K rounds}
7: for t = 1 : K do

8: {Update every zj}
9: Calculate pqj � p(zj = q|z−j ,H,X) according to (1)

10: Sample z(t)j ∼ Bernoulli(p1j/(p
1
j + p0j )) and update counts

11: {Update every hi,j for xi,j = 0}
12: Calculate pki,j �p(hi,j = k|z,H−ij ,X) according to (2)

13: Sample h(t)
i,j ∼ Bernoulli(p1i,j/(p

1
i,j + p0i,j)) and update counts

14: end for

15: {Estimate event labels and location visit indicators}
16: Estimate p̂(zj = 1) and p̂(hi,j = 1) based on every K2 samples in

the remainingK −K1 rounds
17: ẑj = 1 if p̂(zj = 1) ≥ 0.5 and ẑj = 0 otherwise; similarly for ĥij

18: {Estimate model parameters}
19: Estimate âi, b̂i and ĝj according to (3) and (4)
20: return ẑj , ĥi,j , âi, b̂i, ĝj

4.1 Estimating Event Labels and Location Visit
Indicators

Given the data matrix X and the model, we need to find the
optimal configuration of the random variables that maximize the
posterior probability, i.e., using the maximum a posterior (MAP)
estimator [7]. For example, to infer the event labels, we need to
solve

z∗ = argmax
z

p(z|X) ∝
∑
H

∫
p(X,H, z,a,b, c,g, s)dadbdcdgds.

Given the complex form of the joint distribution (refer to Figure
3), direct optimization is difficult to perform, especially when z
and h can take on only integers. Therefore, we resort to an efficient
algorithm, which is the collapsed Gibbs Sampling [11], for model
inference. In our implementation, we integrate out all the model
parameters and only sample the latent variables zj and hi,j .

1) Sampling zj . We first iteratively sample the label for each
event according to the following update rules. The meaning of the
notations is listed in Table 1.

p(zj = 1|z−j ,H,X) ∝ (n−j
1 + λs,1)

∏
i

fi,1,xi,j

p(zj = 0|z−j ,H,X) ∝ (n−j
0 + λs,0)

∏
i

fi,0,xi,j (1)

where

fi,1,d =
n−j
i,1,1,d + λai,d

∑
d′(n

−j
i,1,1,d′ + λai,d′)

, fi,0,d =
n−j
i,1,0,d + λbi,d

∑
d′(n

−j
i,1,0,d′ + λbi,d′)

.

In the above expressions, the counts n−j
i,k,q,v reflect the reliabil-

ity of ui based on her reports on events other than that at lj . The
first part in (1) carries information from other event labels and the
second part carries information from the reports made by all the
participants on other events (except that at lj). Note that, in fi,1,d
and fi,0,d, the counts only relates to h = 1. This is because only
when a participant visited an event location and had an opportunity
to assess the event label, that report (either positive or missing) car-
ried information about the true event label. Otherwise, that report
should not be taken into consideration.



2) Sampling hi,j . After sampling all zj , we then iteratively sam-
ple each participant’s location visit indicators hi,j according to the
following update rules. Note that, we only need to sample hi,j

when xi,j = 0, i.e., for those missing reports. Since the location is
recorded when xi,j = 1, we can directly infer hi,j = 1 if xi,j = 1.

p(hi,j = 1|z,H−i,j ,X)∝(n−i
j,1 + λgj ,1)fi,zj ,0

p(hi,j = 0|z,H−i,j ,X)∝(n−i
j,0 + λgj ,0)

n−j
i,0,−,0 + λci,0∑

d(n
−j
i,0,−,d + λci,d)

. (2)

The first part in (2) carries information from other participants’ (ex-
cept ui’s) location visit indicators at lj and the second part carries
information from the reports made by ui on other events (except
that at lj).

The sampling procedure is performed for K rounds. To obtain
p̂(zj = 1) and p̂(hi,j = 1), we discard the first K1 samples in the
burn-in period, and then for everyK2 samples in the remainder we
calculate their average (thinning), which is to prevent correlation
in the samples. Finally, if p̂(zj = 1) ≥ 0.5, we output ẑj = 1;
otherwise, we have ẑj = 0. The estimation of hi,j is similar.

4.2 Estimating Participant Reliability
After we have obtained the estimation of event labels zj and lo-

cation visit indicators hi,j , we can estimate the participant relia-
bility using the MAP estimator by treating these inferred values as
observed data. This results in a closed-form estimation as follows.

âi =
E(ni,1,1,1) + λai,1∑
d[E(ni,1,1,d) + λai,d]

, b̂i =
E(ni,1,0,1) + λbi,1∑
d[E(ni,1,0,d) + λbi,d]

, (3)

where E(ni,k,q,v) is the expected count of tuples (h = k, z =
q, x = v) related to participant ui. This count depends on the
probability of the location visit indicators, the probability of the
event labels and the actual reports. Formally,

E(ni,k,q,v) =
∑

xi,j=v

p̂(hi,j = k)p̂(zj = q).

ci is not estimated since the setting of its prior counts will make it
almost 0.

4.3 Estimating Location Popularity
Similarly, we can estimate the location popularity as

ĝj =
E(nj,1) + λgj ,1∑
d[E(nj,d) + λgj ,d]

, (4)

where E(nj,1) =
∑

i p̂(hi,j = 1) is the expected number of par-
ticipants that visited event location lj .

These estimated model parameters can be used to select partici-
pants and to compute p(z|X) in future tasks.

5. EXPERIMENTAL SETUP
In this section, we describe the truth discovery methods com-

pared, the evaluation metrics used and the experiments conducted.

5.1 Methods in Comparison
We term our proposed method as Truth finder for Spatial Events

(TSE) and compare it with the following state-of-the-art methods:
1) MV: the widely applied Majority Voting method, which predicts
the event to be true if the proportion of positive reports exceeds 0.5;
2) TF: the Truth Finder proposed in [28], which utilizes the inter-
dependency between source trustworthiness and claim confidence
to find truth; 3) GLAD: the Generative model of Labels, Abilities,
and Difficulties proposed in [27] for online crowdsourced image

Table 2: Statistics of reports in Area 1 (the left half) and Area

2 (the right half) in Figure 4a.

Area # pts # total
reports

# unique re-
ported locs

# locs after
clustering

# locs with
ground truth

# reports
used

Area 1 100 26,054 2,051 486 54 T + 46 F 2,996
Area 2 100 95,856 2,683 537 43 T + 57 F 3,627

classification (the authors’ code is used); 4) LTM: the Latent Truth
Model proposed in [29] for conflicting web information; 5) EM: the
Expectation and Maximization method proposed in [24] for social
sensing. Except our proposed TSE, other methods do not model
location popularity, location visit indicators and three-way partic-
ipant reliability. In dealing with missing data, they either ignore
them or treat them as negative (for binary truth discovery). As has
been discussed, the former treatment will result in consistent infor-
mation and will lead to a trivial conclusion that every event is true,
we thus use the latter treatment for all these compared methods.

We also compare the performance of TSE in estimating partic-
ipants’ location visit indicators and location popularity with two
baseline methods, where Naive0 simply assumes hi,j = 0 for
xi,j = 0 (all the missing reports are due to mobility issues) and
Naive1 simply assumes hi,j = 1 for xi,j = 0 (each participant
visited all event locations). Actually, Naive0 and Naive1 act
equivalently as ignoring missing reports and treating them as nega-
tive reports respectively.

We set the hyperparameters in TSE as follows. We set λci,1 = 2
and λci,0 = 104, since by domain knowledge we have λci,1 �
λci,0. For the FPR bi, we set λbi,1 = 5 and λbi,0 = 40. This is to
prevent the model from flipping the inference while still achieving
a high likelihood. The setting of λgj ,1 and λgj ,0 will be explained
in each experiment. We set all other hyperparameters to 5. These
hyperparameters can be set much larger for large datasets or set to
different values if prior domain knowledge is available.

5.2 Metrics
We use the following metrics to evaluate the performance of

these methods.
1) Precision, recall and F1 score: pre = TP

TP+FP
, rec = TP

TP+FN
,

F1 = 2 pre×rec
pre+rec

, where TP represents the number of true positives
(an algorithm infers an event is true when it is indeed true). We use
them to evaluate the performance of the estimation ẑj on event la-
bels. The higher these metrics, the better a method performs.

2) Mean absolute error (MAE): mae(a) = 1
N

∑N
i=1 |âi − ai|.

We use it to evaluate the performance of the estimations ĥi,j on lo-
cation visit indicators, ĝj on location popularity, âi on participants’
TPRs and b̂i on participants’ FPRs. The lower this metric, the bet-
ter a method performs. Ground truth of gj , ai and bi are calculated
based on their definitions (Table 1). mae(h) is calculated only for
missing reports xi,j = 0 whose hi,j need to be estimated.

5.3 Experiments
We conduct three sets of experiments to evaluate the perfor-

mance of the compared methods. The first set is to detect the lo-
cations of traffic lights, where reports were “made” by participants
driving vehicles when they were waiting at a location for a certain
time. The second set is to detect image-based events. It is cre-
ated by combining a mobility dataset and three online image-based
event detection datasets to examine the influence of mobility in ad-
dition to participants’ bias. The third set is to further examine the
methods’ performance when participants with specific kinds of re-
liability (such as conservative) are present through simulations. We
describe their details below.



5.3.1 Traffic Light Detection
Dataset: We use the mobility dataset (denoted asM) provided

in [20] as our experiment dataset. It contains time-stamped GPS
location traces for 536 taxicabs in San Francisco with successive
location updates recorded 1-60 seconds apart. We choose a re-
gion shown in Figure 4a as our spatial area of interest, which spans
roughly 3.5km × 4.4km (an area with a reasonable size such that
it is possible for participants to visit all the event locations inside
it). We partition this area into approximately 40m×40m grid cells
and then project the large number of distinct GPS locations into a
much smaller set of cells. We further vertically divide this area into
two subareas of equal size, where participants more densely visited
the right half (Area 2) than the left half (Area 1).

Task: The crowdsourcing task that we consider is to detect the
locations of traffic lights. We observe that vehicles usually wait at
traffic light locations for a few seconds to a fewminutes. Therefore,
by processing the waiting behaviors of vehicles driven by various
participants, we will be able to crowdsource the locations of traffic
lights. However, the waiting behavior is a noisy indicator of traf-
fic lights since a car can also stop at stop signs or anywhere else
on the road due to traffic jam or crossing pedestrians (false posi-
tive). Moreover, a car does not stop at traffic lights that are green
(false negative). Furthermore, different drivers have different driv-
ing behaviors such as a careless driver may pass stop signs without
stopping and a careful driver may stop at stop signs for a relatively
long time. These factors make the waiting behavior diverse, noisy
and participant-dependent.

Reports: In our experiment, we assume there is an application
on each vehicle and if the vehicle waits at a location for 15-120
seconds, such a behavior triggers the application to issue a detec-
tion report (of a traffic light). Since the application uses the same
criterion for data processing, when and where to issue a report is
actually controlled by the participants, except that their reliability
comes from their behaviors rather than mind. By randomly pick-
ing out 100 participants, we obtain 25,054 and 95,856 reports in
Area 1 and 2 respectively, collectively identifying 2,051 and 2,683
distinct cells respectively (listed in Table 2). To account for the lo-
cation granularity of GPS devices and the fact that a vehicle may
also wait at a certain distance from the traffic light due to the traffic
queue, we further cluster these cells using a hierarchical clustering
approach [7] with a cutoff distance of 80m. This procedure ensures
that the traffic light reports are attributed to the correct intersections
and it results in 486 and 537 distinct cluster centers in Area 1 and 2
respectively. We then randomly pick out 100 of them in each area
to annotate the ground truth using the Street View in Google Maps.

Data analysis: We define a participant’s location coverage as
|l(ui)|/|l|, where |l(ui)| and |l| denote the number of event loca-
tions visited by ui and the total number of event locations. A loca-
tion’s popularity can be expressed as |u(lj)|/|u|, where |u(lj)| and
|u| denote the number of participants that visited lj and the total
number of participants. Figure 5 plots the cumulative distributions
of these two metrics. As can be seen, a participant can cover at most
62% and 75% of all the event locations in Area 1 and 2 respectively.
Only around 20% and around 40% of event locations have a popu-
larity of over 0.8 in Area 1 and 2 respectively. Some event locations
are visited by almost all the participants while some are visited by
less than 5%. These results suggest that mobility is an important
factor that causes missing reports in mobile crowdsourcing. Fig-
ure 6 plots example positive reports for true and false events. We
can observe that a majority of true events and false events receive a
similar number of reports. Majority voting can easily fail in such an
environment since the number of reports for true events can seldom
exceed half of the number of participants.
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Figure 5: Participants’ location coverage (|l(ui)|/|l|) and loca-

tions’ popularity (|u(lj)|/|u|).
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Figure 6: Positive reports for true and false events.

5.3.2 Image-based Event Detection
We combine the mobility dataset M and three online crowd-

sourced event detection datasets to evaluate the performance of the
methods in a broader range of applications. This set of experiments
is to mimic the scenario that participants move outdoors, observe
events and make reports based on their judgments. The combina-
tion procedure described below is essentially to capture the phys-
ical constraint that a participant could make a report at a location
only when she visited that location. It assumes nothing about mo-
bility patterns, event labels and participant reliability.

We created three image-based event detection tasks on Crowd-
Flower [2] with clear instructions. They were to detect 1) bike
racks, 2) Chinese restaurants and 3) flowering cherries respectively.
For each task, M = 20 crowd workers were recruited and each
of them was asked to report the images with target events among
N = 40 images, where half of them contain the target event and
half do not. We chose images with different viewing angles and
distances, and also carefully selected a portion of them which may
cause false alarms or missed detections. To introduce mobility, we
randomly assigned each participant ui a GPS trace fromM. We
then randomly sampledN locations lj from all these assigned GPS
traces to represent the event locations for the N images. Only if
ui’s GPS trace showed that she visited lj at some time and ui re-
ported that the jth image contained the target event, we generated
a positive report xi,j = 1. We term these combined dataset corre-
sponding to the three tasks as BM, CM and PM respectively.

5.3.3 Simulation Study
In the simulation study, we put our focus on evaluating the per-

formance of different methods in the presence of specific types of
participants (defined in Table 3). We are particularly interested in
the following representative ones: 1) reliable participants with a
large TPR a and a small FPR b, 2) unskilled participants with a
and b close to 0.5, reporting almost randomly, 3) conservative par-
ticipants with a small a and a small b, reporting occasionally only
when they are very confident or willing to report, 4) aggressive par-
ticipants with a large a and a large b, reporting over actively, and
5) malicious participants with a small a and a large b, flipping the
labels most of the time. Of course, this categorization is rough.
However, we can use it to gain some insights on the impact of par-
ticipant reliability on the algorithm performance. We assume there
are M = 40 participants and N = 200 event locations where half
of them contain true events and half do not. We again randomly



Table 3: Categorization of participants according to their reli-

ability parameters. a is the TPR and b is the FPR.

Category a b Category a b

Reliable [0.8, 1] [0, 0.2] Aggressive [0.8, 1] [0.6, 1]

Unskilled [0.4, 0.6] [0.4, 0.6] Malicious [0, 0.2] [0.8, 1]

Conservative [0, 0.2] [0, 0.2] Other Other ranges

Table 4: Precision, recall and F1 score on inferring event labels

for traffic light detection.

Area 1 Area 2
pre rec F1 pre rec F1

MV 1.000 0.098 0.179 1.000 0.167 0.286
TF 1.000 0.098 0.179 1.000 0.167 0.286
GLAD 1.000 0.098 0.179 1.000 0.167 0.286
LTM 0.960 0.423 0.587 1.000 0.398 0.569
EM 0.956 0.431 0.594 1.000 0.404 0.576
TSE 0.970 0.895 0.931 0.995 0.794 0.883

assign GPS traces and sample event locations, but generate reports
xi,j according to the process in Section 3.1.5 with ci = 0.

6. EXPERIMENTAL RESULTS
In this section, we demonstrate the effectiveness of our proposed

method compared with several top-performing truth discovery ap-
proaches on both real-world and synthetic datasets.

6.1 Traffic Light Detection
We report results based on 20 runs of tests for each experiment

by randomly sampling the corresponding number of participants
and events unless all of them are used. Only participants and events
with at least two reports are kept for evaluation. We utilize a dis-
joint set of participants to estimate the prior counts of location pop-
ularity and set these counts fixed for all the experiments. To reduce
noise, we consider a participant visited an event location if she had
traversed there at least twice.

6.1.1 Estimation of Event Labels
Table 4 lists the precisions, recalls and F1 scores of all the meth-

ods on the two datasets fromArea 1 and Area 2 whenM = 100 and
N = 100. We can observe that TSE achieves the highest recall and
F1 score as well as very high precision on both datasets, showing
that it can better handle missing reports and more accurately infer
the truth of events in crowdsourced detection of spatial events. All
the other methods cannot tackle mobility issues and perform much
worse. They are prone to infer that most events are false due to the
large number of missing reports and thus fail to detect lots of true
events, resulting in high precisions but low recalls.
MV performs badly, since it does not take into account the par-

ticipant reliability in its prediction. TF contains a mechanism to
assign implication scores between similar observations. However,
there is no similar but only contradictory observations for binary
events. The power of TF is thus lost and it also performs badly.
GLAD models only a single correct rate for participant reliability
and thus it is not suitable for crowdsourced event detection. The
overfitting problem makes it perform similar to MV. LTM and EM
perform comparably and much better than MV, TF and GLAD, since
they model two-sided participant reliability. However, they are not
designed to tackle the mobility issues and thus fail to detect lots of
positive events, resulting in low recalls.

Figure 7 plots the F1 scores on estimating the event labels versus
the number of participants and the number of events respectively in
Area 2 (the trends in Area 1 are similar). We can observe that TSE

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Number of participants

F1
 s

co
re

 o
n 

ev
en

t l
ab

el

MV
TF

GLAD
LTM

EM
TSE

(a) F1 versusM

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Number of events

F1
 s

co
re

 o
n 

ev
en

t l
ab

el

MV
TF

GLAD
LTM

EM
TSE

(b) F1 versus N
Figure 7: F1 scores on estimating event labels versus (a) the

number of participants M when N = 100 and (b) the number

of events N when M = 100 in Area 2.
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Figure 8: MAEs on h and g for traffic light detection.

performs much better than all the other methods in all the cases,
and it can benefit from more available information to improve its
performance.

6.1.2 Estimation of Location Visit Indicators and Lo-
cation Popularity

Figure 8 plots mae(h) and mae(g) when M = 100 and N =
100 via TSE and two baseline methods. Naive1 results in the
largest mae(h) in both areas. This shows that mobility issues
lead to lots of missing reports and simply treating them as implicit
negative reports is incorrect. TSE performs better than Naive0,
showing that it indeed correctly infers some location visit indica-
tors. However, TSE is not significantly better than Naive0 (e.g.,
mae(h) in Area 1 are 0.246 and 0.303 for TSE and Naive0 re-
spectively), meaning that TSE still faces difficulty in reliably infer-
ring a large proportion of location visit indicators. As to mae(g),
Naive1 still results in the largest error but TSE results in a signif-
icantly lower error than Naive0 (e.g.,mae(g) in Area 1 are 0.118
and 0.276 for TSE and Naive0 respectively), showing that TSE
can more reliably infer location popularity gj . This is because we
only statistically model hi,j ∼ Bernoulli(gj), so that hi,j can have
different realizations given the same gj . We may more accurately
discover true events when hi,j can be more accurately inferred.
However, if privacy is an important concern, accurately inferring
location popularity gj in a collective sense but less accurately infer-
ring individual location visit indicators hi,j may be more desirable.

6.1.3 Estimation of Participant Reliability
Figure 9 plots the MAEs on estimating participants’ TPRs and

FPRs. We can observe that MV, TF and GLAD are biased towards
more accurately inferring FPRs b. This is because they are prone
to predict most events to be false and participants mostly do not
report, leading to small FPRs. Since in reality, the FPRs are usu-
ally small, these methods accidentally achieve good performance.
However, they perform poorly in estimating TPRs a. On the other
hand, LTM, EM and TSE achieve much better and more balanced
performance in estimating a and b.

6.2 Image-based Event Detection
We use uniform prior counts for location popularity. Table 5 lists

the precision, recall and F1 scores of all the methods on the three
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Figure 9: MAEs on a and b for traffic light detection.

Table 5: Precision, recall and F1 score on inferring event labels

for image-based event detection.

Bike rack BM Restaurant CM Plant PM
pre rec F1 pre rec F1 pre rec F1

MV 1.000 0.468 0.638 0.836 0.468 0.600 0.908 0.488 0.602

TF 1.000 0.493 0.661 0.836 0.468 0.600 0.908 0.488 0.602

GLAD 1.000 0.545 0.706 0.954 0.463 0.623 1.000 0.510 0.675

LTM 0.954 0.630 0.758 0.921 0.569 0.704 0.983 0.550 0.677

EM 0.955 0.636 0.763 0.917 0.568 0.702 0.973 0.583 0.685

TSE 0.963 0.874 0.916 0.916 0.708 0.799 0.865 0.671 0.756

combined datasets when M = 20 and N = 40. We can observe
similar characteristics as those in Table 4. TSE achieves the highest
recalls and F1 scores on all the datasets, followed by LTM and EM.
GLAD easily leads to overfitting, and MV and TF performs worst.
However, their performance is better than that in Table 4, possibly
due to different sizes of the datasets and different natures of tasks.

For the MAEs on estimating h and g, we also observe that TSE
performs much better than the two naive methods and it is more
capable of accurately estimating location popularity than partici-
pants’ location visit indicators (figures are not shown due to space
limitations). Since each participant only reports a few events, it is
unreliable to directly calculate TPRs and FPRs from these datasets
as ground truth and we thus do not consider the estimation of them
here.

6.3 Simulation Study
We report results based on 20 independent runs for each experi-

ment where uniform prior counts for location popularity are used.
Figure 10 shows the F1 scores on event labels and the MAEs on
participant reliability under different combinations of reliable and
other types of participants. We can observe that TSE achieves the
highest F1 scores across all different scenarios, and it also results
in smallest MAEs on a and b in most scenarios. LTM and EM are
prone to generate large errors on estimating the TPR a, since treat-
ing missing reports as negative will reduce the TPR. MV and TF per-
form poorly, easily resulting in low F1 scores on estimating event
labels or large errors on estimating participant reliability. Conser-
vative participants have the highest impact on the performance of
truth discovery among all the compared participant categories.

7. DISCUSSION
Dependent reports. We currently assume that participants inde-

pendently make reports. However, sources can sometimes be de-
pendent and such dependency can undermine the wisdom of crowd
[12]. One possible solution is to apply copy detection methods be-
tween sources [9]. Alternatively, we can directly incorporate source
dependency in the modeling [21].

Sequential mobility modeling. Our current method models lo-
cation popularity in a collective sense. Alternatively, we can also

model the most likely trajectory for each participant. This may im-
prove the accuracy of the estimated location visit indicators and
subsequently improve the accuracy of other estimates. However,
it will increase the model complexity and impose higher privacy
risks. Moreover, this approach may not work well if the time inter-
val between consecutive reports is large (e.g., hours) [13].

Cross-domain truth discovery. Our experiments show that event
detection tasks in some domains are intrinsically more difficult than
those in other domains. Difficult tasks and limited number of re-
ports can deteriorate the performance of truth discovery. Leverag-
ing tasks in different domains may help since it can balance the var-
ied difficulties and increase the number of reports. To achieve this
goal, we may need to leverage transfer learning techniques [18].

8. RELATED WORK
A number of unsupervised approaches have been proposed for

discovering the truth from conflicting information sources. In the
domain of truth discovery from conflicting Web information, Yin
et al. [28] proposed truth finder, which is a transitive voting algo-
rithm with rules specifying how votes iteratively flow from sources
to claims and then back to sources. It has been shown to be su-
perior than majority voting and the hubs and authorities algorithm
[10] which was initially designed to find popular web pages. Paster-
nack and Roth [19] proposed Investment and PooledInvestment al-
gorithms, where sources invest their credibility in the claims they
make, and claim belief is then non-linearly grown and apportioned
back to the sources. Unlike these heuristics, Zhao et al. [29] pro-
posed a more principled probabilistic approach which can automat-
ically infer true claims and two-sided source quality.

In the domain of aggregating conflicting responses in crowd-
sourcing tasks, several statistical techniques have been proposed.
To name a few, Dawid and Skene [8] modeled the generative pro-
cess of the responses by introducing worker ability parameters.
Whitehill et al. [27] also included the difficulty of the task in the
model, and Welinder et al. [26] proposed a model consisting of
worker compatibility for each task. Wang et al. [24, 25] proposed
an EM algorithm that models both the truth of tasks and the relia-
bility of workers for social sensing.

Nevertheless, these methods are not designed to tackle truth dis-
covery in mobile crowdsourced event detection where both par-
ticipants’ mobility and reliability are uncertain. Moreover, none
of them models location popularity, location visit indicators and
three-way participant reliability. Alternative solutions, such as first
continuously tracking participants’ locations and then applying ex-
isting truth discovery methods, will raise severe privacy and energy
issues. In contrast, our proposed model integrates mobility, reliabil-
ity and latent truth in a unified framework and can jointly optimize
all the model parameters without the need of location tracking.

9. CONCLUSION
In this paper, we have proposed a probabilistic graphical model

to the problem of truth discovery in crowdsourced detection of
spatial events. The proposed method integrates the modeling of
location popularity, participants’ location visit indicators, truth of
events and three-way participant reliability in a unified framework.
We demonstrate the accuracy and efficiency with which this method
can handle ambiguous missing reports caused by either mobility or
reliability issues, and automatically infer the truth of events and
different aspects of participant reliability without any supervision
or location tracking. Experimental results on real-world and syn-
thetic datasets demonstrate that our proposed method outperforms
existing state-of-the-art approaches for mobile crowdsourcing.
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(a) Unskilled
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(b) Conservative
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(c) Aggressive
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(d) Malicious

Figure 10: Performance with the combination of reliable and (a) unskilled, (b) conservative, (c) aggressive and (d) malicious partic-

ipants. The first row: F1 scores on estimating event labels z. The second row: MAEs on estimating TPRs a. The third row: MAEs

on estimating FPRs b. M = 40 and N = 200.
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