
Sketch-based Influence Maximization and Computation:
Scaling up with Guarantees

EDITH COHEN
Microsoft Research

editco@microsoft.com

DANIEL DELLING
Microsoft Research

dadellin@microsoft.com

THOMAS PAJOR
Microsoft Research

tpajor@microsoft.com

RENATO F. WERNECK
Microsoft Research

renatow@microsoft.com

August 2014

Abstract

Propagation of contagion through networks is a fundamental
process. It is used to model the spread of information, influence,
or a viral infection. Diffusion patterns can be specified by a prob-
abilistic model, such as Independent Cascade (IC), or captured
by a set of representative traces.
Basic computational problems in the study of diffusion are

influence queries (determining the potency of a specified seed
set of nodes) and Influence Maximization (identifying the most
influential seed set of a given size). Answering each influence query
involves many edge traversals, and does not scale when there
are many queries on very large graphs. The gold standard for
Influence Maximization is the greedy algorithm, which iteratively
adds to the seed set a node maximizing the marginal gain in
influence. Greedy has a guaranteed approximation ratio of at
least (1− 1/e) and actually produces a sequence of nodes, with
each prefix having approximation guarantee with respect to the
same-size optimum. Since Greedy does not scale well beyond a
few million edges, for larger inputs one must currently use either
heuristics or alternative algorithms designed for a pre-specified
small seed set size.

We develop a novel sketch-based design for influence computa-
tion. Our greedy Sketch-based Influence Maximization (SKIM)
algorithm scales to graphs with billions of edges, with one to two
orders of magnitude speedup over the best greedy methods. It
still has a guaranteed approximation ratio, and in practice its
quality nearly matches that of exact greedy. We also present
influence oracles, which use linear-time preprocessing to generate
a small sketch for each node, allowing the influence of any seed
set to be quickly answered from the sketches of its nodes.

1 Introduction

The spread of contagion (information diffusion or spread of an
infection) is a universal phenomenon that is extensively studied
in the context of physical, biological, and social networks. Such
cascades can have one or multiple sources (or seeds) and spread
from infected nodes to neighbors through the link structure. A
motivating application for the study of influence is viral marketing
strategies [14, 23], in which the influence of a set S of people
in a social network is the number of adoptions triggered if we
give S free copies of a product. The problem also has important
applications beyond social graphs, such as placing sensors in
water distribution networks for detecting contamination [20].

A popular model for information diffusion is Independent Cas-
cade (IC), in which an independent random variable is associated

with each (directed) edge (u, v) to model the degree of influence of
u on v. A single propagation instance is obtained by instantiating
all edge variables. We then study the distribution of a property of
interest, such as the number of infected nodes, over these random
instances.

The simplest and most studied IC model is binary IC, in which
the range of the edge random variables is binary. A biased
coin of probability puv is flipped for each directed edge (u, v).
Accordingly, the edge can be either live, meaning that once u is
infected, v is also infected, or null. This model was formalized
in a seminal work by Kempe et al. [19] and is based on earlier
studies by Goldenberg et al. [14]. Note that each direction of an
undirected edge {u, v} may have its own independent random
variable, since influence is not necessarily symmetric. A particular
propagation instance is specified by the set of live edges, and a
node is infected by a seed set S in this instance if and only if
it is reachable from a seed node. The influence of S is formally
defined as the expectation, over instances, of the number of
infected nodes.
Instead of working directly on this probabilistic IC model,

Kempe et al. [19] proposed a simulation-based approach, in which
a set {G(i)} of propagation instances (graphs) is generated in
Monte Carlo fashion according to the influence model. The
average influence of S on {G(i)} is an unbiased estimate that
converges to the expectation on the probabilistic model. The
ability to compute influence with respect to an arbitrary set of
propagation instances has significant advantages, as it is useful
for instances generated from traces or by more complex models
[16, 1], which exhibit correlations between edges that cannot be
captured by the simplified IC model [15]. Moreover, the average
behavior of a probabilistic model on a small set of instances
captures its “typical” behavior, which is often more relevant than
the expected value when the variance is very high.

A basic primitive in the study of influence are influence queries:
Compute (or approximate) the influence of a query set S of seed
nodes. With binary influence, this amounts to performing graph
searches from the seed set in multiple instances. Unfortunately,
this does not scale well when many queries are posed over graphs
with millions of nodes.

Even more computationally challenging is the fundamental
Influence Maximization problem, which is finding the most potent
seed set of a certain size or cost. The problem was formalized by
Kempe et al. [19] and inspired by Richardson and Domingos [23].
Kempe et al. showed that, even when the influence function is
deterministic (but the number s of seeds is a parameter), the
problem encodes the classic Max Cover problem and therefore is
NP-hard [19]. Moreover, an inapproximability result of Feige [13]

1

ar
X

iv
:1

40
8.

62
82

v1
 [

cs
.D

S]
 2

6
A

ug
 2

01
4

implies that any algorithm that can guarantee a solution that is
at least (1− 1/e+ ε) times the optimum is likely to scale poorly
with the number of seeds. Chen et al. [5] showed that computing
the exact influence of a single seed in the binary IC model, even
when edge probabilities are p = 0.5, is #P hard [5].

Using simulations, the objective studied by Kempe et al. [19]
is then to find a set S of seeds with maximum average influence
over a fixed set of propagation instances. A natural heuristic
is to use the set of most influential individuals, say those with
high degree or centrality [19], as seeds. This approach, however,
cannot account for the dependence between seeds, missing the
fact that two important nodes may “cover” essentially the same
communities. Kempe et al. [19] proposed a greedy algorithm
(Greedy) instead. It starts with an empty seed set and iteratively
adds to S the node with maximum marginal gain in influence
(relative to current seed set). Since our objective is monotone
and submodular, a classical result from Nemhauser et al. [21]
implies that the influence of the greedy solution with s seeds is
at least 1 − (1 − 1/s)s ≥ 63% of the best possible for any seed
set of the same size. From Feige’s inapproximability result, this
is the best approximation ratio guarantee we can (asymptotically
and realistically) hope for.

Greedy has become the gold standard for influence maximiza-
tion, in terms of the quality of the results. Greedy, however,
does not scale to modern real-world social networks. The issue is
that evaluating the marginal contribution of each node requires
a directed reachability computation in each instance (of which
there can be hundreds). Several performance improvements to
Greedy have thus been proposed. Leskovec et al. [20] proposed
CELF, which are “lazy” evaluations of the marginal contribu-
tion, performed only when a node is a candidate for the highest
marginal contribution. Chen et al. [6] took a different approach,
using the reachability sketches of Cohen [7] to speed up the reeval-
uation of the marginal contribution of all nodes. While effective,
even with these and other accelerations [17, 22], the best current
implementations of Greedy do not scale to networks beyond 106

edges [5], which are quite small by modern standards.
To support massive graphs, several studies proposed algorithms

specific to the IC model, which work directly with the edge
probabilities instead of with simulations and thus can not be
reliably applied to a set of arbitrary instances. Borg et al. [3]
recently proposed an algorithm based on reverse reachability
searches from sampled nodes, similar in spirit to the approach
used for reachability sketching [7]. Their algorithm provides
theoretical guarantees on the approximation quality and has good
asymptotic performance, but large “constants.” Very recently,
Tang et. al. [25] developed TIM, which engineers the (mostly
theoretical) algorithm of Borgs et al. [3] to obtain a scalable
implementation with guarantees. A significant drawback of this
approach is that it only works for a pre-specified seed set size s,
whereas Greedy produces a sequence of nodes, with each prefix
having an approximation guarantee with respect to the same-size
optimum. In applications we are often interested not in a single
point, but in a trade-off curve that allows us to find a sweet
spot of influence per cost or characterize the network. TIM also
scales very poorly with the seed set size s, and the evaluation
only considered seed sets of up to 50 nodes.

The DegreeDiscount [6] heuristic refines the natural approach
of adding the next highest degree node. MIA [5] converts the
binary IC sampling probabilities pe to deterministic edge weights
and works essentially with one deterministic instance. IRIE, by
Jung et al. [18], is a heuristic approximation of greedy addition
of seed nodes, and has the best performance we are aware of for

an algorithm that produces a sequence of seed nodes. In each
step, the probability of each node to be covered by the current
seed set S is estimated using another algorithm (or simulations).
They then use eigenvector computations to approximate marginal
contributions of all nodes. Of those approaches, the IRIE heuris-
tic scales much better and is much more accurate than other
heuristics. In particular, it performs nearly as well as Greedy
on many research collaboration graphs [18].

Contributions. We design a novel sketch-based approach for in-
fluence computation which offers scalability with performance
guarantees. Our main contribution is SKIM (SKetch-based In-
fluence Maximization), a highly scalable (approximate) imple-
mentation of the greedy algorithm for influence maximization.
We also introduce influence oracles: after preprocessing that is
almost linear, we can answer influence queries very efficiently,
considering only the sketches of the query seed set.
We can apply our design on inputs specified as a fixed set of

propagation instances, as in Kempe et al. [19], with influence
defined as the average over them. We also handle inputs specified
as an IC model, where influence is defined as the expectation.
Our model is defined precisely in Section 2.
We now provide more details on our design. The exact com-

putation of an influence query requires expensive graph searches
from the query seed set S on each of ` instances. The exact
greedy algorithm for Influence Maximization requires a similar
computation for each marginal contribution. We address this
scalability issue by working with sketches.
The core of our approach are per-node summary structures

which we call combined reachability sketches. The sketch of
a node compactly represents its influence “coverage” across `
instances; we call this its combined reachability set. The combined
reachability sketch of a node, precisely defined in Section 3, is the
bottom-k min-hash sketch [10, 8] of the combined reachability set
of the node. This generalizes the reachability sketches of Cohen [7],
which are defined for a single instance. The parameter k is a
small constant that determines the tradeoff between computation
and accuracy. Bottom-k sketches of sets support cardinality
estimation, which means that we can estimate the influence (over
all instances) of a node or of a set of nodes from their combined
reachability sketches. The estimate has a small relative error
and good concentration [7]. Our use of combination sketches and
state-of-the-art optimal estimators is key to obtaining the best
balance between sketch size and accuracy.
Our SKIM algorithm for influence maximization is presented

in Section 4. It scales by running the greedy algorithm in “sketch
space,” always taking a node with the maximum estimated (rather
than exact) marginal contribution.

SKIM computes combined reachability sketches, but only until
the node with the maximum estimated influence is computed.
This node is then added to the seed set. We then update the
sketches to be with respect to a residual problem in which the node
that is selected into the seed set and its “influence” are no longer
present. SKIM then resumes the sketch computation, starting
with the residual sketches, but (again) stopping when a node with
maximum estimated influence (in the current, residual, instance)
is found. A new residual problem is then computed. This process
is iterated until the seed set reaches the desired size. Since the
residual problem becomes smaller with iterations, we can compute
a very large seed set very efficiently. We also prove that the total
overhead of the updates required to maintain the residual sketches
is small. In particular, for a set {G(i)} of ` arbitrary instances, the

2

algorithm can be run to exhaustion, producing a full permutation
of the nodes in O(

∑
i∈[`] |G

(i)|+mε−2 log2 n) time, where m is
the sum over nodes of the maximum indegree (over instances).
For all s ≥ 1, the first s nodes we select have with a very high
probability (at least 1− 1/nc for a constant c) influence that is
at least 1− (1− 1/s)s − ε times the maximum influence of a seed
set of the same size s. These are worst-case bounds. We propose
an adaptive approach that exploits properties of actual networks,
in particular a skewed influence distribution, to achieve faster
running times with the same guarantees.
Our use of the residual instances by SKIM is the key for

maintaining the accuracy of the greedy selection through the
execution and providing with high probability, approximation
ratio guarantees that nearly match those of exact Greedy.
Section 5 presents our influence oracles, which preprocess the

input to compute combined reachability sketches for all nodes.
For instances {G(i)} with n nodes and m(i) edges, the sketches
are built in O(k

∑
i
m(i)) total time. The influence of a set S ⊆ V

can then be approximated from the sketches of the nodes in S.
The oracle applies the union cardinality estimator of Cohen and
Kaplan [11] to estimate the union of the influence sets of the seed
nodes. The query runs in time O(|S|k log |S|) and unbiasedly
with a well-concentrated relative error of ε = 1/

√
k. While

preprocessing depends on the number of instances, the sketch
size and the approximation quality only depend on the sketch
parameter k.
The asymptotic bounds we obtain are novel also from a the-

oretical perspective, and significantly improve the state of the
art, even for influence maximization on a single (deterministic)
instance (select a seed set in a directed graph with maximum
reachable set).
Section 6 presents an extensive experimental study. Besides

demonstrating the scalability of our algorithms on real-world
networks, we compare SKIM with existing approaches, includ-
ing exact Greedy (when size allows), the state-of-the-art IRIE
heuristic, and TIM. We obtain IC models from networks by using
the well-studied weighted and uniform [19] probabilities. Our
algorithms scale up to very large graphs with barely any compro-
mise on quality over exact Greedy, with theoretical guarantees.
On instances generated by an IC model, we achieve more than
an order of magnitude speedup over the best greedy heuristics,
which are designed specifically for this model. Even for a fixed
small seed set size, SKIM is significantly faster than TIM.

Moreover, our algorithm is efficient and accurate enough to be
executed exhaustively, producing a full permutation of the nodes
for networks with billions of edges. For the first time, we provide
the full (approximate) Pareto front of influence versus seed set
size. These relations showcase a basic property of the network,
and the general pattern that a small fraction of nodes influences
a large fraction of the network. In contrast, most previous studies
we are aware of only considered seed sets with at most 50 nodes,
revealing only a very restricted view of this relation.

2 Model

A propagation instance G = (V,E) is specified by the edge set E.
The influence of a set of nodes S in instance G is the number of
nodes reachable from S using the edges E:

Inf(G,S) = |{u | S u}|, (1)

where the predicate S u holds if u ∈ S or if there is a forward
path from a node in S to the node u.

Our input is specified as a set G = {G(i)} of ` ≥ 1 propagation
instances G(i) = (V,E(i)) on the same set of nodes. The influ-
ence of S over all instances {G(i)} is the average single-instance
influence:

Inf(G, S) = Inf({G(i)}, S) = 1
`

∑
i∈[`]

Inf(G(i), S). (2)

The set of propagation instances can be derived from cascade
traces or generated by a probabilistic model.
The input can also be specified as a probabilistic model, such

as Independent Cascade (IC) [19], which defines a distribution G
over instances G ∼ G that share a set V of nodes. In this case,
the influence of G is defined as the expectation

Inf(G, S) = EG∼G Inf(G,S). (3)

We are interested in influence oracles and in influence max-
imization. Influence queries are specified by a seed set S ⊂ V
and the goal is to compute (or estimate) the influence Inf(G, S).
Influence oracles, after efficient preprocessing of the input, allow
us to support very fast queries. Influence maximization is the
problem of finding a seed set S ⊂ V with maximum influence,
where |S| = s is given. We are interested in efficiently computing
a seed set whose influence is close to the maximum one, as well as
in computing a sequence of seeds so that each prefix has influence
that is close to maximum for its size.

3 Combined Reachability Sketches

At the heart of our approach are combined reachability sketches,
which are summary structures Xu that we associate with each
node u. The combined sketches can be defined with respect
either to a set G = {G(i)} of ` ≥ 1 instances or to a probabilistic
model G.
We first consider as input a set of ` ≥ 1 instances. We define

the reachability set of a node u in instance G as R(G, u) = {v |
u G v}, where u G v means that v is reachable from u in G.
Considering all instances, the combined reachability set is a set of
node-instance pairs: Ru = {(v, i) | u G(i) v}. The influence of
a set of nodes S on instances {G(i)} can thus be expressed as

Inf({G(i)}, S) = 1
`

∑
i∈[`]

∣∣∣⋃
u∈S

R(G(i), u)
∣∣∣ = 1

`

∣∣∣⋃
u∈S

Ru

∣∣∣. (4)

This is the average over the instances {G(i)} (with i ∈ [`]) of the
number of nodes reachable from at least one node in S.

The combined reachability sketch of a node captures its reacha-
bility information across instances. The sketches we use are
the bottom-k min-hash sketches [7, 10] Xv of the combined
reachability sets Rv: We associate with each node-instance
pair (v, i) an independent random rank value r

(i)
v ∼ U [0, 1],

where U [0, 1] is the uniform distribution on [0, 1]. The com-
bined reachability sketch of u is the set of the k smallest rank
values amongst {r(i)

v | (v, i) ∈ Ru}:

Xu = Bottom-k{r(i)
v | (v, i) ∈ R(i)

u }, (5)

where Bottom-k of a set is its subset consisting of the k smallest
values. When there is a single instance (` = 1) the combined
reachability sketches are the same as the reachability sketches of
Cohen [7].
We define the threshold rank τu of each node u as

τu = kth({r(i)
v | (v, i) ∈ R(i)

u }
)
, (6)

3

which is the kth lowest rank value in Ru. (For a set Y of cardi-
nality |Y | < k, we define kth(Y) ≡ 1.) Therefore, when |Xu| = k
we have τu = max{Xu}, and τu = 1 otherwise. The cardinal-
ity |Ru| can be estimated from Xu using a bottom-k cardinality
estimator. The estimate is |Xu| if τu = 1 (i.e., if |Xu| < k)
and is (k − 1)/τu otherwise. This estimate has a Coefficient of
Variation (CV), which is the ratio of the standard deviation to
the mean, that is never more than 1/

√
k − 2 and is well concen-

trated [7]. By applying Chernoff bounds with c > 1, we obtain
that using k = (2 + c)ε−2 lnn, the probability of having relative
error larger than ε is at most 1/nc. Therefore, we can be correct
with high probability on estimating the influence of all nodes.

3.1 Structured Permutation Ranks

Instead of using ranks drawn from U [0, 1], we can work with
integral permutation ranks with respect to a permutation on the
n` node-instance pairs. We can also structure the permutation so
that each sequence in positions in+1 to (i+1)n for integral i ≥ 0
has each node appear in exactly one pair. The associated instance
with a node v in chunk i is randomly selected from instances j for
which the pair (v, j) does not have a permutation rank of in or
less (independently for each node). One can show that this can
only improve estimation accuracy [8]. Only the first min{k, `}n
positions can be included in combined reachability sketches of
nodes.

When estimating influence, we can convert permutation ranks
to random ranks using the exponential distribution [7]. We can
also estimate cardinality of a subset of the D = n` elements
directly from permutation ranks [D], using the unbiased estima-
tor 1 + (k − 1)(D − 1)/(T − 1), where the threshold T is the kth
smallest permutation rank. This estimator can be interpreted as
setting aside the element with permutation rank T , and estimat-
ing the fraction (of the other D − 1 elements) that is in our set
by the fraction of such elements with rank smaller than T , which
is (k − 1)/(T − 1).

3.2 Sketches for an IC Model

We now define sketches with respect to a binary IC model G,
presented as a graph with probabilities pe associated with its
edges. The influence of a set of nodes S is

Inf(G, S) = EG∼G
∣∣⋃
u∈S

R(G, u)
∣∣. (7)

The sketches we define for G also contain at most k rank val-
ues, but provide approximation guarantees with respect to (7).
The sketches can be interpreted as the sketches computed for `
instances generated according to the model G ∼ G as ` → ∞.
When doing so, at the limit, each unique rank value corresponds
to a unique instance, so we do not need to explicitly represent
“instances.” We work with structured permutation ranks (Sec-
tion 3.1). Since it suffices to consider the first kn ranks, this
conveniently removes the dependence of the rank representation
on `. We can similarly apply an estimator to the kth smallest
rank T ≤ kn − k to estimate influence: Instead of estimating
cardinality (which goes to infinity with `) and dividing by ` using
the estimator 1

`
+ (k−1)(n`−1)

`(T−1) we take the limit as ` → ∞ and
estimate influence using n(k − 1)/(T − 1).

4 SKIM: Sketch Space IM

In this section we present our Sketch-based Influence Maximiza-
tion (SKIM) algorithm. We first review Greedy, the greedy
algorithm for influence maximization (working with ` instances)
presented by Kempe et al. [19]. Greedy is applied with respect
to the influence objective Inf(G, S), as defined in Equation (2). It
starts with an empty seed set S = ∅. In each iteration, it adds
to S the node v with maximum marginal gain,

Inf(G, S ∪ {v})− Inf(G, S) = 1
`

∣∣∣ ⋃
u∈S∪{v}

Ru \
⋃
u∈S

Ru

∣∣∣. (8)

This is the same as choosing v maximizing Inf(G, S ∪ {v}).
SKIM approximates exact Greedy by ensuring that at each

iteration, with sufficiently high probability, or in expectation
over iterations, the node we choose to add to the seed set has
a marginal gain that is close to the maximum one. To do so, it
suffices to compute sketches only to the point that the node with
the maximum estimated marginal gain is revealed. To maintain
accuracy, we maintain a residual problem and respective sketches.
SKIM constructs (partial) combined reachability sketches by

adapting a construction of reachability sketches [7]: It processes
node-instance pairs (u, i) by increasing rank, performing a reverse
reachability search in G(i) from u. The sketch Xv of each visited
node v is augmented with the rank r(i)

u of the pair. For a given
value of k, the first node u whose sketch reaches size k is also
the node with maximum estimated influence. This is because the
bottom-k cardinality estimate of a node depends only on the kth
smallest rank in Xu, τu (which is a complete sufficient statistic
for cardinality estimation from the sketch [8]); see Equation (6).
For the node u, τu is equal to the rank r(i)

u of the last processed
pair (u, i). For other nodes v with incomplete sketches, we know
that τv ≥ r(i)

u , so their estimate is lower.
Sketch building is suspended once the node v with maximum

estimated influence is found. SKIM then adds v to the seed set and
generates a residual problem, with v and all node-instance pairs
it covers removed from the instances G. The (partially computed)
sketches of each remaining node u are updated using Xu ←
Xu \Xv, which deletes from the sketch the ranks of all covered
node-instance pairs.

The process of building sketches is then resumed on the residual
problem, working with updated partial sketches and instances.
We continue processing node-instance pairs in increasing rank
order, starting from the first rank that exceeds τv and skipping
pairs that are already covered.
We provide pseudocode for SKIM as Algorithm 1. Instead of

maintaining the actual partial sketches Xv, the algorithm only
keeps their cardinalities size[v]. To support correct and efficient
updates of the sketches, we maintain an inverted index index[u, i]
that lists, for each rank value r(i)

u we processed, all nodes v such
that r(i)

u ∈ Xv. The entry for rank r(i)
u is created and populated

when we perform a reverse reachability search from pair (u, i).
The algorithm outputs the list seedlist of pairs (σi, Ii), where
{σi} is a permutation of the nodes according to the order they
are selected into the seed set, and Ii is the marginal influence
of σi. The surprising property of our construction is that this
whole iterative process is very efficient. If we run SKIM with
a fixed k = cε−2 logn, Section 4.1 will show that we obtain the
following worst-case performance guarantees:

Theorem 4.1. SKIM runs in time O(n` +
∑

i
|E(i)| +

mε−2 log2 n), where m =
∑

v
maxi InDeg(i)(v) ≤ |

⋃
i
E(i)|. The

4

Algorithm 1: Sketch-based Influence Maximization
// Initialization
forall the pairs (u, i) do covered[u,i]← false
forall the nodes v do size[v]← 0
index ← hash map of node-instance pairs to nodes
seedlist← ∅ // List of seeds & marg. influences
rank← 0
shuffle the n` node-instance pairs (u, i)
// Compute seed nodes
while |seedlist| < n do

while rank < n` do // Build sketches
rank← rank + 1
(u, i)← rank-th pair in shuffled sequence
if covered[v,i] = false then

BFS from u in reverse graph G(i), during which
foreach scanned node v do

size[v]← size[v] + 1
index[u,i]← index[u,i] ∪ {v}
if size[v] = k then

x← v // Next seed node
abort sketch building

if all nodes u have size[u] < k then
x← argmaxu∈V size[u]

Ix ← 0 // The coverage of x
forall the instances i do // Residual problem

(forward) BFS from x in graph G(i), during which
foreach scanned node v do

if covered[v,i] then prune
Ix ← Ix + 1
covered[v,i]← true // Cover v in i
forall the nodes w in index[v,i] do

size[w]← size[w]− 1
index(v, i)← ⊥ // Erase (v, i) from index

Ix ← Ix/`
seedlist.append(x,Ix)

return(seedlist)

permutation {σi} of nodes has the property that with probability
1−1/nΩ(c), for all s ∈ [n], the set of seed nodes S = {σ1, . . . , σs},
has Inf({G(i)}, S) ≥ (1− 1/e− ε) arg maxZ||Z|≤s Inf({G(i)}, Z).

4.1 Algorithm Analysis
4.1.1 Correctness

It is not hard to show that the influence of a node v in the residual
problem of iteration i is equal to its marginal influence with re-
spect to S = {σ1, . . . , σi−1} in the original problem. Therefore, Ii,
which is the influence of σi in the residual problem of iteration i, is
the marginal influence of σi, with respect to S = {σ1, . . . , σi−1}
in the original problem. Thus, by definition, for all s ∈ [n]
and S = {σ1, . . . , σs}, Inf({G(i)}, S) =

∑
i∈[s] Ii.

We also show that the partial sketches correctly capture a
component of the sketches computed for the residual problem:

Lemma 4.1. At the end of an iteration selecting v, each updated
partial sketch Xu is equal to the set of entries of the combined

reachability sketch X ′u of u in the residual problem that have rank
value at most τv.

Proof sketch. The content of each sketch Xu before computing
the residual is clearly a superset of all reachable node-instance
pairs (z, i) with rank r(i)

z ≤ τv in the residual problem. We can
then verify that entries are removed from Xu only and for all
covered node-instance pairs with r(i)

z ≤ τv.

4.1.2 Running Time

We now analyze the running time of SKIM. All updates of the
residual problem together take time linear in the size of {G(i)},
since nodes and edges that are covered by the current seed set are
removed once visited and never considered again. The remaining
component of the computation is determined by the number of
times ranks are inserted (and removed) from sketches. Inserting
a value to Xu involves a scan of all (remaining) incoming edges to
u in an instance. Removals of ranks can be charged to insertions.
So we need to bound the total number of rank insertions:

Lemma 4.2. The expected total number of rank insertions at a
particular node is O(k lnn).

Proof sketch. Consider a sketch Xv. We can show, viewing
the sketches as uniform samples of reaching pairs, that each
rank value removal corresponds to cardinality—and hence influ-
ence (marginal gain)—being reduced in expectation by a factor
of 1 − 1/k. The initial influence is at most n, so there are at
most k ln(nk) insertions until the marginal influence is reduced
below 1/k, at which point we do not need to consider the node.

The running time is dominated by the sum over nodes v, of
the number of times a rank is inserted to the sketch of v, times
the in-degree of v (the maximum over instances). From the
lemma, we obtain a bound of O(km lnn) on the total number of
insertions. Thus, we obtain a bound of O(km ln(n) +

∑
i
|G(i)|)

on the running time of the algorithm.

4.1.3 Approximation Ratio

To obtain an approximation that is within 1 + ε with good prob-
ability, we can choose a fixed k = cε−2 logn, for some constant c.
The relative error of each influence estimate of a node in an iter-
ation is at most ε with probability of at least 1− 1/nc. Since we
use polynomially many estimates (maximize influence among n
nodes in each of at most n iterations), all estimates are within
a relative error of ε with probability that is polynomially close
to 1− 1/nc−2. Lastly, we bound the approximation ratio of the
“approximate” greedy algorithm we work with, which uses seeds
with close to maximum instead of maximum marginal gain:

Lemma 4.3. With any submodular and monotone objective func-
tion, approximate greedy, which iteratively chooses a node with
marginal gain that is at least (1 − δ) of the maximum, has an
approximation ratio of at least (1− (1− 1/s)s−O(δ)). The same
claim holds in expectation when the selection is well concentrated,
that is, its probability of being below (1− aδ) times the maximum
decreases exponentially with a > 1.

Proof. The argument extends the analysis of exact greedy by
Nemhauser et al. [21]. For any s, and after selecting any set U
of seeds, the maximum marginal gain by adding a single node
is always at least 1/s of the maximum possible gain for s nodes.
When using the approximation, this is at least (1− δ)/s of the

5

maximum possible gain. Therefore, after approximate greedy
selection of s nodes, the influence is at least 1− (1− (1− δ)/s)s ≤
1 − (1 − 1/s)s − O(δ) using the first order term of the Taylor
expansion.

4.2 Extensions

4.2.1 Adaptive Error Estimation

This worst-case analysis is too pessimistic, both for the approx-
imation ratio and running time. In our experiments, we tested
SKIM with a fixed k, and observed that the computed seed sets
had influence that is much closer to the exact greedy selection
than indicated by the worst-case bounds.

The explanation is that the influence distribution on real inputs
is heavy-tailed, with the vast majority of nodes having a much
smaller influence than the one of maximum influence. One factor
of O(logn) in the worst-case running time is due to a “union
bound” ensuring a relative error of ε for all nodes in all iterations,
with high probability. With a heavy tail distribution, we can
identify the maximum with a small error if we ensure a small error
only on the few nodes that have influence close to the maximum.
Furthermore, when the maximum influence is separated out from
other influence values, our approximate maximum is more likely
to be the node with actual maximum influence. Moreover, the
estimation error over iterations averages out, so as the seed set
gets larger we can work with lower accuracy and still guarantee
good approximation.
We propose incorporating error estimation that is adaptive

rather than worst-case. This facilitates tighter confidence bounds
on the estimation quality of our output. It also allows us to
adjust the sketch parameter k during computation in order to
meet pre-specified accuracy and confidence levels.
Let the discrepancy in an iteration be the gap between the

actual maximum and the marginal influence of the selected seed.
We will bound the sum of discrepancies across iterations by
maintaining a confidence distribution on this sum.
The estimation uses two components. (i) The exact marginal

influence Is of the selected node in each iteration, as well as
the sum I =

∑
i≤s Is, which is the influence of our seed set.

The value Is is computed when generating the residual prob-
lem. (ii) Noting in each iteration the size of the second largest
sketch (excluding the last processed rank). Intuitively, if the
second largest sketch is much smaller than the first one, it is
more likely that the first one is the actual maximum. We bound
the discrepancy in a single iteration using Chernoff bounds. The
probability that the sum of independent Bernoulli trials falls
below its expectation µ by more than νµ is

Pr[Z < (1− ν)µ] <
(

exp(−ν)
(1− ν)(1−ν)

)µ
. (9)

We use this to bound the probability that the discrepancy ex-
ceeds ∆ε, where ∆ is the exact marginal gain of our selected seed
node. We consider the second largest sketch size, k′ ≤ k − 1 (the
last rank of τ is not considered part of the sketch even if in-
cluded). We use Z = k′, µ = τ∆(1 + ε), and ν = 1− k′

τ∆(1+ε) in
Equation (9) to obtain a confidence level.
Finally, to maintain an upper bound on the confidence-error

distribution of the sum of discrepancies, we take a convolution, af-
ter each iteration, of the current distribution with the distribution
of the current iteration.

4.2.2 Alternative Implementations

SKIM can be adapted for higher concurrency by running the
sketch-building phases in batches of ranks. We can also adapt it
to process inputs presented as an IC model instead of as a set
of instances. This yields a more efficient implementation than
when generating a set of instances using simulations and running
SKIM on them. In IC-model SKIM, the residual problem is a
collection of partial models and sketch building is performed on
the probabilistic model. We omit details due to space limitations.

5 Influence Oracles

We now present an accurate and efficient oracle for binary influ-
ence, which is based on precomputing a combined reachability
sketch (as defined in Section 3) for each node. We preprocess a
set of ` instances G = {G(i)} using O(k

∑`

i=1 |E
(i)|) computation

and working storage of O(k) per node. The preprocessing gen-
erates combined reachability sketches Xv of size O(k) for each
node v ∈ V .

Theorem 5.1. Given a set {Xv} of combined reachability
sketches for G with parameter k, influence queries Inf(G, S) for
a set S of nodes can be estimated in O(|S|k log |S|) time from
the sketches {Xu | u ∈ S}. The estimate is nonnegative and
unbiased, has CV at least 1/

√
k − 2, and is well concentrated,

meaning that the probability that the relative error exceeds a/
√
k

decreases exponentially with a > 1.

We next present the two components of our oracle: estimat-
ing the influence of S from the sketches of the nodes in S and
efficiently computing all combined reachability sketches.

5.1 Influence Estimation from Sketches
We show how to use the combined reachability sketches of a set of
nodes S to estimate the influence of S, as given in Equation (4).
In graph terms, this means estimating the cardinality of the
union

⋃
u∈S Ru from the sketches Xu, with u ∈ S. The influ-

ence Inf(G, S) is the union cardinality divided by the number of
instances ` and, accordingly, is estimated using ̂∣∣⋃

v∈S Rv
∣∣/`. Our

estimators use the threshold rank τu of each node u; see Equa-
tion (6).
From the bottom-k sketches of each set Ru for u ∈ S we can

unbiasedly estimate the cardinality of the union
⋃
u∈S Ru. One

way to do this is to compute the bottom-k sketch of the union [7],
which has threshold value τ = kth{

⋃
u∈S Xu} and apply the

cardinality estimator (k− 1)/τ . This would already conclude the
proof of Theorem 5.1.

In our implementation, we use a strictly better union cardinality
estimator that uses all the (at most k|S|) values in the set of
sketches instead of just the kth smallest:

̂∣∣⋃
v∈S

Rv
∣∣ =

∑
z∈
⋃

v∈S
Xv\{τv}

1
maxu∈S|z∈Xu\{τu} τu

. (10)

This estimator, proposed by Cohen and Kaplan [11], can be com-
puted from the |S| sketches in time O(|S|k log |S|), by first sorting
the |S| sketches by decreasing threshold, and then identifying
for each distinct rank value the threshold of the first sketch that
contains it. When the sets Ru are all the same, the estimate is
the same as applying an estimator to the bottom-k sketch on
the union, but Equation (10) can have up to a factor of

√
|S|

6

Algorithm 2: Combined reachability sketches
forall the nodes u ∈ V do

sketches[u]← ∅ // Global sketches
local[u]← ∅ // Instance-local sketches

shuffle the n` node-instance pairs (u, i)
forall the instances i do

// Build local sketches for instance i
for pairs (u, j) with j = i by increasing rank r do

BFS from u in reverse graph G(i), during which
foreach scanned node v do

if |local[v]| = k then prune
local[v]← local[v] ∪ {r}

// Merge local sketches into global sketches
forall the nodes u do

// Both sketches[u] and local[u] are sorted
sketches[u]← merge(sketches[u],local[u])
trim sketches[u] to size k
local[u]← ∅

return(sketches)

lower CV when the sets Ru are sufficiently disjoint. Moreover,
this estimator is an optimal sum estimator in that it minimizes
variance given the information available in the sketches.

We can also derive a permutation version of Equation (10).
The simplest way is to treat the permutation rank T as a uniform
rank r = (T − 1)/(`n− 1) which is the probability that the rank
of another node is smaller than T .

5.2 Building Combined Reachability Sketches

When there is a single instance G = (V,E), the combined sketches
are simply reachability sketches [7, 10]. Reachability sketches Yv
for all nodes can be computed very efficiently, using at most mk
edge traversals in total, where m is the number of edges [7].
Algorithm 2 computes combined sketches by applying the

pruned searches algorithm of Cohen [7] on each instance G(i),
obtaining a sketch Y

(i)
v for each node, and combining the re-

sults. The combined sketch Xv is obtained by taking the
bottom-k values in the union of the ` sketches, defined as Xv ←
bottom-k(∪i∈`Y (i)

v).
The algorithm runs in O(k

∑
i
|E(i)|) time. Rather than storing

all sets of sketches, we can compute and merge concurrently
or sequentially, but after each step, take the bottom-k values
in the current bottom-k set and the newly computed sketch
for instance G(i): Xv ← bottom-k{Xv, Y (i)

v }. Therefore, the
additional run time storage requirement for sketches is O(nk).
This gives us the worst-case bounds on the computation stated
in Theorem 5.1.

6 Experiments

We implemented our algorithms in C++ using Visual Studio
2013 with full optimization. All experiments were run on a
machine with two Intel Xeon E5-2690 CPUs and 384GiB of
DDR3-1066 RAM, running Windows 2008R2 Server. Each CPU
has 8 cores (2.90GHz, 8× 64 kiB L1, 8 × 256 kiB, and 20MiB L3
cache), but all runs are sequential for consistency.

We ran our experiments on benchmark networks available as
part of the SNAP [24] and WebGraph [2] projects. More specifi-
cally, we test social (Epinions, Slashdot, Gowalla, TwitterFollowers,
LiveJournal, Orkut, Friendster, Twitter), collaboration (AstroPh),
and web (Slovakia, Slovakia>) networks. Slovakia> is obtained
from Slovakia by reversing all arcs (influence follows the reverse
direction of links).
Kempe et al. [19] proposed two natural ways of associating

probabilities with edges in the binary IC model: the uniform
scheme assigns a constant probability p to each directed edge (they
used p = 0.1 and p = 0.01), whereas in the weighted cascade (wc)
scheme the probability is the inverse of the degree of the head
node (making the probability that a node is influenced less depen-
dent on its number of neighbors). We consider the wc scheme by
default, but we will also experiment with the uniform scheme (un).
These two schemes are the most commonly tested in previous
studies of scalability [20, 6, 5, 18, 22, 25].

6.1 Influence Maximization
This section evaluates SKIM, our new sketch-based influence
maximization algorithm. By default we set the number of sampled
instances to ` = 64 and compute sketches with k = 64 entries.
(These choices will be justified in later experiments.) To evaluate
the actual influence values of the seeds computed by SKIM, we
use a set of 512 different sampled instances, in which we simply
run BFSes a posteriori.

Table 1 summarizes the performance of our algorithm on several
networks of varying sizes with up to almost two billion edges.
Besides the network sizes, the table reports results for three seed
set sizes s: 50, 1000 and n, i.e., computing full permutation. In
each case, it reports the total running time of our algorithm as
well as the total influence of the related seed set as a percentage
of n. (Note that for s = n this value is 100% by definition, so
we omit it in the table.) For s = 50 and 1000, the table also
reports the corresponding numbers for IRIE [18], one of the fastest
available heuristics that can generate full permutations. We use
our own implementation of IRIE, which is somewhat faster than
the one evaluated in the original paper. Except for s = n, we set
an execution time limit of two hours; we report “DNF” and the
corresponding number of computed seeds for those runs that did
not finish.
The table shows that the influences computed by IRIE and

SKIM are very close; sometimes SKIM being better. However,
SKIM is significantly faster, outperforming IRIE by several orders
of magnitude on many instances. In particular, when comput-
ing 1000 instead of 50 seeds, SKIM’s speedup over IRIE becomes
more evident as IRIE’s running time grows linearly with the
number of seed nodes, whereas with SKIM it decreases with the
size of the residual problem. As a result, we can compute the 1000
most influential nodes on a graph with 65 million nodes and 1.8
billion edges (Friendster) in just 22 minutes. Similarly, computing
a full influence ordering with SKIM takes less then 5.5 hours on
all graphs.
We also compare SKIM to TIM+ [25], the fastest influence

maximization algorithm we are aware of. We ran their implemen-
tation (kindly given to us by the authors) to report figures on
our instances. As in their experiments, we set the ε parameter
of TIM+ to 1.0. Table 2 reports the influence (as percentage
of n) as well as the running time for 50 and 1000 seed nodes. We
note that SKIM and TIM+ are extremely close in quality, with
TIM+ tending to be slightly better. SKIM is faster than TIM+

on most instances except on Friendster, Twitter, and Slovakia>

7

Table 1. Performance of SKIM and IRIE. SKIM uses k = 64, ` = 64, and we evaluate the influence on 512 (different) sampled
instances. For all runs (except those for n seeds) we set a time limit of two hours. For the runs that did not finish (DNF), we report
the influence of the seed set (its size is shown in parenthesis after “DNF”) computed within the time limit (*).

influence [%] running time [sec]
50 seeds 1000 seeds 50 seeds 1000 seeds n seeds

instance |V | [·103] |A| [·103] SKIM IRIE SKIM IRIE SKIM IRIE SKIM IRIE SKIM
AstroPh 14.8 239.3 11.1 11.4 45.9 46.5 0.5 0.5 1.0 4.3 1.9
Epinions 75.9 508.8 15.8 15.9 34.4 34.1 0.7 0.9 1.6 10.3 6.7
Slashdot 77.4 828.2 21.4 21.6 52.1 52.3 0.8 1.5 1.9 19.8 7.5
Gowalla 196.6 1 900.7 18.1 18.1 30.9 31.1 1.4 5.1 3.5 75.2 21.5
TwitterFollowers 456.6 14 855.9 4.4 4.2 17.2 17.5 3.0 23.1 10.7 388.5 85.1
LiveJournal 4 847.6 68 475.4 1.6 1.5 6.8 6.7 8.6 261.1 31.1 4 576.5 933.0
Orkut 3 072.6 234 370.2 5.3 5.3 12.1 11.5* 34.0 473.3 102.9 DNF (915) 1 197.2
Friendster 65 608.4 1 806 067.1 9.5 8.8* 15.4 8.8* 794.0 DNF (43) 1 308.5 DNF (43) 19 254.2
Twitter 41 652.2 1 468 364.9 21.1 21.1 38.0 25.3* 965.4 4 233.4 1 912.8 DNF (92) 11 558.8
Slovakia 50 636.2 1 930 292.9 5.4 4.8 14.8 10.1* 86.6 2 272.5 293.9 DNF (290) 11 743.4
Slovakia> 50 636.2 1 930 292.9 10.3 10.0 25.9 16.7* 220.7 1 740.6 621.4 DNF (230) 11 679.3

Table 2. Comparing SKIM and TIM+ regarding influence and
running time for 50 and 1000 seeds.

influence [%] running time [sec]
50 seeds 1000 seeds 50 seeds 1000 seeds

instance SKIM TIM SKIM TIM SKIM TIM SKIM TIM
AstroPh 11.1 11.6 45.9 47.0 0.5 0.7 1.0 1.8
Epinions 15.8 15.8 34.4 34.8 0.7 0.3 1.6 2.3
Slashdot 21.4 22.2 52.1 52.6 0.8 1.2 1.9 6.9
Gowalla 18.1 18.2 30.9 31.4 1.4 2.0 3.5 13.4
TwitterF’s 4.4 4.6 17.2 17.6 3.0 7.1 10.7 28.7
LiveJournal 1.6 1.7 6.8 7.0 8.6 26.0 31.1 89.1
Orkut 5.3 5.4 12.1 12.3 34.0 102.0 102.9 427.8
Friendster 9.5 9.6 15.4 15.6 794.0 406.5 1,308.5 410.5
Twitter 21.1 21.3 38.0 38.1 965.4 291.6 1,912.8 795.0
Slovakia 5.4 5.5 14.8 14.9 86.6 299.3 293.9 647.1
Slovakia> 10.3 10.5 25.9 26.3 220.7 384.1 621.4 313.4

with 1000 seeds, and generally the two are never more than a
factor of three apart. However, recall that SKIM actually com-
putes a sequence of nodes such that every prefix of this sequence
also (approximately) maximizes the influence. In contrast, TIM+

must be rerun to obtain a smaller set of maximally influential
nodes.

We next argue why our paremeter choices are reasonable. First,
we evaluate the impact of the number ` of instances on the
solution quality. Figure 1 (left) reports the quality of the seed
nodes found by Greedy (GRE) when we use different ` values
during the algorithm, but evaluate the quality of the resulting seed
set on 4096 (different) instances. We observe that increasing `
does help quality, but only up to a certain point. In particular,
values beyond 64 yield modest improvements. Since our running
times depend on `, we use this value by default.

Figure 2 compares SKIM to GRE, IRIE, and DEG (including
nodes by order of decreasing degree) on two inputs: Slashdot and
TwitterFollowers. For SKIM, we test various values for k (4, 16, 64,
256). We report the influence error when compared to GRE (top)
and the running time (bottom). We observe that the error for

0 500 1 000

0
%

2
0
%

4
0
%

AstroPh: seed set size

er
ro
r
w
rt
.
l
=

4
0
9
6 4 16

64 128
256 1024

26 27 28 29 210211212213

2
0
%

4
0
%

Number of instances `

a
v
er
a
g
e
er
ro
r

Slashdot
Epinions
AstroPh

Figure 1. Evaluating different numbers of simulations (left) and
evaluating the average error of our oracle on 1000 random seeds,
subject to varying `. The right plot is discussed in Section 6.2.

SKIM decreases as we increase k, k = 64 being the sweet spot,
after which solution quality does not improve by much anymore.
Running times increase for all algorithms with the size of the
seed set, but SKIM is consistently the fastest algorithm for any
size.

Figure 3 evaluates the performance of SKIM and IRIE on the
two IC schemes (wc,un), using TwitterFollowers as input. We
observe that SKIM matches the solution quality of IRIE but is
significantly faster.
Finally, Figure 4 shows the influence (top) and running

time (bottom) of SKIM when computing the full permutation.
We plot the relative influence and running time (both as per-
centage) subject to the number of computed seed nodes as the
algorithm progresses (also as percentage of n). To the best of our
knowledge, we are the first who are able to compute (approxi-
mately) the full Pareto front of influence versus seed set size on
graphs with billions of edges within a few hours only. The tradeoff
seems to characterize the core of the network: On Slovakia> and
Twitter, 0.1% of the nodes already cover almost 50% of the entire
graph, while on Slashdot and Friendster, 0.1% of the seeds only
cover 25–30% of the graph, albeit with a faster growth. Other in-
stances have a slower growth in influence, but on all instances 10%
of the nodes cover at least 50% of the graph. Regarding running
time, we observe that all instances exhibit similar behavior. In
particular, more than 50% of the total running time is spent
computing the first 10% of seed nodes.

8

0 500 1000

0
1
0

2
0

Slashdot: seed set size

er
ro
r
w
rt
.
G
R
E

GRE DEG
IRIE SK-4
SK-16 SK-64
SK-256

0 500 1000

0
5
0

1
0
0

TwitterF’s: seed set size

er
ro
r
w
rt
.
G
R
E

0 500 1000

1
1
0
0

Slashdot: seed set size

ru
n
n
in
g
ti
m
e
[s
ec
]

0 500 1000

0
.1

1
0

1
0
0
0

TwitterF’s: seed set size

ru
n
n
in
g
ti
m
e
[s
ec
]

Figure 2. Evaluating influence and running time for several
algorithms. The legend applies to all plots.

0 500 1000

0
2
0

4
0

6
0

8
0

TwitterF’s: seed set size

in
fl

u
en

ce
[·1

0
3
]

0 500 1000

0
2
0
0

4
0
0

TwitterF’s: seed set size

ru
n
n
in
g
ti
m
e
[s
ec
] SKIM-wc

IRIE-wc
SKIM-un
IRIE-un

Figure 3. Evaluating SKIM and IRIE on the uniform (un) and
weighted cascade (wc) models. The legend applies to both plots.

6.2 Influence Oracles
This section evaluates our influence oracle (cf. Section 5). We use
the IC model (with wc probabilities) to generate a set of ` = 64
instances. We build combined reachability sketches of size k = 64
for this set of instances and evaluate the performance of our
oracle (cf. Section 2).
Table 3 summarizes the performance of our oracle on several

networks. It reports the time spent for preprocessing and the
required space (in MiB) to store the combined sketches. Queries
are evaluated for seed set sizes s of 1, 50, and 1000. For each s,
we generate 100 seed sets whose nodes are selected uniformly at
random. We report the average running time of the query (esti-
mator) in microseconds and the relative error of the estimated
influence when compared to the exact influence of the respective
seed set.
We observe that preprocessing times are reasonable for all

graphs while space consumption is essentially linear in the number
of nodes. For example, on LiveJournal (the biggest instance
tested), the sketches require 2.3GiB of space, which we computed
in just 34 minutes. The influence of a single node can then be
estimated in 1–2 µs, while for 1000 seed nodes we require 5.2ms.
Note that the query time is almost independent of the graph size.
Using k = 64, the error stays well below 10% for one seed node,
and decreases significantly for larger seed sets (to around 1%

0.1 1 10 100

2
0

4
0

6
0

8
0

1
0
0

seed set size [%]

in
fl

u
en

ce
[%

]

0.1 1 10 100

0
2
5

5
0

7
5

1
0
0

Epinions
Slashdot
TwitterF’s
LiveJournal

Orkut
Friendster
Twitter
Slovakia>

seed set size [%]

ru
n

n
in

g
ti

m
e

[%
]

Figure 4. Evaluating influence permutations (top) and running
time (bottom) on several instances. The legend applies to both
plots.

Table 3. Evaluating our influence oracle with ` = 64.
preproc. queries

1 seed 50 seeds 1000 seeds
time space time err. time err. time err.

instance [sec] [MiB] [µs] [%] [µs] [%] [µs] [%]
AstroPh 4 7.2 1.6 8.5 166.7 2.1 4 658.3 0.5
Epinions 10 37.1 1.3 5.2 155.0 3.4 5 011.1 1.1
Slashdot 20 37.8 1.5 6.0 155.2 3.9 4 982.3 1.0
Gowalla 46 96.0 1.5 7.3 179.8 3.2 5 275.6 1.1
TwitterFollowers 229 223.0 2.1 7.0 190.2 3.3 5 061.8 0.8
LiveJournal 2 064 2 367.0 2.0 7.1 189.6 3.0 5 168.3 0.9

for s = 1000).
Figure 5 shows in detail how the error of the estimator (y

axis) decreases when the seed set size increases (x axis). To
better evaluate the performance of estimating the union of several
reachability sets, we use the following neighborhood generator for
queries: For each query, it first picks a node u at random with
probability proportional to its degree. From u it exhaustively
grows a BFS of the smallest depth l such that the tree contains
at least s nodes. The nodes for the seed set are then uniformly
sampled from this tree. With this generator, we expect the
reachability sets of seed nodes to highly overlap. Looking at
the figure, we observe that the estimation error of our oracle
decreases rapidly for increasing s. Also, running queries from
the neighborhood generator (right) compared to the uniform
one (left), has almost no effect on the estimation error; for 50
seed nodes it is even better on many instances.

1 10 20 30 40 50

2
%

4
%

6
%

8
%

seed set size (uniform)

er
ro
r

1 10 20 30 40 50

2
%

4
%

6
%

8
%

1
0
%

seed set size (neighborhood)

er
ro
r

AstroPh
Epinions
Slashdot
Gowalla
TwitterF’s
LiveJournal

Figure 5. Evaluating our oracle for seed sets of varying size,
which are selected uniformly at random (left) or with our BFS-
based method (right).

9

Finally, Figure 1 (right) reports the performance of the oracle
for fixed instances on the general IC model. We vary the number `
of instances generated by simulations when building the oracle,
but compute the error on a different set of 8192 instances. Since
our oracle implementation is optimized for fixed instances, we
see a higher error with ` = 64. We can also see that the error
decreases with the number of simulations. We conclude that for
an IC model oracle, it is beneficial to construct sketches that have
approximation guarantees with respect to the IC model itself (cf.
Section 3.2) rather than work with simulations.

7 Conclusion

We presented highly scalable algorithms for binary influence com-
putation. SKIM is a sketch-space implementation of the greedy
influence maximization algorithm that scales it by several orders
of magnitude, to graphs with billions of edges. SKIM computes a
sequence of nodes such that each prefix has a probabilistic guaran-
tee on approximation quality that is close to that of Greedy. We
also presented sketch-based influence oracles, which after a near-
linear processing of the instances can estimate influence queries
in time proportional to the number of seeds. Our experimental
study focused on instances generated by an IC model, since the
fastest algorithms we compared with only apply in this model.
Our experiments revealed that SKIM is accurate and faster than
other algorithms by one to two order of magnitude.
In future work, we plan to develop a SKIM-like algorithm for

timed influence, where edges have lengths that are interpreted
as transition times and we consider both the speed and scope of
infection [15, 4, 9, 1, 12]. We also plan to use sketches to efficiently
estimate the Jaccard similarity of the influence sets of two nodes,
which we believe to be an effective similarity measure [9].

References

[1] B. D. Abrahao, F. Chierichetti, R. Kleinberg, and A. Pan-
conesi. Trace complexity of network inference. In KDD,
2013.

[2] P. Boldi and S. Vigna. The WebgGaph framework I: com-
pression techniques. In WWW. 2004.

[3] C. Borg, M. Brautbar, J. Chayes, and B. Lucier. Maximizing
social influence in nearly optimal time. In SODA, 2014.

[4] W. Chen, W. Lu, and Y. Zhang. Time-critical influence
maximization in social networks with time-delayed diffusion
process. In AAAI, 2014.

[5] W. Chen, C. Wang, and Y. Wang. Scalable influence maxi-
mization for prevalent viral marketing in large-scale social
networks. In KDD. ACM, 2010.

[6] W. Chen, Y. Wang, and S. Yang. Efficient influence maxi-
mization in social networks. In KDD. ACM, 2009.

[7] E. Cohen. Size-estimation framework with applications to
transitive closure and reachability. J. Comput. System Sci.,
55:441–453, 1997.

[8] E. Cohen. All-distances sketches, revisited: HIP estimators
for massive graphs analysis. In PODS. ACM, 2014.

[9] E. Cohen, D. Delling, F. Fuchs, A. Goldberg, M. Goldszmidt,
and R. Werneck. Scalable similarity estimation in social
networks: Closeness, node labels, and random edge lengths.
In COSN. ACM, 2013.

[10] E. Cohen and H. Kaplan. Summarizing data using bottom-k
sketches. In ACM PODC, 2007.

[11] E. Cohen and H. Kaplan. Leveraging discarded samples
for tighter estimation of multiple-set aggregates. In ACM
SIGMETRICS, 2009.

[12] N. Du, L. Song, M. Gomez-Rodriguez, and H. Zha. Scalable
influence estimation in continuous-time diffusion networks.
In NIPS. Curran Associates, Inc., 2013.

[13] U. Feige. A threshold of lnn for approximating set cover. J.
Assoc. Comput. Mach., 45:634–652, 1998.

[14] J. Goldenberg, B. Libai, and E. Muller. Talk of the network:
A complex systems look at the underlying process of word-
of-mouth. Marketing Letters, 12(3), 2001.

[15] M. Gomez-Rodriguez, D. Balduzzi, and B. Schölkopf. Un-
covering the temporal dynamics of diffusion networks. In
ICML, 2011.

[16] M. Gomez-Rodriguez, J. Leskovec, and A. Krause. Inferring
networks of diffusion and influence. In KDD, 2010.

[17] A. Goyal, W. Lu, and L.V.S. Lakshmanan. Celf++: Opti-
mizing the greedy algorithm for influence maximization in
social networks. In WWW. ACM, 2011.

[18] K. Jung, W. Heo, and W. Chen. Irie: Scalable and robust
influence maximization in social networks. In ICDM. ACM,
2012.

[19] D. Kempe, J. M. Kleinberg, and É. Tardos. Maximizing the
spread of influence through a social network. In KDD. ACM,
2003.

[20] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. Van-
Briesen, and Glance N. Cost-effective outbreak detection in
networks. In KDD. ACM, 2007.

[21] G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of
the approximations of maximizing submodular set functions.
Mathematical Programming, 14, 1978.

[22] N. Ohsaka, T. Akiba, Y. Yoshida, and K. Kawarabayashi.
Fast and accurate influence maximization on large networks
with pruned monte-carlo simulations. In AAAI, 2014.

[23] M. Richardson and P. Domingos. Mining knowledge-sharing
sites for viral marketing. In KDD. ACM, 2002.

[24] Stanford network analysis project.
http://snap.stanford.edu.

[25] Y. Tang, X. Xiao, and Y. Shi. Influence maximization:
Near-optimal time complexity meets practical efficiency. In
SIGMOD, 2014.

10

	1 Introduction
	2 Model
	3 Combined Reachability Sketches
	3.1 Structured Permutation Ranks
	3.2 Sketches for an IC Model

	4 SKIM: Sketch Space IM
	4.1 Algorithm Analysis
	4.1.1 Correctness
	4.1.2 Running Time
	4.1.3 Approximation Ratio

	4.2 Extensions
	4.2.1 Adaptive Error Estimation
	4.2.2 Alternative Implementations

	5 Influence Oracles
	5.1 Influence Estimation from Sketches
	5.2 Building Combined Reachability Sketches

	6 Experiments
	6.1 Influence Maximization
	6.2 Influence Oracles

	7 Conclusion

