
Design Issues of a Cooperative Cache with no Coherence Problems *

Toni Cortes Sergi Girona
Departament d’Arquitectura de Computadors

Universitat Polithica de Catalunya - Barcelona
{ toni, sergi, jesus} @ac. upc. es

http://www.ac.upc.es/hpc

Jesh Labarta

Abstract

In this paper, we examine some of the important problems
observed in the design of cooperative caches. Solutions to
the coherence, load-balancing and fault-tolerance problems
are presented. These solutions have been implemented as a
part of PAFS, a parallel/distributed file system, and its per-
formance has been compared to the one achieved by xFS.
Using the comparison results, we have observed that the
proposed ideas not only solve the main problems of coop-
erative caches, but also increase the overall system perfor-
mance. Although the solutions presented in this paper were
targeted to a parallel machine, reasonable good results have
also been obtained for networks of workstations.

1 introduction

There is a general trend to use inter-node cooperation for
improving performance of parallel and distributed file sys-
tems. Cooperative caching is a good example of this con-
cept [9]. In a cooperative cache, all nodes work together to
build a global cache. This cooperation increases the cache
size and the global-hit ratio, thus improving the file-system
performance.

This cooperation between nodes raises some design prob-
lems that need to be addressed. The first problem is the
cache-coherence. We have to find a mechanism to allow
good cooperation and still keep the data coherent. Second,
we also need to find a way to balance the load between the
nodes if an efficient cooperative cache is to be obtained. Fi-
nally, a fault-tolerance mechanism is a.lso needed. In general,
a single node failure should not result in the whole system
failure.

In this paper, we study different approaches to solve
the afore-mentioned problems. We propose a cache that
avoids the cache-coherence problem by avoiding replication.

‘This report has been supported by the Spanish Ministry of Edu-
cation (CICYT) under the TIG94537 and TIG95-0429 contracts.

Permission to mnke digitnlfllnrd copies ofnll or pnrt ofthis nlntcri:d for
pers~nnl or ckwroom use is gmntcd without kc provided thnt tlw copies
nre not made or distributrd for protit or comnwcinl ndwn~nge. the copy-
rigbl notice, tha title ofthc publicntion nnd its date nppcAr. nnd notice is
gken thnt copbright is by permission ofthc AChi. Inc. -fo copy other&e,
to republish, to post on s~rwrs or to redistrihutc lo lists. rcquircs spccilic
pennkion nntior fcr

ICIPADS 97 Snn Jose CA U&l
Copyright 1997 ACh! O-89791-966-1/97/1 1..33.50

We also present several ways to distribute the cache buffers
among the servers to make them able to adapt to load vari-
ations. And finally, we propose a fault-tolerance mechanism
based on parity buffers. Furthermore, we will also propose
three tolerance levels so that the most appropriate one can
be used in each configuration.

All the performance results presented in this paper mere
measured through simulation. Simulations were used so that
a wide range of environments and architectures may be stud-
ied. These results were compared against the ones obtained
by the algorithms proposed in xFS, the file system designed
as part of the NOW project [2, 1, 91. We ran all the simu-
lations using the CHANSMA [21, 141 and Sprite [3] trace
files.

This work has been developed as a part of PAFS [6, 41,
a parallel/distributed file system specially designed to work
on a parallel machine.

This paper is structured into 7 sections. After this intro-
duction, Section 2 describes the main aspects of PAFS and
Section 3 explains the three design issues presented in this
paper: cache-coherence, load-balancing and fault-tolerance
mechanisms. Section 4 discusses the most important diier-
ences between PAFS and xFS, the two file systems compared
in this paper. In Section 5, we describe the simulator and
the trace files used to get the performance results presented
in Section 6. Finally, we present the conclusions in Section 7.

1.1 Target Environment

PAFS is a parallel/distributed file system designed to run
on a parallel machine. We assume that thii parallel ma-
chine has a large number of nodes connected through a fast
interconnection network. We also assume that each node
may have none, one, or even several disks connected to it.
Although PAFS was designed to run on a parallel machine
(PM), we also show that it can perform reasonably well on
a network of workstations (NOW).

Each node runs a micro-kernel based operating system
instead of a monolithic one. All functions not offered by the
kernel itself are implemented by out-of-kernel servers. This
is also the case for the file-system operations. Besides the
typical micro-kernel abstractions, a memory-copy operation
is desirable in order to implement PAFS efficiently.

The memory-copy is used to transfer data between the
cache and the user. Our assumption is that any processor
can set up a data transfer between any other two proces-
sors. We will refer to this operation as remote copy when

37

http://crossmark.crossref.org/dialog/?doi=10.1145%2F266220.266224&domain=pdf&date_stamp=1997-11-17

the data is copied from one node to a different one. On
the other hand, a local copy occurs when the information
is moved within the same node. Similar remote-memory-
access mechanisms are supported in a variety of distributed-
memory systems [7, 15,251. Furthermore, most current par-
allel machines offer very fast mechanisms to copy memory
blocks from one node to another [12, 131.

1.2 Terminology

In t,his subsection, we introduce basic concepts and present
terminology used in this paper.

As in traditional caches, requesting a file block means
ending up with either a cache hit or a cache miss. The dif-
ference, in a cooperative-cache environment, is that a cache
hit. may be either local or remote. If the requested file block
is found in the same node as the requesting client is running
we have a local hit. On the other hand, if the requested file
block is found in the cache of a different node, we have-a
remote hit. We also use the term global hit to identify both
kinds of hits.

It is also important to differentiate between the possible
&nations that may be found on a cache miss. The first
possibility is that the file block that has to be replaced has
been modified but written to disk yet (i.e., it is dirty). We
call t.o this situation a miss on dirty. On the other hand,
\ve will refer as a miss on clean to those misses in which the
replaced block does not need to be written to disk (i.e., it is
clean).

1.3 Related Work

A large number of parallel and distributed file systems have
been proposed in the research community. Among all of
them, sFS [2, 1, 91 is of special interest to our work as it
was the first one to include the idea of cooperative caching.
Furthermore, we have used it to compare the performance
obtained by the cooperative cache built in PAFS. The most
important differences between both file systems will be pre
sented, in detail, in a later section ($4).

Sarkar and Hartman have proposed a way to decrease
the load of the managers in cooperative caching [24]. In
t.heir work, clients are allowed to make local decisions about
the location of a block based on hints. These local decisions
decrease the number of times clients request information
from managers.

Leff et al. have theoretically analyzed the effects of
remote memory on cache activities [17, 181. In their lat-
est work, they also propose a mechanism which avoids the
cache-coherence problem. The main difference with our pro-
posal is that our servers do not need to communicate among
themselves to know the placement of a given block. Further-
more, only a cooperative-replacement algorithm was pre-
sent.ed in their work, while we present a complete file system
wit,11 a fault-tolerance mechanism. Finally, in our work all
measurements are done using real workloads.

There has also been interesting research in cooperative
memory usage [lo, 19,201. This kind of cooperation has also
been st.udied in the database field by Franklin et al. [ll].

A centralized version of this work was also developed by
this research group [5, 221.

Figure

2 PAFS overview

I I

1: PAFS architecture.

2.1 File-system Architecture

When designing a file system, there are two main issues that
have to be taken into account: how the data is distributed
among the disks and how this data and meta-data are man-
aged by the servers before they get to the clients. In this
work, we only examine the second point as the ideas we
present are valid no matter how data is stored on the disks.

To run PAFS we need, at least, three sets of servers: disk-
servers, cache-servers and a repartition-server (Figure 1).
A fourth set of servers, the parity-servers, is only needed
whenever the fault-tolerance mechanism is activated.

Cache-servers are in charge of serving the clients re-
quests. They manage the cache and meta-data information,
If the data needed by a cache-server is not in memory, and
has to be fetched from disk, this information is requested
from a disk-server. These disk-servers are processes rc-
sponsible for physically reading and writing the disk blocks,

To implement a highly scalable system, the inter-server
communication has to be as low as possible. For this rea-
son, we propose a load distribution that does not need any
communication between cache-servers. Each cache-server is
responsible for a set of files. It keeps all the information
needed to find a file block in the cache, or the disk, with-
out the need of any other cache-server. Clients know which
servers are in charge of which files computing a hash func-
tion using the file name (or file-ID).

The entire global cache is distributed among the cachc-
servers. All the buffers assigned to a cache-server build tlh
server’s partition. When a buffer is assigned to a given par-
tition, the cache-server which owns this partition is the only
one allowed to use it. As the load of all the cache-servers may
not always be balanced, there has to be a mechanism to dy-
namically reassign buffers among them. The repnrtition-
server is in charge of such redistribution. Different politics
to distribute buffers are presented later in this paper ($3.2).

Finally, another important issue is to offer a fault-tolerance
mechanism. The fault-tolerance mechanism built on PAFS
is based on parity buffers in a similar way to the one found in
a RAID level 5 [23]. The parity-servers are the processes
responsible for such mechanism. More information on the
way this works is also presented in a later section (§3.3),

A very important issue in the design of PAFS ws the
lack of dedicated nodes. All servers may run in any node
and share the node with user applications without interfer-

ing too much in their performance. The only exception are
the disk-servers that have to run on the nodes where disks
are connected, but they can also share the CPU with other
applications.

As this file system was designed to study the behavior
of a cooperative cache, we have not placed much effort in
designing a placement algorithms to distribute file blocks
among the disks. We have used a round-robin algorithm.
This may not be the best way to distribute blocks in the
disks, but it was good enough for our purposes. Further-
more, should any other distribution mechanisms have been
used, the same basic conclusions could have been made.

To increase the performance of the write operations, PAFS
uses a delayed-write policy. Each cache-server has a thread
named syncer that wakes up every 30 seconds. Once awaken,
it searches for all dirty file blocks and updates them in the
disk.

2.2 Cooperative Cache

The cooperative cache is the most important part of this file
system. We have designed a cache that has the advantages
of cooperation and avoids the problems derived from the
coherence mechanism.

Each cache-server is in charge of a set of files and a set
of cache buffers distributed among all the nodes. When a
new block enters the cache, the cache-server in charge of
this block has to discard another block from its partition.
It has to be from its partition as we want to avoid com-
munication between servers as much as possible to achieve
high scalability. In order to choose a buffer to place thii
block into, the PG-LRU (Pseudo-Global LRU) replacement
algorithm is used. This algorithm is very similar to the well-
known LRU but modified to achieve some data locality. To
implement PG-LRU we have to define the concept of queue-
tip. A part,ition queue-tip is a set of buffers made by X%
of t,he least-recently-used ones in that partition. Instead of
replacing the least-recently-used block, one of the blocks in
the queue-tip is discarded using the following algorithm. If
there is a buffer in the queue-tip located in the same node
as the client, this buffer is replaced. Otherwise, the least-
recently-used buffer is chosen regardless of the node into
which it is located.

A st.udy on t,he impact the queue-tip size has on the over-
all performance was presented in an earlier work [6]. From
that work, me learned that queue-tips larger than 5% of
the part,ition size do not increase the overall system perfor-
mance. This study fised the size of the queue-tip used in
this paper to 5% of the partition size. Anyway, thii param-
eter should be tuned by the system administrator to adapt
to the needs of the systems.

3 Design Issues

3.1 Cache Coherence

The cache-coherence problem arises when replication is al-
lowed and the system maint.ains several copies of the same
data. This replication is mainly done to increase the local-hit
ratio of the global cache.

One of the main ideas presented in this paper is that
exploiting the local-hit ratio is not the only way to achieve a
high-performance cooperative cache. This leads us to believe
that we can avoid replication as its main objective is not
a key issue in our design. If a block is already found in

the global cache, it is sent to the user address space, but
no replication on the client’s cache is performed. If there
is no replication, no cache-coherence problems may appear
and we can get rid of all the coherence mechanisms. This
simplifies the cache and file-system design very much. In
the performance section ($S), we will show that avoiding
the coherence problem not only simplifies the design, but
also increases the file-system performance.

3.2 Repartition Policies

In this section, we describe the mechanism proposed to dis-
tribute the buffers among the cache-servers in order to adapt
to the changing needs of the system. Furthermore, we also
present some policies that can be used with this mechanism
and which will be evaluated in the performance section(§6).

The mechanism we propose consists of a periodic re-
distribution of the buffers among the cache-servers. The
repartition-server, which is in charge of such redistribution,
periodically asks for the working-set from each cache-server.
We define the working-set of a server as the number of dif-
ferent file blocks that have been accessed during a rediitri-
bution interval. Using this information, and the current size
of each cache-server partition, the repartition-server redis-
tributes the buffers proportionally to each server’s working-
set. Once the repartition-server has decided which blocks
belong to which partitions, it sends a message to all the
cache-servers informing about the composition of their new
partition.

It is important to clarify that changing the owner of a
buffer (i.e., changing the partition it belongs to) does not
mean that the buffer is moved or copied to another node.
It only means that a different cache-server will be able to
use it. As we have already said, a process may program
copies of memory blocks from any node to any other node
using the remote-memory copy mechanism. Only the owner
of a buffer will be allowed to copy to/from the buffers in its
partition.

It is also important to notice that once a buffer changes
the partition it belongs to, it also loses all the information
kept in it. This happens because the new cache-server does
not know how to handle the files of any other cache-server.
This also means that if the buffer is dirty, it will have to be
sent to disk before the re-assignation is done.

The repartition policies presented in this paper mill be
based on a combination of the following concepts. First, the
number of buffers that change ownership may, or may not,
be limited in order to avoid drastic changes in the partitions
size. And second, the reasignation of buffers may be done
eagerly or lazily.

Drastic changes in the size of the partitions may lead to
bad performance results. To avoid these dramatic changes,
we propose to limit the number of buffers a cache-server may
gain or loose in each redistribution. Limiting the buffers a
cache-serve may lose should be a function of the number
of buffers it has in its partition. On the other hand, the
limitation on the buffers a cache-server may gain should be
a function of the number of buffers it will be able to use.
We propose that the maximum number of buffers that a
cache-server may loose in each repartition should equal a
predefined percentage of its partition size. This percentage
may be tuned by the system administrator. In all the simu-
lations presented in this work, we only allowed cache-servers
to lose 10% of their blocks. This percentage was shown to
be an appropriate one in a previous work [6]. On the other

hand, we also have to find a number that gives an idea of
the number of new buffers that can be used between repar-
titions. We believe that the number of blocks that can be
physically read in a repartition interval gives this bound.
For this reason, limiting the number of gained buffers to the
maximum number of blocks that can be physically read in
a repartiCon interval seems an interesting idea.

The instant when buffers change their ownership may
also have a significant impact on the effectiveness of the
repartition algorithm. One possibility is to implement an
eager algorithm that changes the ownership of the buffers
as soon as all nodes have been notified. This eager algo-
rithm has the problem that many reassigned buffers may be
used in the last portion of the interval. It may even happen
that they are never used by the new cache-server. Dur-
ing all this time of inactivity, they might have been used
I>y the old server increasing the system performance. To
solve this problem, a lazy algorithm may be implemented.
The repartition-algorithm may send the number of buff&s
from each node that a given cache-server has gained instead
of the identifier of these buffers. Then, when the cache-
server needs a new buffer, it requests a buffer from one of
the servers in its list. This allows the buffers to be used by
their old owner until they are really needed. It also allows
the old owner to decide which buffer to discard at the mo-
ment the buffer is really to be discarded. To implement this
request out of the critical path of the read/write operations,
a deferred mechanism is implemented. Once a cache-server
gets the list, it requests the first buffer in the list. Once this
buffer is used, another one is requested on the spot. This
continues until no more buffers can be requested. With thii
mechanisms, at most one buffer changes ownership without
being used.

The first repartition policy we propose has been named
No/-fitnited. In this policy, buffers change ownership using
the eager mechanism and only the number of buffers a cache
server may lose is limited.

Limited is the second proposal for the repartition policy.
This policy is quite similar the previous one. The only dif-
ference is that the number buffers a cache-server may gain
is limit.ed bv the number of new blocs that can be physically
rc4 from disk.

Finally, Lazy-and-limited changes the eager repartition
n~cchanism used in the Limited algorithm and replaces it by
Ihe lazy one.

ln order to see whether the dynamic redistributions is
really needed, we will also evaluate a Fixed-partition policy
where the buffers are assigned at boot time.

3.3 Fault Tolerance

As the cached information is scattered among all the nodes,
we need to provide the system with some kind of fault-
tolerance. The whole system should be able to continue
even if a node fails.

We propose a fault-tolerance mechanism based on parity
lines and parity buffers quite similar to the one used in a
RAID level 5 [23]. We define a parity line as a set of cache
buffers where none of them is located in the same node. All
the buffers in the line are used to keep file blocks but one,
the parity buffer. The idea is to keep the XOR of all the
dirty buffers from a line in its parity buffer. Thus not all
buffers in the line affect the parity buffer. Only those buffers
that have been modified and still have not been updated in
the disk are kept in the parity buffer. Should one of these

40

dirty blocks be lost, the information kept in its parity buffer
could be used to restore the last version of the lost buffer.

The parity-servers are the processes responsible for all
the fault tolerance mechanism and cooperate with the cachc-
server to keep the parity information up to date, For per-
formance reasons, we have one of these servers in each nodc
where a parity-buffer is located. This means that a single
parity-server can handle more than one line. Anyway, if for
scalability reasons, each line has to have a dedicated parity-
server, this could also be done with no modifications in the
system.

The protocol used between cache-servers and parity-servers
is described as follows. In a write operation, and before the
buffer is modified, the cache-server sends a message to the
parity-server informing that the buffer will be modified. Af-
terwards, the parity-server copies the unmodified buffer to
a local buffer and informs the cache-server that the buffer
can be modified. Then, the cache-server modifies the buffer
as requested by the client. At the same time, the parity-
server copies the modifications from the client in order to
keep the parity buffer up to date. Once the modifications
are included in the parity buffer, the parity-server informs
the cache-server. Finally, the cache-server can inform the
user about the end of the write operation. Once a buffer is
sent to the disk, the parity-server is also informed and rc-
moves the information of this buffer from the parity buffer.
All the messages that go to and from the parity-server arc
sent though ports while all the data copies are done using
the memory-copy mechanism.

When a node fails, the parity-servers can rebuild the
modiied file blocks that have been lost and can write them
to disk. Once all the lost file blocks are in the disk, the file
system continues working normally but for a smaller global
cache. If the parity-server is the one that fails, we may
rebuild the parity buffers from the information kept by all
the cache-servers.

An important issue is that not all systems need the SUIW.

level of fault tolerance. While in some environments fault
tolerance is crucial, there are other environments where pcr-
formance is much more important than fault tolerance, If
PAFS is to be useful in most environments, a set of fault-
tolerance levels has to be offered.

As there are environments were there is no need of fault-
tolerance mechanisms, or where speed is more important
than fault tolerance, PAFS offers as the first level, or 1~~1
A, a non fault-tolerant level.

The second level, or level B, is the one proposed by
Anderson et al. in xFS [l, 91. The assumption in this fault-
tolerance level is that a file block, when cached in the same
node as the client which requested it, may be lost if the
caching node fails. This comes from the assumption that if
this node fails, all its applications will also fail and no one
will care for the last actualization of this block. Thus only
blocks placed in a remote cache are guaranteed to be in the
diik (or are recoverable through the parity buffer).

The previous level might not be sufficient in an envi-
ronment with a Iot of file sharing between applications. It
would also not be sufficient in an environment where a lot of

communication between applications is done through film
Let’s examine the following example. Suppose wo have a
parallel make which has to compile two files and link thorn
afterwards. As we have a parallel environment, both compi-
lations ke run in parallel. Some of the blocks of the objccl
files are kept in the cache where each compilation is being
made and thus are not sent to the disk (or parity buffer).

+- 7. :
‘F : ‘ii ’

_. -,, -;

If one of the nodes fails after the compilation is done the
linker will not be able to make the executable file. The &ker
will have no problem with one of the files, but the file that
was compiled iu the failed node will be corrupted as some
blocks have been lost [s]. This may not be acceptable in
some environments and a higher degree of fault tolerance
has to be proposed. To solve this problem PAFS offers the
last, fault-tolerance level: level C. In this level, all modi-
fied blocks are sent to the diik (or parity-server) offering a
higher degree of fault tolerance.

4 Algorithm Comparison

To test the performance obtained by the mechanisms pre-
sented in this paper, we compare PAFS (with these mecha-
nisms included) with xFS [2, 1, 91, This file system was cho-
sen because it has one of the latest, and best, cooperative-
cache algorithms found in the literature (N-Chance Forward-
ing). The most relevant differences between both systems
are explained in this section.

The first significant difference is that xFS encourages
local hits by placing new blocks in the client’s local cache
and making a local copy of the blocks found in a remote
cache. PAFS, on the other hand, does not try to increase
the number of local hits. It tries to speed up remote hits to
make less significant the local-hit ratio.

A second difference is the way the coherence problem
is approached. While PAFS avoids it by simply avoiding
rephcatrons, xFS implements a token-based-on-a-per-block-
basis cache consistency scheme.

In PAFS, once a block is placed in a node, it remains
there unt.il it. is discarded. On the other hand, xFS keeps
moving blocks from one node to another for two basic rea-
sons. The first one is to increase the local-hitratio. The sec-
ond one is to increase the life-time of a block. Once a block
reaches the last position in the LRU list, it is forwarded to
anobher node. After N jumps without being accessed, the
block is finally discarded.

Another difference between both file systems is the en-
vironment they are designed to run on. PAFS is designed
to work on a parallel machine (or NOW) where each node
runs a micro-kernel based operating system. All services
including the file system, have to be implemented by out-of:
kernel servers instead of by the kernel itself. On the other
hand, xFS works on a monolithic operating system. The
file-system code is implemented in the kernel and some op-
erations can be handled locally without sending or receiving
any messages. To study the behavior of xFS in our envi-
ronment, we placed all file system functions originally im-
plemented in the kernel in an out-of-kernel server leaving all
the rest untouched. We also placed one such server in each
node to minimize the impact of sending a message for each
request. These modifications have been proven to be nearly
irrelevant in the overall system performance (6, 41.

Finally, only fault-tolerance level B is implemented by
sFS while levels A, B and C are offered by PAFS.

5 Simulator and Trace Files

5.1 Simulator

The file-system and cache simulator used in this project is
part of DIMEMAS’ [16] h’ h w rc reproduces the behavior of
a distributed-memory parallel machine. This software not
only simulates the machine and disk access, but also differ-
ent short-term process-scheduling policies.

The whole simulator is a trace-driven one where traces
contain CPU, communication and I/O demand sequences for
every process instead of the absolute time for each event.

The communication and disk models implemented in the
simulator are very important to understand the results pre-
sented later. All communications are divided into two parts:
a startup, or latency, and a data-transfer rate, or bandwidth.
The startup is constant for each type of communication
(port or memory-copy) and it is assumed to require CPU ac-
tivity. This startup is different whether the communication
is within a node or it crosses the interconnection network.
The data-transfer time is proportional to the size of the data
sent and the interconnection-network bandwidth. The disk
is also modeled by a latency and a bandwidth where the
latency depends on the kind of operation (read or write).

Using this simulator we have implemented alI the al-
gorithms proposed as part of PAFS. We simulate all the
servers, their communication, their CPU consumption and
the interaction with the clients. We have also implemented
the algorithms presented in xFS in order to make the com-
parison.

5.2 Trace Files and Simulation Parameters

For our experiments, we used two sets of traces: CHARISMA [21,
141 and Sprite [3]. The first one characterizes the behavior
of a parallel machine while the second one characterizes the
workload that may be found in a NOW.

The CHARISMA traces were taken from the Intel iPSC/860
at NASA Ames’ Numerical Aerodynamics Simulations (NAS).
This multiprocessor has 128 computational nodes, each with
8 MBytes of memory.

The information kept in this trace file only contains the
operations that went through the Concurrent File System.
This means that any I/O which was done through standard
input and output or to the host file system was not recorded.
The complete trace is about 156 hours long and was collected
over a period of 3 weeks. To reduce the simulation time we
only used part of this trace file. We used a two-day peaod
(February 15th and 16th) which was the busiest period of
the trace. Incidentally, the first 10 hours were used to warm
the cache as we want to study the permanent-state behavior

. The Sprite user community included about 30 full-time’
and 40 part-time users of the system. These traces list the
activity of 48 client machines and some servers over a two
day period measured in the Sprite operating system.

Although the trace is two days long, all measurements
presented in this paper are taken from the 15th hour to the
48th hour. This is done because we used the first fifteen
hours to warm the cache.

Table 1 presents the number of requested operations ac-
cessed blocks and average operation sizes performed d&ing
the simulated period. This table is meant to help the reader

‘DIMEMAS . IS a performance-prediction simulator developed by
CEPBA-UPC and is available as a PALLAS GmbH product.

j
I
i .

I II CHARISMA I
I II -r--- onerations 8KB blocks Average size

(in thous; mds) (in Bytes)
R),.,,l 32475 ICCQU ((812 3493
1Vrift. 1987 4653 14734

- I
. . *...-
ODen II .2 1 - 1 - 1

t%&$-
'r-l,1

5
.5

1 “I.a.l ,, 2809.5 8146 1

I II
I II SDrite I

1 I((in lhous
I, ̂ - ,I

pyJ= 1
1 Total II 1565 1 955 1

Table 1: Trace file comoarison.

Nodcs
l,ocal I ‘.,A0 Gon
l>..iC.
,,lrrrs”rJ YY......-\I^-
Network Bandwidth
Local-Pori -’ ’
Remote-P
Local Mer
Remote 11
Num’ ~-- -’
Disk-

Parallel
Machine NOW

138 50

” A.Y
40 MB s vvu m-u,- ,

1 200 MB/s 1 19.4 MB/s
50 ps

1nn US
t. startup 1 ps
ort Startup 10 jLs --- r-
nary-copy Startup 1 PS 25 ps
iemory-copy Startup 5 IJS 50 p

oer of Disks 16 8
.Block Size 8 KB 8 KR
RanAlwiAt.h 10 MB/s 10 Ml

lfl K mc in.5
Lkk --..- . . ----- ‘IS
Disk Read Seek Av.Y . ..- , --.- ms
Disk Write Seek 1 12.5 ms 1 12.5 ms

Table 2: Simulation parameters.

to underst.and the real load placed on the file system. It will
also be useful to see the differences between both workloads.

As we have two different workloads we also simulated
two basic architectures. While the CHARISMA trace file
has been tested on a parallel machine, the Sprite trace file
has been simulated on a NOW similar to the one used by
Dahlin et al. [9]. The parameters used to simulate both
architect.ures are shown in Table 2.

6 Performance

This section is divided into two subsections. The first one
describes t.lre behavior of the CHARISMA trace file simu-
lated on a parallel machine. The second one describes the
behavior of the Sprite trace file on a NOW.

loooo 17860 us

8000
hit- II

I Fixed-partitions
I Not-limited
I Limited
- Lazy-and-limited
-xFS

; 6000
s
z
$ 4000
E

0
Read Write

Figure 2: Read and write average times obtained with the
reparation mechanisms (PM).

6.1 Parallel Machine (PM)

Repartition Mechanisms

Figure 2 shows the read and write average times obtained
when using the proposed repartition mechanisms. The straight
line represents the values obtained by xFS and the various
versions of PAFS are represented by the solid bars.

The first thing that can be observed is that a Fixcd-
partition policy obtains a very poor read performance. This
is because the workload is quite unbalanced at some points
and Fized partitions is not able to adapt to the changing
needs of the system.

Another important result extracted from Figure 2 is that
limiting the number of buffers that change ownership us-
ing a lazy algorithm is a good idea. When no limit is SC),
many buffers change ownership but are not used by their
new owner as it does not have time to use them. If the
block had remained with its original owner, its information
might have been used to serve a client request.

We can also see that PAFS runs better than xFS inde-
pendently of the dynamic repartition mechanism used. The
reasons behind this behavior are explained in the following
paragraphs.

First, the number of global hits is higher in PAFS (96%)
than in xFS (92%). Th is i d ff erence is basically due to the
effect of replication. As xFS wastes some of its buffers keep-
ing replicated blocks, the cache can keep a fewer number of

different blocks. Thus, it behaves as a smaller cache.
Second remote hits take longer in xFS than in PAFS.

A remote ‘hit in PAFS only means a remote copy of the
requested bytes from the cache to the user address space (1)

PAFS-R-hit = &zopy(Tequest-size) (1)

On the other hand, a remote hit in xFS has more things to
do. As it wants to increase the local-hit ratio, the requested
block is copied to the local cache and then is sent to the user
address space (2). We should notice that the information
that goes through the network in PAFS is the information
requested by the user and in xFS is the whole block. Every
remote hit also needs to contact the manager of the block
to locate the remote copy (3). This communication will
be done for each remote hit found in the request while in
PAFS only one communication to a remote server is done IIO

matter how many remote hits are found in the request. It

is also quite frequent to find that the buffer needed to place
the requested block has to be forwarded to another node
in order to increase its lifetime. The influence this fact has
on the average remote-hit time can be observed in equation
(4) where the time of forwarding a block is weighted by the
probability of this happening (pf). Similarly, if the buffer to
be used is dirty we will need to send it to disk before using
it,. The operations needed are the same as in a forwarding
(5) but the probability is diierent (pd).

basic = R-copy(blocksize) + L-copy(requestsize) (2)
manager = 2 * R-port (3)

forward = [2 * R-port + R-copy(blocksize)] * pf (4)
dirty = [2 * R-port $- R-copy(blocksize)] * pd (5)

cFSJZ-hit = basic $ manager $- forward + dirty (6)

If we calculate the time spent in xFS (6) and in PAFS (1)
using the probabilities found in the simulations (pf=.75 and
pd=.51) we find that xFS takes around 5 times longer than
PAFS in performing a remote hit. However, these calcula-
tions do not. t,ake into account the CPU consumed, nor the
contention of the network, nor the time spent wartmg for a
server to become ready. If we take this time into account
(as was done in the simulations), the ratio (i.e., 5) becomes
even more. On the other hand, PAFS only has 3.3 remote
hits for each one found in xFS. This means that the effort
needed to increase the local-hitratio is much higher than the
benefits obtained.

Third, misses are also more time consuming in xFS than
in PAFS. This also happens due to the forwarding of blocks
and the cleaning of dirty blocks in the critical path of the
operation.

When comparing the write performance obtained by PAFS
and xFS we have to take an extra issue into account. In xFS,
most of the write operations need to ask the ownership of
the block to the manager. Furthermore, if more than one
copy is kept in the cache, the manager has to invalidate them
before grating the ownership to the requesting server. This
ext,ra work is not done in PAFS as no coherence mechanism
is needed.

All these results prove that avoiding the coherence prob-
lem by avoiding replication not only simplifies the design
but also improves the file-system performance.

Network-Bandwidth Influence

As PAFS does not esploit locality as much as xFS, it is very
important, to st,udy the influence that the interconnection-
network bandwidth has on the results presented earlier.

This st,udy has been done varying the bandwidth of the
interconnection network. Figure 3 presents the influence this
variation has on the read (solid lines) and write (dashed
lines) average t.imes. On the X axis we represent the ra-
tio between the local-memory bandwidth (L-BW) and the
interconnection-network bandwidth (R-BW). We should no-
tice that PAFS with Fized partitions is not represented as it
behaves much worse than sFS and thus it is of no interest
to us anymore.

We can observe that the difference between the distribu-
tion algorithms is not affected by the interconnection net-
work speed. It can also be observed that the difference be-
tween PAFS and xFS in the read operation remains the

Figure 3: Network-bandwidth influence (PM).

I\ 15000

+xFS
+-Not-limited
-o-Limited

1 \ +-Lazy-and-limited

Figure 4: Local-cache size influence (PM).

same independently of the interconnection-network band-
width. This happens because the time gained by IFS due
to its higher local-hit ratio is lost due to of its longer remote-
hit duration.

Write operations behave in a different way. A write miss
in PAFS is, nearly always, placed in a remote cache while it
is always placed in the local cache by xFS. This means that
a slow interconnection network has more influence on PAFS
than on xFS. Thus, the slower the interconnection network
is, the smaller the difference between both algorithms be-
comes.

Cache-Size Influence

Another important parameter that influences the cache per-
formance is the size of each local cache. Figure 4 shows
the read (solid lines) and write (dashed lines) average times
obtained while varying the size of the local cache.

The first thing we observe is that Limited and Lazy-and-
limited tend to obtain very similar results with large caches.
This is because the reassigned buffers that are not used be-
come of little importance.

We also observe that the smaller the cache is, the worse
xFS behaves if compared to PAFS. The reason, as was ex-
plained earlier, is that all the replicated blocks use buffers
that could keep different blocks. If the local caches are very

43

sooo-

4 6000-
g
u
0”
t; 4000.
z

w Level A
acsm Level B
0 Level C

0
Read Write

Figure 5: Fault-tolerance performance (PM).

small, t.his becomes a serious problem of xFS (as observed
in Figure 4 when 512KByte and 1MByte local caches are
wed).

The final observation is that the cache size has little in-
Ilueuce on t,he write performance, because a cache hit or a
miss takes t.he same amount of of time as long as there is no
uced t.o read the block first. In both cases we need a copy
from the user address space to the cache.

Fault-Tolerance Influence

Besides the coherence and repartition mechanisms, we also
propose a fault-tolerance mechanism based on parity buffers.
In Pigure 5 we present the results obtained by this mech-
anism using the three different levels. This performance is
compared t,o xFS which only implements level B. All three
levels were tested with the Lazy-and-limited repartition al-
gorit.hm as it has been shown to be the best one.

The most important information extracted from the above
figure is that the cooperative algorithm implemented in PAFS
behaves better than xFS even with a higher fault-tolerance
level.

If WC compare the performance of the three different lev-
els we can see that levels B and C take longer performing the
writ.e operations than Level A. This happens because some
more memory-copy operations have to be done per write in
order to send the modifications to the parity-server. The
little difference between levels B and C is due to the low
locctl-hit rat.io achieved by PAFS.

Read operations are only slightly affected as they do not
take part in the parity mechanism. The only influence may
be a higher resource utilization.

6.2 Network of Workstations (NOW)

Repartition Mechanisms

In this subsection, we present the read and write average
t,imes obtained by the different repartition mechanisms in
a NOW (Figure 6). As can be seen, the behavior is quite
similar to the one obtained in a a parallel machine but for
Fixed partitions and Not-limited.

As t.he Sprite workload is quite balanced, the Fizzed-
partition policy behaves quite well. There is no need to
redistribute buffers among the cache-servers. Actually, if we

I Fixed-partitions
I Not-limited
- Limited
- Lazy-and-limited

0
Read Write

Figure 6: Read and write average times obtained with the
repartition mechanisms (NOW).

-x- PAFS Fixed
+PAFS Not-Limlted
-o- PAFS Limit

0
+ PAFS Lnzy

3 Ib 1’5
L-BWRBW ratio

Figure 7: Network-bandwidth influence (NOW).

do so with no limit, we end up obtaining a quite bad pcr-
formance. This happens because many blocks change own-
ership when this is not really needed and their information
is lost for no good reason.

Network-Bandwidth Influence

The influence of the interconnection-network bandwidth (Pig-
ure 7) is also quite similar to the one found in a parallel
machine. The most important difference is that with this
environment and the Sprite workload we found the point
where a write operation in PAFS is slower than in xFS,
This happens when a remote copy is 10 times slower than a
local one.

Thii intersection point has been found when a remote
copy is 10 times slower than a local one due to several rca-
sons. First, as the local-cache size used in this experiment is
larger than the one used in the parallel machine, xFS has less
remote hits and thus their extra overhead has less impact.
Second, there is much more sharing in the CHARISMA tract
file than in the Sprite one and the coherence mechanism 11~
more work to do. Finally, the size of the write operations
in the Sprite trace file are smaller than in the CHARISMA
one.

g
rz 2000

i
+--+-----+ ----_______ ~-- -----*-----------------+

4 %‘~..+~~-~* -----; ----_____ -,’

“Local-cache” size in MBytes

Figure 8: Local-cache size influence (NOW).

m Level A
- Level B
0 Level C
-xFS

0
Read Write

Figure 9: Fault-tolerance performance (NOW).

Cache-Size Ml uence

In Figure 8, we observe that the influence of the local-cache
size has the same effect as in a parallel machine. The only
difference is in the Fixed partitions and Not-limited mecha-
nisms as was explained earlier (56.2).

Fault-Tolerance Influence

Finally, we present the performance of the fault-tolerance
mechanism in a NOW (Figure 9). We can see that the dif-
ference between levels B and C is much larger than in a
parallel machine. This difference is because the size of the
local cache is much larger in this experiment. As many more
blocks can be written in the local cache, the parity mecha-
nism in level B has much less work than in level C.

This same reason can be applied when comparing levels
B and C in PAFS against xFS with level B. The larger the
local cache is, the less work the fault-tolerance mechanism
has to do.

7 Conclusions

This paper has presented high-performance solutions to three
of the most important problems found when designing a co-
operative cache: ‘coherence, load balancing and fault toler-
ance.

We have shown that avoiding the coherence problem by
avoiding replication not only simplifies the file-system design
but also increases the performance significantly.

We have also found that the redistribution policies should
neither be too aggressive nor too conservative. We have
found that Lazy-and-limiteclhas both characteristics and ob-
tains the best results.

A parity-based fault-tolerance mechanism which may ob-
tain a high level of fault-tolerance and stilI alIow a high-
performance file system has also been presented. Further-
more, three different levels of fault tolerance have been pro-
posed.

We have also shown that achieving high ZocaZ-hit ratio
is not the only way to design high-performance cooperative
caches. Taking most of the overhead away from remote hits
is also a good way to achieve high-performance cooperative
caches.

Finally, although the solutions presented in this paper
were designed for a parallel machine, reasonable good results
have also been obtained in NOWs.

Acknowledgments

We owe special thanks to Michael D. Dahlin for answering all
our questions about the way xFS and N-Chances Forward-
ing work. We are grateful to the people of the CHARISMA
project who gathered the CHARISMA traces and the peo-
ple at Berkeley who gathered the Sprite traces that helped
us to feed our simulator and get the results we present in
this paper. We would also like to thank M. Huget, Prof.
E. Markatos and Prof. Pedro de Miguel whose comments
improved the contents of this paper. We are also grateful to
M. Ortega for implementing the first prototype. And last,
but not least, we want to thank Rajesh R. Bordawekar for
his interesting comments during the shepherding process.

References

[l] ANDERSON, T. E., DAHL~, M. D., NEEFE, 3. M.,
PATTERSON, D. A., ROSELLI, D. S., AND WANG, R. Y.
Serverless network file systems. In 15th International
Symposium on Operating System Principles (1995),
pp. 109-126.

[2] ANDERSON, T. E., DAHLIN, M. D., NEEFE, J. M.,
AND THE NOW TEAM. A case for NOW (Networks of
Workstations). IEEE MICRO (February 1995), pp. 54-
64.

[3] BAKER, M. G., HAFLTMAN, J. H., KUPFER, M. D.,
SHIRFLIFF, K., AND OUSTERHOUT, J. Measurements

. of a distributed fie system. In 13th th International
Symposium on Operating System Principles (1991),
pp. 198-212.

[4] CORTES, T., GIRONA, S., AND LABARTA, J. I/O per-
formance of scientific-parallel applications under PAFS.
Tech. Rep. CEPBA-RR-1996-23, Centre Europeu de
Paralelisme (UPC), 1996.

[5] CORTES, T., GIRONA, S., AND LABARTA, J. PACA: a
cooperative tile-system cache for parallel machines. In
Proceedings of the 2nd International Euro-Par Confer-
ence (August 1996), pp. L477-486.

[G] CORTES, T., GIRONA, S., AND LABARTA, J. Avoiding
the cache-coherence problem in a parallel/distributed
file system. In Proceedings of the High-Performace
Computing and Networking (April 1997), pp. 860-869.

[F] CULLER, D. E., DRUSSEAU, A., COPEN, S., KRISH-
NU~URTNY, A., LUMETTA, S., VON EIKEN, T., AND
Y~LICK, K. Parallel programming in Split-C. In Pro-
redings of Supercomputing’ (1993), pp. 262-283.

[8] DAHLIN, M. D., 1996. Private Communication.

[J] DAHLIN, M. D., GANG, R. Y., ANDERSON, T. E., AND
PXITERSON, D. A. Cooperative caching: Using remote
c*licnL memory to improve file-system performance. In
1.~1 International Symposium on Operating System De-
sign and Implementation (1994), pp. 267-280.

[IO] FBELEY, M. J., MORGAN, W. E., PIGHIN, F. H., KAR-
MN, A. R., AND LEVY, H. M. Implementing global
memory management in a workstation cluster. In f5th
Infernational Symposium on Operating System Princi-
]Jk.S (1%).

[I I] FIWNKLIN, M. J., CAREY, M. J., AND LJYNY, M.
(+lobal memory management in client-server DBMS ar-
chitectures. In Very Large Data Bases (1992), pp. 596-
WI.

[II] GILLET, R. B. Memory channel netlvork for PCI. IEEE
JllCRO (February 1996).

[I :J] INC., S, G. Origin servers. technical overview of the ori-
gin family, 1996. http://www.sgi.com/Products/ hard-
ware/servers/technology/overview.html.

[ISI] I<OTZ, D., AND NIEUWEJAAR, N. Dynamic file-access
characteristics of a production parallel scientific work-
load. In Proceedings of Supercomputing ‘9-j (November
1994), IEEE Computer Society Press, pp. 640-649.

[t5] LABARTA, J., GIMEMEZ, J., PUJOL, C., JovO, T.,
.+\ND NAVARRO, J. I. PAROS: Operating-system ker-
nrl for distributed-memory parallel machines. In Paral-
Irl C’omputing and Transputer Applications (September
1 W), pp. 673-682.

[161 LABARTA, J., GIRONA, S., PILLET, V., CORTES, T.,
.+ND GREGORIS, L. Dip: a parallel program develop-
ment environment. In Proceedings of the 2nd Interna-
fional Euro-Par Conference (August 1996), pp. IIz665-
674.

[l’i] LEFF, A., WOLF, J. L., AND Yu, P. S. Replica-
tion algorithms in a remote caching architecture. IEEE
Transactions on Parallel and Distributed Systems 4, 11
(February 1993), pp. 1185-1204.

[IP] LEFF, A., WOLF, J. L., AND Yu, P. S. Efficient LRU-
based buffering in a LAN remote caching architecture.
IEEE Transactions on Parallel and Distributed Systems
7, 2 (February 1996), pp. 191-206.

[19] LENONSI<Y, D., LAUDON, J., GHARACHORLOO, K.,
GUPTA, A., AND HENNESY, J. The directory-based
cache coherence protocol for the DASM multiprocessor.
In International Symposium on Computer Architecture
(1990), pp. 148-159.

[20] MARKATOS, E. P., AND DRA~UTINOS, G. Implcmen-
tation of a reliable remote-memory pager. In USflflIx’
f996 Annual Technical Conference (1996).

[21] NIEUWEJAAR, N., KOTZ, D., PUMICAYAST~IA, A., EL-
LIS, C. S., AND BEST, M. L. File-access characteristics
of parallel-scientific workloads. IlL?ZE l&asactiona on
Parallel and Distributed Systems 7, 10 (October 1994),
pp. 1075-1089.

[22] ORTEGA, M., CORTES, T., AND LABARTA, J, Im-
plementation of a cooperative file-system cache on
PAROS. Tech. Rep. CEPBA-RR-1996-8, Ccntrc Eu-
ropeu de Paralelisme (UPC), 1996.

1231 PATTERSON, D., GIBSON, G., AND KATZ, R. A case for
redundant arrays of inexpensive disks (RAID). In Pro-
ceedings of the ACM SIGMOD International Confer-
ence on Management of Data (June 1988), ACM Press,
pp. 109-116.

[24] SARKAR, P., AND HARTMAN, J. Efficient cooperative
caching using hints. In 2nd International Symposium on
Operating System Design and Implementation (1996),
pp. 35-46.

[25] WHEAT, S. R., MACCABE, A. B., AND RIESEN, R,
PUMA: an operating system for massively parallel sys-
terns. In 27th Hawaii International Conference on Sys-
tem Science (1994).

