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Abstract 

In this paper, we examine some of the important problems 
observed in the design of cooperative caches. Solutions to 
the coherence, load-balancing and fault-tolerance problems 
are presented. These solutions have been implemented as a 
part of PAFS, a parallel/distributed file system, and its per- 
formance has been compared to the one achieved by xFS. 
Using the comparison results, we have observed that the 
proposed ideas not only solve the main problems of coop- 
erative caches, but also increase the overall system perfor- 
mance. Although the solutions presented in this paper were 
targeted to a parallel machine, reasonable good results have 
also been obtained for networks of workstations. 

1 introduction 

There is a general trend to use inter-node cooperation for 
improving performance of parallel and distributed file sys- 
tems. Cooperative caching is a good example of this con- 
cept [9]. In a cooperative cache, all nodes work together to 
build a global cache. This cooperation increases the cache 
size and the global-hit ratio, thus improving the file-system 
performance. 

This cooperation between nodes raises some design prob- 
lems that need to be addressed. The first problem is the 
cache-coherence. We have to find a mechanism to allow 
good cooperation and still keep the data coherent. Second, 
we also need to find a way to balance the load between the 
nodes if an efficient cooperative cache is to be obtained. Fi- 
nally, a fault-tolerance mechanism is a.lso needed. In general, 
a single node failure should not result in the whole system 
failure. 

In this paper, we study different approaches to solve 
the afore-mentioned problems. We propose a cache that 
avoids the cache-coherence problem by avoiding replication. 
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We also present several ways to distribute the cache buffers 
among the servers to make them able to adapt to load vari- 
ations. And finally, we propose a fault-tolerance mechanism 
based on parity buffers. Furthermore, we will also propose 
three tolerance levels so that the most appropriate one can 
be used in each configuration. 

All the performance results presented in this paper mere 
measured through simulation. Simulations were used so that 
a wide range of environments and architectures may be stud- 
ied. These results were compared against the ones obtained 
by the algorithms proposed in xFS, the file system designed 
as part of the NOW project [2, 1, 91. We ran all the simu- 
lations using the CHANSMA [21, 141 and Sprite [3] trace 
files. 

This work has been developed as a part of PAFS [6, 41, 
a parallel/distributed file system specially designed to work 
on a parallel machine. 

This paper is structured into 7 sections. After this intro- 
duction, Section 2 describes the main aspects of PAFS and 
Section 3 explains the three design issues presented in this 
paper: cache-coherence, load-balancing and fault-tolerance 
mechanisms. Section 4 discusses the most important diier- 
ences between PAFS and xFS, the two file systems compared 
in this paper. In Section 5, we describe the simulator and 
the trace files used to get the performance results presented 
in Section 6. Finally, we present the conclusions in Section 7. 

1.1 Target Environment 

PAFS is a parallel/distributed file system designed to run 
on a parallel machine. We assume that thii parallel ma- 
chine has a large number of nodes connected through a fast 
interconnection network. We also assume that each node 
may have none, one, or even several disks connected to it. 
Although PAFS was designed to run on a parallel machine 
(PM), we also show that it can perform reasonably well on 
a network of workstations (NOW). 

Each node runs a micro-kernel based operating system 
instead of a monolithic one. All functions not offered by the 
kernel itself are implemented by out-of-kernel servers. This 
is also the case for the file-system operations. Besides the 
typical micro-kernel abstractions, a memory-copy operation 
is desirable in order to implement PAFS efficiently. 

The memory-copy is used to transfer data between the 
cache and the user. Our assumption is that any processor 
can set up a data transfer between any other two proces- 
sors. We will refer to this operation as remote copy when 
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the data is copied from one node to a different one. On 
the other hand, a local copy occurs when the information 
is moved within the same node. Similar remote-memory- 
access mechanisms are supported in a variety of distributed- 
memory systems [7, 15,251. Furthermore, most current par- 
allel machines offer very fast mechanisms to copy memory 
blocks from one node to another [12, 131. 

1.2 Terminology 

In t,his subsection, we introduce basic concepts and present 
terminology used in this paper. 

As in traditional caches, requesting a file block means 
ending up with either a cache hit or a cache miss. The dif- 
ference, in a cooperative-cache environment, is that a cache 
hit. may be either local or remote. If the requested file block 
is found in the same node as the requesting client is running 
we have a local hit. On the other hand, if the requested file 
block is found in the cache of a different node, we have-a 
remote hit. We also use the term global hit to identify both 
kinds of hits. 

It is also important to differentiate between the possible 
&nations that may be found on a cache miss. The first 
possibility is that the file block that has to be replaced has 
been modified but written to disk yet (i.e., it is dirty). We 
call t.o this situation a miss on dirty. On the other hand, 
\ve will refer as a miss on clean to those misses in which the 
replaced block does not need to be written to disk (i.e., it is 
clean). 

1.3 Related Work 

A large number of parallel and distributed file systems have 
been proposed in the research community. Among all of 
them, sFS [2, 1, 91 is of special interest to our work as it 
was the first one to include the idea of cooperative caching. 
Furthermore, we have used it to compare the performance 
obtained by the cooperative cache built in PAFS. The most 
important differences between both file systems will be pre 
sented, in detail, in a later section ($4). 

Sarkar and Hartman have proposed a way to decrease 
the load of the managers in cooperative caching [24]. In 
t.heir work, clients are allowed to make local decisions about 
the location of a block based on hints. These local decisions 
decrease the number of times clients request information 
from managers. 

Leff et al. have theoretically analyzed the effects of 
remote memory on cache activities [17, 181. In their lat- 
est work, they also propose a mechanism which avoids the 
cache-coherence problem. The main difference with our pro- 
posal is that our servers do not need to communicate among 
themselves to know the placement of a given block. Further- 
more, only a cooperative-replacement algorithm was pre- 
sent.ed in their work, while we present a complete file system 
wit,11 a fault-tolerance mechanism. Finally, in our work all 
measurements are done using real workloads. 

There has also been interesting research in cooperative 
memory usage [lo, 19,201. This kind of cooperation has also 
been st.udied in the database field by Franklin et al. [ll]. 

A centralized version of this work was also developed by 
this research group [5, 221. 

Figure 

2 PAFS overview 
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1: PAFS architecture. 

2.1 File-system Architecture 

When designing a file system, there are two main issues that 
have to be taken into account: how the data is distributed 
among the disks and how this data and meta-data are man- 
aged by the servers before they get to the clients. In this 
work, we only examine the second point as the ideas we 
present are valid no matter how data is stored on the disks. 

To run PAFS we need, at least, three sets of servers: disk- 
servers, cache-servers and a repartition-server (Figure 1). 
A fourth set of servers, the parity-servers, is only needed 
whenever the fault-tolerance mechanism is activated. 

Cache-servers are in charge of serving the clients re- 
quests. They manage the cache and meta-data information, 
If the data needed by a cache-server is not in memory, and 
has to be fetched from disk, this information is requested 
from a disk-server. These disk-servers are processes rc- 
sponsible for physically reading and writing the disk blocks, 

To implement a highly scalable system, the inter-server 
communication has to be as low as possible. For this rea- 
son, we propose a load distribution that does not need any 
communication between cache-servers. Each cache-server is 
responsible for a set of files. It keeps all the information 
needed to find a file block in the cache, or the disk, with- 
out the need of any other cache-server. Clients know which 
servers are in charge of which files computing a hash func- 
tion using the file name (or file-ID). 

The entire global cache is distributed among the cachc- 
servers. All the buffers assigned to a cache-server build tlh 
server’s partition. When a buffer is assigned to a given par- 
tition, the cache-server which owns this partition is the only 
one allowed to use it. As the load of all the cache-servers may 
not always be balanced, there has to be a mechanism to dy- 
namically reassign buffers among them. The repnrtition- 
server is in charge of such redistribution. Different politics 
to distribute buffers are presented later in this paper ($3.2). 

Finally, another important issue is to offer a fault-tolerance 
mechanism. The fault-tolerance mechanism built on PAFS 
is based on parity buffers in a similar way to the one found in 
a RAID level 5 [23]. The parity-servers are the processes 
responsible for such mechanism. More information on the 
way this works is also presented in a later section (§3.3), 

A very important issue in the design of PAFS ws the 
lack of dedicated nodes. All servers may run in any node 
and share the node with user applications without interfer- 



ing too much in their performance. The only exception are 
the disk-servers that have to run on the nodes where disks 
are connected, but they can also share the CPU with other 
applications. 

As this file system was designed to study the behavior 
of a cooperative cache, we have not placed much effort in 
designing a placement algorithms to distribute file blocks 
among the disks. We have used a round-robin algorithm. 
This may not be the best way to distribute blocks in the 
disks, but it was good enough for our purposes. Further- 
more, should any other distribution mechanisms have been 
used, the same basic conclusions could have been made. 

To increase the performance of the write operations, PAFS 
uses a delayed-write policy. Each cache-server has a thread 
named syncer that wakes up every 30 seconds. Once awaken, 
it searches for all dirty file blocks and updates them in the 
disk. 

2.2 Cooperative Cache 

The cooperative cache is the most important part of this file 
system. We have designed a cache that has the advantages 
of cooperation and avoids the problems derived from the 
coherence mechanism. 

Each cache-server is in charge of a set of files and a set 
of cache buffers distributed among all the nodes. When a 
new block enters the cache, the cache-server in charge of 
this block has to discard another block from its partition. 
It has to be from its partition as we want to avoid com- 
munication between servers as much as possible to achieve 
high scalability. In order to choose a buffer to place thii 
block into, the PG-LRU (Pseudo-Global LRU) replacement 
algorithm is used. This algorithm is very similar to the well- 
known LRU but modified to achieve some data locality. To 
implement PG-LRU we have to define the concept of queue- 
tip. A part,ition queue-tip is a set of buffers made by X% 
of t,he least-recently-used ones in that partition. Instead of 
replacing the least-recently-used block, one of the blocks in 
the queue-tip is discarded using the following algorithm. If 
there is a buffer in the queue-tip located in the same node 
as the client, this buffer is replaced. Otherwise, the least- 
recently-used buffer is chosen regardless of the node into 
which it is located. 

A st.udy on t,he impact the queue-tip size has on the over- 
all performance was presented in an earlier work [6]. From 
that work, me learned that queue-tips larger than 5% of 
the part,ition size do not increase the overall system perfor- 
mance. This study fised the size of the queue-tip used in 
this paper to 5% of the partition size. Anyway, thii param- 
eter should be tuned by the system administrator to adapt 
to the needs of the systems. 

3 Design Issues 

3.1 Cache Coherence 

The cache-coherence problem arises when replication is al- 
lowed and the system maint.ains several copies of the same 
data. This replication is mainly done to increase the local-hit 
ratio of the global cache. 

One of the main ideas presented in this paper is that 
exploiting the local-hit ratio is not the only way to achieve a 
high-performance cooperative cache. This leads us to believe 
that we can avoid replication as its main objective is not 
a key issue in our design. If a block is already found in 

the global cache, it is sent to the user address space, but 
no replication on the client’s cache is performed. If there 
is no replication, no cache-coherence problems may appear 
and we can get rid of all the coherence mechanisms. This 
simplifies the cache and file-system design very much. In 
the performance section ($S), we will show that avoiding 
the coherence problem not only simplifies the design, but 
also increases the file-system performance. 

3.2 Repartition Policies 

In this section, we describe the mechanism proposed to dis- 
tribute the buffers among the cache-servers in order to adapt 
to the changing needs of the system. Furthermore, we also 
present some policies that can be used with this mechanism 
and which will be evaluated in the performance section(§6). 

The mechanism we propose consists of a periodic re- 
distribution of the buffers among the cache-servers. The 
repartition-server, which is in charge of such redistribution, 
periodically asks for the working-set from each cache-server. 
We define the working-set of a server as the number of dif- 
ferent file blocks that have been accessed during a rediitri- 
bution interval. Using this information, and the current size 
of each cache-server partition, the repartition-server redis- 
tributes the buffers proportionally to each server’s working- 
set. Once the repartition-server has decided which blocks 
belong to which partitions, it sends a message to all the 
cache-servers informing about the composition of their new 
partition. 

It is important to clarify that changing the owner of a 
buffer (i.e., changing the partition it belongs to) does not 
mean that the buffer is moved or copied to another node. 
It only means that a different cache-server will be able to 
use it. As we have already said, a process may program 
copies of memory blocks from any node to any other node 
using the remote-memory copy mechanism. Only the owner 
of a buffer will be allowed to copy to/from the buffers in its 
partition. 

It is also important to notice that once a buffer changes 
the partition it belongs to, it also loses all the information 
kept in it. This happens because the new cache-server does 
not know how to handle the files of any other cache-server. 
This also means that if the buffer is dirty, it will have to be 
sent to disk before the re-assignation is done. 

The repartition policies presented in this paper mill be 
based on a combination of the following concepts. First, the 
number of buffers that change ownership may, or may not, 
be limited in order to avoid drastic changes in the partitions 
size. And second, the reasignation of buffers may be done 
eagerly or lazily. 

Drastic changes in the size of the partitions may lead to 
bad performance results. To avoid these dramatic changes, 
we propose to limit the number of buffers a cache-server may 
gain or loose in each redistribution. Limiting the buffers a 
cache-serve may lose should be a function of the number 
of buffers it has in its partition. On the other hand, the 
limitation on the buffers a cache-server may gain should be 
a function of the number of buffers it will be able to use. 
We propose that the maximum number of buffers that a 
cache-server may loose in each repartition should equal a 
predefined percentage of its partition size. This percentage 
may be tuned by the system administrator. In all the simu- 
lations presented in this work, we only allowed cache-servers 
to lose 10% of their blocks. This percentage was shown to 
be an appropriate one in a previous work [6]. On the other 



hand, we also have to find a number that gives an idea of 
the number of new buffers that can be used between repar- 
titions. We believe that the number of blocks that can be 
physically read in a repartition interval gives this bound. 
For this reason, limiting the number of gained buffers to the 
maximum number of blocks that can be physically read in 
a repartiCon interval seems an interesting idea. 

The instant when buffers change their ownership may 
also have a significant impact on the effectiveness of the 
repartition algorithm. One possibility is to implement an 
eager algorithm that changes the ownership of the buffers 
as soon as all nodes have been notified. This eager algo- 
rithm has the problem that many reassigned buffers may be 
used in the last portion of the interval. It may even happen 
that they are never used by the new cache-server. Dur- 
ing all this time of inactivity, they might have been used 
I>y the old server increasing the system performance. To 
solve this problem, a lazy algorithm may be implemented. 
The repartition-algorithm may send the number of buff&s 
from each node that a given cache-server has gained instead 
of the identifier of these buffers. Then, when the cache- 
server needs a new buffer, it requests a buffer from one of 
the servers in its list. This allows the buffers to be used by 
their old owner until they are really needed. It also allows 
the old owner to decide which buffer to discard at the mo- 
ment the buffer is really to be discarded. To implement this 
request out of the critical path of the read/write operations, 
a deferred mechanism is implemented. Once a cache-server 
gets the list, it requests the first buffer in the list. Once this 
buffer is used, another one is requested on the spot. This 
continues until no more buffers can be requested. With thii 
mechanisms, at most one buffer changes ownership without 
being used. 

The first repartition policy we propose has been named 
No/-fitnited. In this policy, buffers change ownership using 
the eager mechanism and only the number of buffers a cache 
server may lose is limited. 

Limited is the second proposal for the repartition policy. 
This policy is quite similar the previous one. The only dif- 
ference is that the number buffers a cache-server may gain 
is limit.ed bv the number of new blocs that can be physically 
rc4 from disk. 

Finally, Lazy-and-limited changes the eager repartition 
n~cchanism used in the Limited algorithm and replaces it by 
Ihe lazy one. 

ln order to see whether the dynamic redistributions is 
really needed, we will also evaluate a Fixed-partition policy 
where the buffers are assigned at boot time. 

3.3 Fault Tolerance 

As the cached information is scattered among all the nodes, 
we need to provide the system with some kind of fault- 
tolerance. The whole system should be able to continue 
even if a node fails. 

We propose a fault-tolerance mechanism based on parity 
lines and parity buffers quite similar to the one used in a 
RAID level 5 [23]. We define a parity line as a set of cache 
buffers where none of them is located in the same node. All 
the buffers in the line are used to keep file blocks but one, 
the parity buffer. The idea is to keep the XOR of all the 
dirty buffers from a line in its parity buffer. Thus not all 
buffers in the line affect the parity buffer. Only those buffers 
that have been modified and still have not been updated in 
the disk are kept in the parity buffer. Should one of these 
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dirty blocks be lost, the information kept in its parity buffer 
could be used to restore the last version of the lost buffer. 

The parity-servers are the processes responsible for all 
the fault tolerance mechanism and cooperate with the cachc- 
server to keep the parity information up to date, For per- 
formance reasons, we have one of these servers in each nodc 
where a parity-buffer is located. This means that a single 
parity-server can handle more than one line. Anyway, if for 
scalability reasons, each line has to have a dedicated parity- 
server, this could also be done with no modifications in the 
system. 

The protocol used between cache-servers and parity-servers 
is described as follows. In a write operation, and before the 
buffer is modified, the cache-server sends a message to the 
parity-server informing that the buffer will be modified. Af- 
terwards, the parity-server copies the unmodified buffer to 
a local buffer and informs the cache-server that the buffer 
can be modified. Then, the cache-server modifies the buffer 
as requested by the client. At the same time, the parity- 
server copies the modifications from the client in order to 
keep the parity buffer up to date. Once the modifications 
are included in the parity buffer, the parity-server informs 
the cache-server. Finally, the cache-server can inform the 
user about the end of the write operation. Once a buffer is 
sent to the disk, the parity-server is also informed and rc- 
moves the information of this buffer from the parity buffer. 
All the messages that go to and from the parity-server arc 
sent though ports while all the data copies are done using 
the memory-copy mechanism. 

When a node fails, the parity-servers can rebuild the 
modiied file blocks that have been lost and can write them 
to disk. Once all the lost file blocks are in the disk, the file 
system continues working normally but for a smaller global 
cache. If the parity-server is the one that fails, we may 
rebuild the parity buffers from the information kept by all 
the cache-servers. 

An important issue is that not all systems need the SUIW. 

level of fault tolerance. While in some environments fault 
tolerance is crucial, there are other environments where pcr- 
formance is much more important than fault tolerance, If 
PAFS is to be useful in most environments, a set of fault- 
tolerance levels has to be offered. 

As there are environments were there is no need of fault- 
tolerance mechanisms, or where speed is more important 
than fault tolerance, PAFS offers as the first level, or 1~~1 
A, a non fault-tolerant level. 

The second level, or level B, is the one proposed by 
Anderson et al. in xFS [l, 91. The assumption in this fault- 
tolerance level is that a file block, when cached in the same 
node as the client which requested it, may be lost if the 
caching node fails. This comes from the assumption that if 
this node fails, all its applications will also fail and no one 
will care for the last actualization of this block. Thus only 
blocks placed in a remote cache are guaranteed to be in the 
diik (or are recoverable through the parity buffer). 

The previous level might not be sufficient in an envi- 
ronment with a Iot of file sharing between applications. It 
would also not be sufficient in an environment where a lot of 

communication between applications is done through film 
Let’s examine the following example. Suppose wo have a 
parallel make which has to compile two files and link thorn 
afterwards. As we have a parallel environment, both compi- 
lations ke run in parallel. Some of the blocks of the objccl 
files are kept in the cache where each compilation is being 
made and thus are not sent to the disk (or parity buffer). 
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If one of the nodes fails after the compilation is done the 
linker will not be able to make the executable file. The &ker 
will have no problem with one of the files, but the file that 
was compiled iu the failed node will be corrupted as some 
blocks have been lost [s]. This may not be acceptable in 
some environments and a higher degree of fault tolerance 
has to be proposed. To solve this problem PAFS offers the 
last, fault-tolerance level: level C. In this level, all modi- 
fied blocks are sent to the diik (or parity-server) offering a 
higher degree of fault tolerance. 

4 Algorithm Comparison 

To test the performance obtained by the mechanisms pre- 
sented in this paper, we compare PAFS (with these mecha- 
nisms included) with xFS [2, 1, 91, This file system was cho- 
sen because it has one of the latest, and best, cooperative- 
cache algorithms found in the literature (N-Chance Forward- 
ing). The most relevant differences between both systems 
are explained in this section. 

The first significant difference is that xFS encourages 
local hits by placing new blocks in the client’s local cache 
and making a local copy of the blocks found in a remote 
cache. PAFS, on the other hand, does not try to increase 
the number of local hits. It tries to speed up remote hits to 
make less significant the local-hit ratio. 

A second difference is the way the coherence problem 
is approached. While PAFS avoids it by simply avoiding 
rephcatrons, xFS implements a token-based-on-a-per-block- 
basis cache consistency scheme. 

In PAFS, once a block is placed in a node, it remains 
there unt.il it. is discarded. On the other hand, xFS keeps 
moving blocks from one node to another for two basic rea- 
sons. The first one is to increase the local-hitratio. The sec- 
ond one is to increase the life-time of a block. Once a block 
reaches the last position in the LRU list, it is forwarded to 
anobher node. After N jumps without being accessed, the 
block is finally discarded. 

Another difference between both file systems is the en- 
vironment they are designed to run on. PAFS is designed 
to work on a parallel machine (or NOW) where each node 
runs a micro-kernel based operating system. All services 
including the file system, have to be implemented by out-of: 
kernel servers instead of by the kernel itself. On the other 
hand, xFS works on a monolithic operating system. The 
file-system code is implemented in the kernel and some op- 
erations can be handled locally without sending or receiving 
any messages. To study the behavior of xFS in our envi- 
ronment, we placed all file system functions originally im- 
plemented in the kernel in an out-of-kernel server leaving all 
the rest untouched. We also placed one such server in each 
node to minimize the impact of sending a message for each 
request. These modifications have been proven to be nearly 
irrelevant in the overall system performance (6, 41. 

Finally, only fault-tolerance level B is implemented by 
sFS while levels A, B and C are offered by PAFS. 

5 Simulator and Trace Files 

5.1 Simulator 

The file-system and cache simulator used in this project is 
part of DIMEMAS’ [16] h’ h w rc reproduces the behavior of 
a distributed-memory parallel machine. This software not 
only simulates the machine and disk access, but also differ- 
ent short-term process-scheduling policies. 

The whole simulator is a trace-driven one where traces 
contain CPU, communication and I/O demand sequences for 
every process instead of the absolute time for each event. 

The communication and disk models implemented in the 
simulator are very important to understand the results pre- 
sented later. All communications are divided into two parts: 
a startup, or latency, and a data-transfer rate, or bandwidth. 
The startup is constant for each type of communication 
(port or memory-copy) and it is assumed to require CPU ac- 
tivity. This startup is different whether the communication 
is within a node or it crosses the interconnection network. 
The data-transfer time is proportional to the size of the data 
sent and the interconnection-network bandwidth. The disk 
is also modeled by a latency and a bandwidth where the 
latency depends on the kind of operation (read or write). 

Using this simulator we have implemented alI the al- 
gorithms proposed as part of PAFS. We simulate all the 
servers, their communication, their CPU consumption and 
the interaction with the clients. We have also implemented 
the algorithms presented in xFS in order to make the com- 
parison. 

5.2 Trace Files and Simulation Parameters 

For our experiments, we used two sets of traces: CHARISMA [21, 
141 and Sprite [3]. The first one characterizes the behavior 
of a parallel machine while the second one characterizes the 
workload that may be found in a NOW. 

The CHARISMA traces were taken from the Intel iPSC/860 
at NASA Ames’ Numerical Aerodynamics Simulations (NAS). 
This multiprocessor has 128 computational nodes, each with 
8 MBytes of memory. 

The information kept in this trace file only contains the 
operations that went through the Concurrent File System. 
This means that any I/O which was done through standard 
input and output or to the host file system was not recorded. 
The complete trace is about 156 hours long and was collected 
over a period of 3 weeks. To reduce the simulation time we 
only used part of this trace file. We used a two-day peaod 
(February 15th and 16th) which was the busiest period of 
the trace. Incidentally, the first 10 hours were used to warm 
the cache as we want to study the permanent-state behavior 

. The Sprite user community included about 30 full-time’ 
and 40 part-time users of the system. These traces list the 
activity of 48 client machines and some servers over a two 
day period measured in the Sprite operating system. 

Although the trace is two days long, all measurements 
presented in this paper are taken from the 15th hour to the 
48th hour. This is done because we used the first fifteen 
hours to warm the cache. 

Table 1 presents the number of requested operations ac- 
cessed blocks and average operation sizes performed d&ing 
the simulated period. This table is meant to help the reader 

‘DIMEMAS . IS a performance-prediction simulator developed by 
CEPBA-UPC and is available as a PALLAS GmbH product. 
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Table 1: Trace file comoarison. 
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Disk Write Seek 1 12.5 ms 1 12.5 ms 

Table 2: Simulation parameters. 

to underst.and the real load placed on the file system. It will 
also be useful to see the differences between both workloads. 

As we have two different workloads we also simulated 
two basic architectures. While the CHARISMA trace file 
has been tested on a parallel machine, the Sprite trace file 
has been simulated on a NOW similar to the one used by 
Dahlin et al. [9]. The parameters used to simulate both 
architect.ures are shown in Table 2. 

6 Performance 

This section is divided into two subsections. The first one 
describes t.lre behavior of the CHARISMA trace file simu- 
lated on a parallel machine. The second one describes the 
behavior of the Sprite trace file on a NOW. 
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Figure 2: Read and write average times obtained with the 
reparation mechanisms (PM). 

6.1 Parallel Machine (PM) 

Repartition Mechanisms 

Figure 2 shows the read and write average times obtained 
when using the proposed repartition mechanisms. The straight 
line represents the values obtained by xFS and the various 
versions of PAFS are represented by the solid bars. 

The first thing that can be observed is that a Fixcd- 
partition policy obtains a very poor read performance. This 
is because the workload is quite unbalanced at some points 
and Fized partitions is not able to adapt to the changing 
needs of the system. 

Another important result extracted from Figure 2 is that 
limiting the number of buffers that change ownership us- 
ing a lazy algorithm is a good idea. When no limit is SC), 
many buffers change ownership but are not used by their 
new owner as it does not have time to use them. If the 
block had remained with its original owner, its information 
might have been used to serve a client request. 

We can also see that PAFS runs better than xFS inde- 
pendently of the dynamic repartition mechanism used. The 
reasons behind this behavior are explained in the following 
paragraphs. 

First, the number of global hits is higher in PAFS (96%) 
than in xFS (92%). Th is i d ff erence is basically due to the 
effect of replication. As xFS wastes some of its buffers keep- 
ing replicated blocks, the cache can keep a fewer number of 

different blocks. Thus, it behaves as a smaller cache. 
Second remote hits take longer in xFS than in PAFS. 

A remote ‘hit in PAFS only means a remote copy of the 
requested bytes from the cache to the user address space (1) 

PAFS-R-hit = &zopy(Tequest-size) (1) 

On the other hand, a remote hit in xFS has more things to 
do. As it wants to increase the local-hit ratio, the requested 
block is copied to the local cache and then is sent to the user 
address space (2). We should notice that the information 
that goes through the network in PAFS is the information 
requested by the user and in xFS is the whole block. Every 
remote hit also needs to contact the manager of the block 
to locate the remote copy (3). This communication will 
be done for each remote hit found in the request while in 
PAFS only one communication to a remote server is done IIO 

matter how many remote hits are found in the request. It 



is also quite frequent to find that the buffer needed to place 
the requested block has to be forwarded to another node 
in order to increase its lifetime. The influence this fact has 
on the average remote-hit time can be observed in equation 
(4) where the time of forwarding a block is weighted by the 
probability of this happening (pf). Similarly, if the buffer to 
be used is dirty we will need to send it to disk before using 
it,. The operations needed are the same as in a forwarding 
(5) but the probability is diierent (pd). 

basic = R-copy(blocksize) + L-copy(requestsize) (2) 
manager = 2 * R-port (3) 

forward = [2 * R-port + R-copy(blocksize)] * pf (4) 
dirty = [2 * R-port $- R-copy(blocksize)] * pd (5) 

cFSJZ-hit = basic $ manager $- forward + dirty (6) 

If we calculate the time spent in xFS (6) and in PAFS (1) 
using the probabilities found in the simulations (pf=.75 and 
pd=.51) we find that xFS takes around 5 times longer than 
PAFS in performing a remote hit. However, these calcula- 
tions do not. t,ake into account the CPU consumed, nor the 
contention of the network, nor the time spent wartmg for a 
server to become ready. If we take this time into account 
(as was done in the simulations), the ratio (i.e., 5) becomes 
even more. On the other hand, PAFS only has 3.3 remote 
hits for each one found in xFS. This means that the effort 
needed to increase the local-hitratio is much higher than the 
benefits obtained. 

Third, misses are also more time consuming in xFS than 
in PAFS. This also happens due to the forwarding of blocks 
and the cleaning of dirty blocks in the critical path of the 
operation. 

When comparing the write performance obtained by PAFS 
and xFS we have to take an extra issue into account. In xFS, 
most of the write operations need to ask the ownership of 
the block to the manager. Furthermore, if more than one 
copy is kept in the cache, the manager has to invalidate them 
before grating the ownership to the requesting server. This 
ext,ra work is not done in PAFS as no coherence mechanism 
is needed. 

All these results prove that avoiding the coherence prob- 
lem by avoiding replication not only simplifies the design 
but also improves the file-system performance. 

Network-Bandwidth Influence 

As PAFS does not esploit locality as much as xFS, it is very 
important, to st,udy the influence that the interconnection- 
network bandwidth has on the results presented earlier. 

This st,udy has been done varying the bandwidth of the 
interconnection network. Figure 3 presents the influence this 
variation has on the read (solid lines) and write (dashed 
lines) average t.imes. On the X axis we represent the ra- 
tio between the local-memory bandwidth (L-BW) and the 
interconnection-network bandwidth (R-BW). We should no- 
tice that PAFS with Fized partitions is not represented as it 
behaves much worse than sFS and thus it is of no interest 
to us anymore. 

We can observe that the difference between the distribu- 
tion algorithms is not affected by the interconnection net- 
work speed. It can also be observed that the difference be- 
tween PAFS and xFS in the read operation remains the 

Figure 3: Network-bandwidth influence (PM). 
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Figure 4: Local-cache size influence (PM). 

same independently of the interconnection-network band- 
width. This happens because the time gained by IFS due 
to its higher local-hit ratio is lost due to of its longer remote- 
hit duration. 

Write operations behave in a different way. A write miss 
in PAFS is, nearly always, placed in a remote cache while it 
is always placed in the local cache by xFS. This means that 
a slow interconnection network has more influence on PAFS 
than on xFS. Thus, the slower the interconnection network 
is, the smaller the difference between both algorithms be- 
comes. 

Cache-Size Influence 

Another important parameter that influences the cache per- 
formance is the size of each local cache. Figure 4 shows 
the read (solid lines) and write (dashed lines) average times 
obtained while varying the size of the local cache. 

The first thing we observe is that Limited and Lazy-and- 
limited tend to obtain very similar results with large caches. 
This is because the reassigned buffers that are not used be- 
come of little importance. 

We also observe that the smaller the cache is, the worse 
xFS behaves if compared to PAFS. The reason, as was ex- 
plained earlier, is that all the replicated blocks use buffers 
that could keep different blocks. If the local caches are very 
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Figure 5: Fault-tolerance performance (PM). 

small, t.his becomes a serious problem of xFS (as observed 
in Figure 4 when 512KByte and 1MByte local caches are 
wed). 

The final observation is that the cache size has little in- 
Ilueuce on t,he write performance, because a cache hit or a 
miss takes t.he same amount of of time as long as there is no 
uced t.o read the block first. In both cases we need a copy 
from the user address space to the cache. 

Fault-Tolerance Influence 

Besides the coherence and repartition mechanisms, we also 
propose a fault-tolerance mechanism based on parity buffers. 
In Pigure 5 we present the results obtained by this mech- 
anism using the three different levels. This performance is 
compared t,o xFS which only implements level B. All three 
levels were tested with the Lazy-and-limited repartition al- 
gorit.hm as it has been shown to be the best one. 

The most important information extracted from the above 
figure is that the cooperative algorithm implemented in PAFS 
behaves better than xFS even with a higher fault-tolerance 
level. 

If WC compare the performance of the three different lev- 
els we can see that levels B and C take longer performing the 
writ.e operations than Level A. This happens because some 
more memory-copy operations have to be done per write in 
order to send the modifications to the parity-server. The 
little difference between levels B and C is due to the low 
locctl-hit rat.io achieved by PAFS. 

Read operations are only slightly affected as they do not 
take part in the parity mechanism. The only influence may 
be a higher resource utilization. 

6.2 Network of Workstations (NOW) 

Repartition Mechanisms 

In this subsection, we present the read and write average 
t,imes obtained by the different repartition mechanisms in 
a NOW (Figure 6). As can be seen, the behavior is quite 
similar to the one obtained in a a parallel machine but for 
Fixed partitions and Not-limited. 

As t.he Sprite workload is quite balanced, the Fizzed- 
partition policy behaves quite well. There is no need to 
redistribute buffers among the cache-servers. Actually, if we 

I Fixed-partitions 
I Not-limited 
- Limited 
- Lazy-and-limited 

0 
Read Write 

Figure 6: Read and write average times obtained with the 
repartition mechanisms (NOW). 
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Figure 7: Network-bandwidth influence (NOW). 

do so with no limit, we end up obtaining a quite bad pcr- 
formance. This happens because many blocks change own- 
ership when this is not really needed and their information 
is lost for no good reason. 

Network-Bandwidth Influence 

The influence of the interconnection-network bandwidth (Pig- 
ure 7) is also quite similar to the one found in a parallel 
machine. The most important difference is that with this 
environment and the Sprite workload we found the point 
where a write operation in PAFS is slower than in xFS, 
This happens when a remote copy is 10 times slower than a 
local one. 

Thii intersection point has been found when a remote 
copy is 10 times slower than a local one due to several rca- 
sons. First, as the local-cache size used in this experiment is 
larger than the one used in the parallel machine, xFS has less 
remote hits and thus their extra overhead has less impact. 
Second, there is much more sharing in the CHARISMA tract 
file than in the Sprite one and the coherence mechanism 11~ 
more work to do. Finally, the size of the write operations 
in the Sprite trace file are smaller than in the CHARISMA 
one. 
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Figure 9: Fault-tolerance performance (NOW). 

Cache-Size Ml uence 

In Figure 8, we observe that the influence of the local-cache 
size has the same effect as in a parallel machine. The only 
difference is in the Fixed partitions and Not-limited mecha- 
nisms as was explained earlier (56.2). 

Fault-Tolerance Influence 

Finally, we present the performance of the fault-tolerance 
mechanism in a NOW (Figure 9). We can see that the dif- 
ference between levels B and C is much larger than in a 
parallel machine. This difference is because the size of the 
local cache is much larger in this experiment. As many more 
blocks can be written in the local cache, the parity mecha- 
nism in level B has much less work than in level C. 

This same reason can be applied when comparing levels 
B and C in PAFS against xFS with level B. The larger the 
local cache is, the less work the fault-tolerance mechanism 
has to do. 

7 Conclusions 

This paper has presented high-performance solutions to three 
of the most important problems found when designing a co- 
operative cache: ‘coherence, load balancing and fault toler- 
ance. 

We have shown that avoiding the coherence problem by 
avoiding replication not only simplifies the file-system design 
but also increases the performance significantly. 

We have also found that the redistribution policies should 
neither be too aggressive nor too conservative. We have 
found that Lazy-and-limiteclhas both characteristics and ob- 
tains the best results. 

A parity-based fault-tolerance mechanism which may ob- 
tain a high level of fault-tolerance and stilI alIow a high- 
performance file system has also been presented. Further- 
more, three different levels of fault tolerance have been pro- 
posed. 

We have also shown that achieving high ZocaZ-hit ratio 
is not the only way to design high-performance cooperative 
caches. Taking most of the overhead away from remote hits 
is also a good way to achieve high-performance cooperative 
caches. 

Finally, although the solutions presented in this paper 
were designed for a parallel machine, reasonable good results 
have also been obtained in NOWs. 
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