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ABSTRACT
The rise of worldwide Internet-scale services demands large
distributed systems. Indeed, when handling several millions
of users, it is common to operate thousands of servers spread
across the globe. Here, replication plays a central role, as it
contributes to improve the user experience by hiding failures
and by providing acceptable latency. In this paper, we claim
that atomic multicast, with strong and well-defined proper-
ties, is the appropriate abstraction to efficiently design and
implement globally scalable distributed systems. We sub-
stantiate our claim with the design of two modern online
services atop atomic multicast, a strongly consistent key-
value store and a distributed log. In addition to presenting
the design of these services, we experimentally assess their
performance in a geographically distributed deployment.

1. INTRODUCTION
In little less that two decades, we have witnessed the ex-
plosion of worldwide online services (e.g., search engines,
e-commerce, social networks). These systems typically run
on some cloud infrastructure, hosted by datacenters placed
around the world. Moreover, when handling millions of users
located everywhere on the planet, it is common for these
services to operate thousands of servers scattered across the
globe. A major challenge for such services is to remain avail-
able and responsive in spite of server failures and an ever-
increasing user base. Replication plays a key role here, by
making it possible to hide failures and to provide acceptable
response time.

While replication can potentially lead to highly scalable and
available systems, it poses additional challenges. Indeed,
keeping multiple replicas consistent is a problem that has
puzzled system designers for many decades. Although much
progress has been made in the design of consistent replicated
systems [14], novel application requirements and environ-
ment conditions (e.g., very large user base, geographical dis-
tribution) continue to defy designers. Some proposals have
responded to these “new challenges” by weakening the con-

sistency guarantees offered by services. Weak consistency is
a natural way to handle the complexity of building scalable
systems, but it places the burden on the service users, who
must cope with non-intuitive service behavior. Dynamo [19],
for instance, overcomes the implications of eventual consis-
tency by letting the users decide about the correct inter-
pretation of the returned data. While weak consistency is
applicable in some cases, it can be hardly generalized, which
helps explain why we observe a recent trend back to strong
consistency (e.g., [1, 5, 29, 46]).

Strong consistency entails ordering requests across the sys-
tem. Different strategies have been proposed to order re-
quests in a distributed system, which can be divided into two
broad categories: those that impose a total order on requests
and those that partially order requests. Many distributed
systems today ensure some level of strong consistency by to-
taling ordering requests using the Paxos algorithm [32], or
a variation thereof. For example, Chubby [11] is a Paxos-
based distributed locking service at the heart of the Google
File System (GFS); Ceph [47] is a distributed file system
that relies on Paxos to provide a consistent cluster map to
all participants; and Zookeeper [28] turns a Paxos-like total
order protocol into an easy-to-use interface to support group
messaging and distributed locking.

In order to scale, services typically partition their state and
strive to only order requests that depend on each other,
imposing a partial order on requests. Sinfonia [1] and S-
DUR [18], for example, build a partial order by using a
two-phase commit-like protocol to guarantee that requests
spanning common partitions are processed in the same or-
der at each partition. Spanner [29] orders requests within
partitions using Paxos and across partitions using a protocol
that computes a request’s final timestamp from temporary
timestamps proposed by the involved partitions. In this pa-
per, we contend that instead of building a partial order on
requests using an ad-hoc protocol intertwined with the ap-
plication code, services have much to gain from relying on a
middleware to partially order requests, analogously to how
some libraries provide total order as a service (e.g., [3]).

Reliably delivering requests in total and partial order has
been encapsulated by atomic broadcast and atomic multi-
cast, respectively [26]. In this paper, we extend Multi-Ring
Paxos, a scalable atomic multicast protocol introduced in
[36], to (a) cope with large-scale environments and to (b) al-
low services to recover from a wide range of failures (e.g., the
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failures of all replicas). Addressing these aspects required a
redesign of Multi-Ring Paxos and a brand-new library im-
plementation: Some large-scale environments (e.g., public
datacenters, wide-area networks) do not allow network-level
optimizations (e.g., IP-multicast [36]) that can significantly
boost bandwidth. Recovering from failures in Multi-Ring
Paxos is challenging because it must account for the fact
that replicas may not all have the same state. Thus, a replica
cannot recover by installing any other replica’s image.

We developed two services based on Multi-Ring Paxos: MRP-
Store, a key-value store, and dLog, a distributed log. These
services are at the core of many internet-scale applications.
In both cases, we show in the paper that the challenge of
designing and implementing highly available and scalable
services can be significantly simplified if these services rely
on atomic multicast. Our performance evaluation assesses
the behavior of Multi-Ring Paxos under various conditions
and shows that MRP-Store and dLog can scale in differ-
ent scenarios. We also illustrate the behavior of MRP-Store
when servers recover from failures.

This paper makes the following contributions. First, we pro-
pose an atomic multicast protocol capable of supporting at
the same time scalability and strong consistency in the con-
text of large-scale online services. Intuitively, Multi-Ring
Paxos composes multiple instances of Ring Paxos to provide
efficient message ordering. The Multi-Ring Paxos protocol
we describe in the paper does not rely on network-level op-
timizations (e.g., IP-multicast) and allow services to recover
from a wide range of failures. Second, we show how to design
two services, MRP-Store and dLog, atop Multi-Ring Paxos
and demonstrate the advantages of our proposed approach.
Third, we detail the implementation of Multi-Ring Paxos,
MRP-Store, and dLog. Finally, we provide a performance
assessment of all these components.

The remainder of this paper is structured as follows. Sec-
tion 2 describes our system model and assumptions. Sec-
tion 3 explains why system designers must care about atomic
multicast as a middleware service. Sections 4 and 5 present
the design of Multi-Ring Paxos and its recovery protocol.
Section 6 discusses the two services we designed and Sec-
tion 7 explains how they were implemented. Section 8 as-
sesses the performance of the components. Section 9 evalu-
ates the work and Section 10 concludes this paper.

2. SYSTEM MODEL
We assume a distributed system composed of a set Π =
{p1, p2, ...} of interconnected processes that communicate
through the primitives send(p,m) and receive(m), where
m is a message and p is a process. Processes may fail by
crashing and subsequently recover, but do not experience
arbitrary behavior (i.e., no Byzantine failures). Processes
are either correct or faulty. A correct process is eventually
operational “forever” and can reliably exchange messages
with other correct processes. In practice, “forever” means
long enough for processes to make some progress (e.g., ter-
minate one instance of consensus). Our protocols ensure
safety under both asynchronous and synchronous execution
periods. To ensure liveness, we assume the system is par-
tially synchronous [21]: it is initially asynchronous and even-
tually becomes synchronous. The time when the system

becomes synchronous, called the Global Stabilization Time
(GST) [21], is unknown to the processes. Before GST, there
are no bounds on the time it takes for messages to be trans-
mitted and actions to be executed. After GST, such bounds
exist but are unknown.

Atomic multicast is a communication abstraction defined by
the primitives multicast(γ,m) and deliver(m), where m is
a message and γ is a multicast group. Processes choose
from which multicast groups they wish to deliver messages.
If process p chooses to deliver messages multicast to group
γ, we say that p subscribes to group γ. Let relation < be
defined such that m < m′ iff there is a process that delivers
m before m′. Atomic multicast ensures that (i) if a process
delivers m, then all correct processes that subscribe to γ
deliver m (agreement); (ii) if a correct process p multicast
m to γ then all correct processes that subscribe to γ deliver
m (validity); and (iii) relation< is acyclic (order). The order
property implies that if processes p and q deliver messages
m and m′, then they deliver them in the same order. Atomic
broadcast is a special case of atomic multicast where there
is a single group to which all processes subscribe.

3. WHY ATOMIC MULTICAST
Two key requirements for current online services are (1) the
immunity to a wide range of failures and (2) the ability to
serve an increasing number of user requests. The first re-
quirement is usually fulfilled through replication within and
across datacenters, possibly located in different geographi-
cal areas. The second requirement is satisfied through scal-
ability, which can be “horizontal” or “vertical.” Horizontal
scalability (often simply scalability) consists in adding more
servers to cope with load increases, whereas vertical scal-
ability consists in adding more resources (e.g., processors,
disks) to a single server. Horizontal scalability boils down
to partitioning the state of the replicated service and assign-
ing partitions (i.e., so-called shards) to the aforementioned
geographically distributed servers.

Consistency vs. scalability. The partition-and-replicate
approach raises a challenging concern: How to preserve ser-
vice consistency in the presence of requests spanning mul-
tiple partitions, each partition located in a separate data
center, in particular when failures occur? When addressing
this issue, middleware solutions basically differ in how they
prioritize consistency vs. scalability, depending on the se-
mantics requirements of the end-user services they support.
That is, while some services choose to relax consistency in
favor of scalability and low latency, others choose to tolerate
higher latency, possibly sacrificing availability (or at least its
perception by end-users), in the interest of service integrity.

Prioritizing scalability. TAO, Facebook’s distributed
data store [10], is an example of a middleware solution that
prioritizes scalability over consistency: with TAO, strong
consistency is ensured within partitions and a form of even-
tual consistency is implemented across partitions. This im-
plies that concurrent requests accessing multiple partitions
may lead to inconsistencies in Facebook’s social graph. To
lower potential conflicts, data access patterns can be consid-
ered when partitioning data (e.g., entries often accessed to-
gether can be located in the same partition). Unfortunately,



such optimizations are only possible if knowledge about data
usage is known a priori, which is often not the case.

Some middleware solutions, such as S-DUR [18] and Sin-
fonia [1], rely on two-phase commit [6] to provide strong
consistency across partitions. Scatter [24] on the other hand
prohibits cross-partition requests and uses a two-phase com-
mit protocol to merge commonly accessed data into the same
partition. A common issue with storage systems that rely
on atomic commitment is that requests spanning multiple
partitions (e.g., cross-partition transactions) are not totally
ordered and can thus invalidate each other, leading to mul-
tiple aborts. For example, assume objects x and y in parti-
tions px and py, respectively, and two transactions T1 and
T2 where T1 reads x and updates the value of y, and T2

reads y and updates the value of x. If not ordered, both
transactions will have to abort to ensure strong consistency
(i.e., serializability).

Prioritizing consistency. When it comes to prioritiz-
ing consistency, some proposals totally order requests be-
fore their execution, as in state-machine replication [44], or
execute requests first and then totally order the validation
of their execution, as in deferred update replication [39].
(With state-machine replication requests must execute se-
quentially; with deferred update replication requests can
execute concurrently.) Coming back to our example of con-
flicting transactions T1 and T2, while approaches based on
two-phase commit lead both transactions to abort, with de-
ferred update replication only one transaction aborts [38],
and with state-machine replication both transactions com-
mit. Many other solutions based on total order exist, such
as Spanner [29] and Calvin [46].

The Isis toolkit [8] pioneered the use of totally ordered group
communication at the middleware level. With Isis, total or-
der was enforced at two levels: first, a consistent sequence
of views listing the replicas considered alive was atomically
delivered to each replica; then, messages could be totally
ordered within each view, using an atomic broadcast prim-
itive. In the same vein, many middleware solutions rely on
atomic broadcast as basic communication primitive to guar-
antee total order.

The best of both worlds. We argue that atomic multi-
cast is the right communication abstraction when it comes
to combining consistency and scalability. Indeed, atomic
broadcast implies that all replicas are in the same group
and must thus receive each and every request, regardless
its actual content, which makes atomic broadcast an ineffi-
cient communication primitive when data is partitioned and
possibly spread across datacenters. With atomic multicast,
on the contrary, each request is only sent to the replicas
involved in the request, which is more efficient when data
is partitioned and possibly distributed across datacenters.
Compared to solutions that rely on atomic broadcast to en-
sure consistency within each partition and an ad hoc pro-
tocol to handle cross-partition requests, atomic multicast is
more advantageous in that requests are ordered both within
and across partitions.

Not only do we advocate atomic multicast as basic communi-

cation primitive to build middleware services, we also believe
that the traditional group addressing semantics should be re-
placed with one that better fits the context of large-scale In-
ternet services. With traditional atomic multicast primitives
(e.g., [20, 25, 41, 42, 43]), a client can address multiple non-
intersecting groups of servers, where each server can only be-
long to a single group. Rather, we argue that clients should
address one group per multicast and each server should be
able to subscribe to any group it is interested in, i.e., any
replication group corresponding to the shards the server is
currently replicating, similarly to what IP multicast sup-
ports. As we shall see in Section 4, this somehow “inverted”
group addressing semantics allow us to implement a scalable
atomic multicast protocol.

Recovering from failures. The ability to safely recover
after a failure is an essential aspect of the failure immunity
requirement on large-scale middleware services. Further-
more, fast crash recovery is of practical importance when in-
memory data structures are used to significantly decrease la-
tency. Yet similarly to what is done to ensure cross-partition
consistency, existing middleware solutions tend to deal with
recovery issues in an ad hoc manner, directly at the service
level, rather than factor out the solution to recovery issues in
the underlying communication layer. A different approach
consists in relying on atomic multicast to orchestrate check-
pointing and coordinate checkpoints with the trimming of
the logs used by the ordering protocol. This is particularly
important in the context of atomic multicast since recovery
in partitioned systems is considerably more complex than
recovery in single partition systems (see Section 5).

Architecture overview. Figure 1 presents an overview of
our middleware solution based on atomic multicast, imple-
mented by Multi-Ring Paxos. Online services can build on
atomic multicast’s ordering and recovery properties, as de-
scribed in the next two sections. As suggested by this figure,
atomic multicast naturally supports state partitioning, an
important characteristic of scalable services, and no ad hoc
protocol is needed to handle coordination among partitions.

Atomic Broadcast
(Ring Paxos)

Atomic Multicast
(Multi-Ring Paxos)

Key-Value Store Service Distributed Log Service

Network

Figure 1: Architecture overview.

4. MULTI-RING PAXOS
Intuitively, Multi-Ring Paxos turns an atomic broadcast pro-
tocol based on Ring Paxos into an atomic multicast protocol.
That is, Multi-Ring Paxos is implemented as a collection of
coordinated Ring Paxos instances, or rings for short, such
that a distinct multicast group is assigned to each ring. Each
ring in turn relies on a sequence of consensus instances, im-
plemented as an optimized version of Paxos.



Multi-Ring Paxos was introduced in [36]. In this section, we
recall how Multi-Ring Paxos works and describe a variation
of Ring Paxos that does not rely on network-level optimiza-
tions (e.g., IP-multicast) to achieve high throughput. In the
next section, we introduce Multi-Ring Paxos’s recovery.

Ring Paxos. Similarly to Paxos, Ring Paxos differentiates
processes as proposers, acceptors, and learners, where one of
the acceptors is elected as the coordinator. All processes
in Ring Paxos communicate through a unidirectional ring
overlay, as illustrated in Figure 2 (a). Using a ring topol-
ogy for communication enables a balanced use of networking
resources and results in high performance.

Figure 2 (b) illustrates the operations of an optimized Paxos,
where Phase 1 is pre-executed for a collection of instances.
When a proposer proposes a value (i.e., the value is atomi-
cally broadcast), the value circulates along the ring until it
reaches the coordinator. The coordinator proposes the value
in a Phase 2A message and forwards it to its successor in the
ring together with its own vote, that is, a Phase 2B message.
If an acceptor receives a Phase 2A/2B message and agrees to
vote for the proposed value, the acceptor updates Phase 2B
with its vote and sends the modified Phase 2A/2B message
to the next process in the ring. If a non-acceptor receives a
Phase 2A/2B message, it simply forwards the message as is
to its successor. When the last acceptor in the ring receives
a majority of votes for a value in a Phase 2B message, it
replaces the Phase 2B message by a decision message and
forwards the outcome to its successor. Values and decisions
stop circulating in the ring when all processes in the ring
have received them. A process learns a value once it receives
the value and the decision that the value can be learned (i.e.,
the value is then delivered). To optimize network and CPU
usage, different types of messages for several consensus in-
stances (e.g., decision, Phase 2A/2B) are often grouped into
bigger packets before being forwarded. Ring Paxos is obliv-
ious to the relative position of processes in the ring. Ring
configuration and coordinator’s election are handled with a
coordination system, such as Zookeeper.

Multi-Ring Paxos. With Multi-Ring Paxos, each Learner
can subscribe to as many rings as it wants and participates
in coordinating multiple instances of Ring Paxos for those
rings. In Figure 2 (c), we picture a deployment of Multi-Ring
Paxos with two rings and three learners, where learners L1
and L2 subscribe to rings 1 and 2, and learner L3 subscribes
only to ring 2. The coordination between groups relies on
two techniques, deterministic merge and rate leveling, con-
trolled with three parameters: M , ∆, and λ.

Initially, a proposer multicasts a value to group γ by propos-
ing the value to the coordinator responsible for γ. Then,
Learners use a deterministic merge strategy to guarantee
atomic multicast’s ordered delivery property: Learners de-
liver messages from rings they subscribe to in round-robin,
following the order given by the ring identifier. More pre-
cisely, a learner delivers messages decided in M consensus
instances from the first ring, then delivers messages decided
in M consensus instances from the second ring, and so on
and then starts again with the next M consensus instances
from the first ring.

Since multicast groups may not be subject to the same load,
with the deterministic merge strategy described above, repli-
cas would deliver messages at the speed of the slowest mul-
ticast group, i.e., the group taking the longest time to com-
plete M consensus instances. To counter the effects of unbal-
anced load, Multi-Ring Paxos uses a rate leveling strategy
whereby the coordinators of slow rings periodically propose
to skip consensus instances. That is, at regular ∆ intervals,
a coordinator compares the number of messages proposed
in the interval with the maximum expected rate λ for the
group and proposes enough skip instances to reach the max-
imum rate. To skip an instance, the coordinator proposes
null values in Phase 2A messages. For performance, the co-
ordinator can propose to skip several consensus instances in
a single message.

5. RECOVERY
For a middleware relying on Multi-Ring Paxos to be com-
plete and usable, processes must be able to recover from
failures. More precisely, recovery should allow processes
to (a) restart their execution after failures and (b) limit
the amount of information needed for restart. Multi-Ring
Paxos’s recovery builds on Ring Paxos’s recovery. In the
following, we first describe recovery in Ring Paxos (Sec-
tion 5.1) and then detail the subtleties involving recovery
in Multi-Ring Paxos (Section 5.2).

5.1 Recovery in Ring Paxos
The mechanism used by a process to recover from a failure
in Ring Paxos depends on the role played by the process.
In a typical deployment of Ring Paxos (e.g., state-machine
replication [31, 44]), clients propose commands and replicas
deliver and execute those commands in the same total order
before responding to the clients. In this case, clients act as
proposers and replicas as learners, while acceptors ensure
ordered delivery of messages. In the following, we focus the
discussion on the recovery of acceptors and replicas. Recov-
ering clients is comparatively an easier task.

Acceptor Recovery. Acceptors need information related
to past consensus instances in order to serve retransmission
requests from recovering replicas. So, before responding to a
coordinator’s request with a Phase 1B or Phase 2B message,
an acceptor must log its response onto stable storage. This
ensures that upon recovering from a failure, the acceptor can
retrieve data related to consensus instances it participated
in before the failure. In principle, an acceptor must keep
data for every consensus instance in which it participated.
In practice, it can coordinate with replicas to trim its log,
that is, to delete data about old consensus instances.

Replica Recovery. When a replica resumes execution
after a failure, it must build a state that is consistent with
the state of the replicas that did not crash. For this reason,
each replica periodically checkpoints its state onto stable
storage. Then, upon resuming from a failure, the replica
can read and install its last stored checkpoint and contact
the acceptors to recover the commands missing from this
checkpoint, i.e., the commands executed after the replica’s
last checkpoint.
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Figure 2: (a) The various process roles in Ring Paxos disposed in one logical ring; (b) an execution of a single
instance of Ring Paxos; and (c) a configuration of Multi-Ring Paxos involving two rings (learners L1 and L2

deliver messages from Rings 1 and 2, and leaner L3 delivers messages from Ring 2 only).

Optimizations. The above recovery procedure is opti-
mized as follows. If the last checkpointed state of a recov-
ering replica is “too old”,1 the replica builds an updated
state by retrieving the latest checkpoint from an operational
replica. This optimization reduces the number of commands
that must be recovered from the acceptors, at the cost of
transferring the complete state from a remote replica.

5.2 Recovery in Multi-Ring Paxos
Recovery in Multi-Ring Paxos is more elaborate than in Ring
Paxos. This happens because in Multi-Ring Paxos replicas
may deliver messages from different multicast groups and
thus evolve through different sequences of states. We call
the set of replicas that deliver messages from the same set of
multicast groups a partition. Replicas in the same partition
evolve through the same sequence of states. Therefore, in
Multi-Ring Paxos, a recovering replica can only recover a
remote checkpoint, to build an updated state, from another
replica in the same partition.

As in Ring Paxos, replicas periodically checkpoint their state.
Because a replica p’s state may depend on commands deliv-
ered from multiple multicast groups, however, p’s checkpoint
in Multi-Ring Paxos is identified by a tuple kp of consensus
instances, with one entry in the tuple per multicast group. A
checkpoint identified by tuple kp reflects commands decided
in consensus instances up to k[x]p, for each multicast group
x that p subscribed to. Since entries in kp are ordered by
group identifier and replicas deliver messages from groups
they subscribe to in round-robin, in the order given by the
group identifier, predicate 1 holds for any state checkpointed
by replica p involving multicast groups x and y:

x < y ⇒ k[x]p ≥ k[y]p (1)

Note that Predicate 1 establishes a total order on check-
points taken by replicas in the same partition.

Periodically, the coordinator of a multicast group x asks
replicas that subscribe to x for the highest consensus in-
stance that acceptors in the corresponding ring can use to
safely trim their log. Every replica p replies with its highest

1That is, it would require the processing of too many missing
commands in order to build an up-to-date consistent state.

safe instance k[x]p to the coordinator, reflecting the fact that
the replica has checkpointed a state containing the effects of
commands decided up to instance k[x]p. The coordinator
waits for a quorum QT of answers from the replicas, com-
putes the lowest instance number K[x]T out of the values
received in QT and sends K[x]T to all acceptors. That is,
we have that the following predicate holds for K[x]T :

∀p ∈ QT : K[x]T ≤ k[x]p (2)

Upon receiving the coordinator’s message, each acceptor can
then trim its log, removing data about all consensus in-
stances up to instance K[x]T .

A recovering replica contacts replicas in the same partition
and waits for responses from a recovery quorum QR. Each
replica q responds with the identifier kq of its most up-to-
date checkpoint, containing commands up to consensus in-
stances in kq. The recovering replica selects the replica with
the most up-to-date checkpoint available in QR, identified
by tuple KR such that:

∀q ∈ QR : kq ≤ KR (3)

If QT and QR intersect, then by choosing the most up-
to-date checkpoint in QR, identified by KR, the recovering
replica can retrieve any consensus instances missing in the
selected checkpoint since such instances have not been re-
moved by the acceptors yet.

Indeed, since QT and QR intersect, there is at least one
replica r in both quorums. For each multicast group x in the
partition, from Predicates 1 and 3, we have k[x]r ≤ KR[x].
Since r is in QT , from Predicate 2, we have KT [x] ≤ k[x]r
and therefore:

KT ≤ kr ≤ KR (4)

which then results in:

KT ≤ KR (5)

Predicate 5 implies that for every multicast group x in the
most up-to-date checkpoint in QR, the acceptors involved
in x have trimmed consensus instances at most equal to
the ones reflected in the checkpoint. Thus, a recovering
replica will be able to retrieve any instances decided after
the checkpoint was taken.



6. SERVICES
We have used two services, a key-value store and a dis-
tributed log, to illustrate the capabilities of Multi-Ring Paxos.
In this section we briefly discuss these services.

6.1 MRP-Store
MRP-Store implements a key-value store service where keys
are strings and values are byte arrays of arbitrary size. The
database is divided into l partitions P0, P1, ..., Pl such that
each partition Pi is responsible for a subset of keys in the
key space. Applications can decide whether the data is hash-
or range-partitioned [37], and clients must know the parti-
tioning scheme. The service is accessed through primitives
to read, update, insert, and delete an entry (see Table 1).
Additionally we provide a range scan command to retrieve
entries whose keys are within a given interval.

Operation Description
read(k) return the value of entry k, if existent
scan(k, k′) return all entries within range k..k′

update(k, v) update entry k with value v, if existent
insert(k, v) insert tuple (k, v) in the database
delete(k) delete entry k from the database

Table 1: MRP-Store operations.

MRP-Store replicates each partition using the state-machine
replication approach [32], implemented with Multi-Ring Paxos.
A request to read, update, insert, or delete entry k is mul-
ticast to the partition where k belongs; a scan request is
multicast to all partitions that may possibly store an entry
within the provided range, if data is range-partitioned, or to
all partitions, if data is hash-partitioned.

MRP-Store ensures sequential consistency [4], that is, there
is a way to serialize client operations in any execution such
that: (1) it respects the semantics of the objects, as deter-
mined in their sequential specifications and (2) it respects
the order of non-overlapping operations submitted by the
same client. Atomic multicast prevents cycles in the exe-
cution of multi-partitions operations, which would result in
non-serializable executions.

6.2 dLog
DLog is a distributed shared log that allows multiple con-
current writers to append data to one or multiple logs atom-
ically (see Table 2). Append and multi-append commands
return the position of the log at which the data was stored.
There are also commands to read from a position in a log and
to trim a log at a certain position. Like MRP-Store, dLog
uses state-machine replication implemented with Multi-Ring
Paxos. Commands to append, read, and trim are multicast
to the log they address and multi-append commands are
multicast to all logs involved. A dLog server holds the most
recent appends in-memory and can be configured to write
data asynchronously or synchronously to disk.

7. IMPLEMENTATION
In this section, we discuss important aspects about the im-
plementations of Multi-Ring Paxos and the services we built
on top of it.

Operation Description
append(l, v) append v to log l, return position p
multi-append(L, v) append value v to logs in L
read(l, p) return value v at position p in log l
trim(l, p) trim log l up to position p

Table 2: dLog operations.

7.1 Multi-Ring Paxos
Multi-Ring Paxos is implemented mostly in Java, with a few
parts in C. All the processes in Multi-Ring Paxos, indepen-
dent of their roles, are multi-threaded. Threads communi-
cate through Java’s standard queues. A learner has dedi-
cated threads per each ring it subscribes to. Another thread
then deterministically merges the queues of these threads.
Acceptors, when using in-memory storage, have access to
pre-allocated buffers with 15000 slots, each slot of size 32
Kbytes. Disk writes are implemented using the Java version
of Berkeley DB. All communication within Multi-Ring Paxos
is based on TCP. Automatic ring management and configu-
ration management is handled by Zookeeper. Applications
can use Multi-Ring Paxos by including it as a library or
by running it standalone. In standalone mode, applications
can communicate using a Thrift API.2 Multi-Ring Paxos is
publicly available for download.3

7.2 MRP-Store
In our prototype, clients connect to proposers through Thrift
and replicas implement the learner interface. The parti-
tioning schema is stored in Zookeeper and accessible to all
processes. Clients determine an entry’s location using the
partitioning information and send the command to a pro-
poser of the corresponding ring. Clients may batch small
commands, grouped by partition, up to 32 Kbytes. Replicas
reply to clients with the response of a command using UDP.
Clients wait for the first response from a replica in single-
partition commands or for at least one response from every
partition in scan operations.

Database entries are stored in an in-memory tree at every
replica. Replicas comply with Multi-Ring Paxos’s recovery
strategy (see Section 5.2) by periodically taking checkpoints
of the in-memory structure and writing them synchronously
to disk. After a majority of replicas have written their state
to stable storage, Paxos acceptors are allowed to trim their
logs. A recovering replica will contact a majority of other
replicas and download the most recent remote checkpoint.

7.3 dLog
Similarly to MRP-Store, dLog clients submit commands to
replicas using Thrift. Multiple commands from one client
can be grouped in batches of up to 32 Kbytes. Replicas im-
plement the learner’s interface to deliver commands. Repli-
cas append the most recent writes to an in-memory cache
of 200 Mbytes and write all data asynchronously to disk.
Results from the execution of commands are sent back to
clients through UDP. A trim command flushes the cache up
to the trim position and creates a new log file on disk.

2http://thrift.apache.org/
3https://github.com/sambenz/URingPaxos



8. PERFORMANCE EVALUATION
In this section, we experimentally assess various aspects of
the performance of our proposed systems:

• We establish a baseline performance for Multi-Ring
Paxos, MRP-Store, and dLog.

• We measure vertical and horizontal scalability of MRP-
Store and dLog in a datacenter and across datacenters.

• We evaluate the impact of recovery on performance.

8.1 Hardware setup
All the “local experiments” (i.e., within a datacenter) were
performed in a cluster of 4 servers equipped with 32-core
2.6 GHz Xeon CPUs and 128 GB of main memory. These
servers were interconnected through a 48 port 10 Gbps switch
with round trip time of 0.1 millisecond. In all the experi-
ments, clients and servers were deployed on separate ma-
chines. For persistency we use solid-state disks (SSDs) with
240 GB and 5 7200-RPM harddisks with 4 TB each. Each
machine was equipped with 2 NICs of 10 Gbps capacity.
The “global experiments” (i.e., across datacenters) were per-
formed on Amazon EC2 with large instances. Each large
instance server was equipped with 7.5 GB of main memory
and a 32 GB local SSD.

8.2 Experimental setup
Within a datacenter, Multi-Ring Paxos was initialized as
follows: M =1, ∆ = 5 millisecond, and λ = 9000. Across
datacenters, the following configuration was used: M =1,
∆ = 20 millisecond, and λ = 2000. We keep machines ap-
proximately synchronized by running the NTP service before
the experiments. We used Berkeley DB version JE 5.0.58
as persistent storage. Unless stated otherwise, acceptors
used asynchronous disk writes. When in synchronous mode,
batching was disabled, that is, instances were written to disk
one by one. Each experiment is performed for a duration of
at least 100 seconds.

8.3 Baseline performance
In this section, we evaluate the performance of a single mul-
ticast group in Multi-Ring Paxos with a “dummy service”
(i.e., commands do not execute any operations) under vary-
ing request sizes and storage modes. We also compare the
performance of MRP-Store and dLog to existing services
with similar functionality.

8.3.1 Multi-Ring Paxos
Setup. In this experiment there is one ring with three pro-
cesses, all of which are proposers, acceptors, and learners,
and one of the acceptors is the coordinator. Proposers have
10 threads, each one submiting requests whose size varies be-
tween 512 bytes and 32 Kbytes. Batching is disabled in the
ring. We consider five different storage modes: in-memory,
synchronous and asynchronous disk writes using solid-state
disks and harddisks.

Results. As seen in the top-left graph of Figure 3, regard-
less the storage mode, throughput increases as the request
size increases. With synchronous disk writes, the through-
put is limited by the disk’s performance. With in-memory
storage mode, the throughput is limited by the coordinator’s

CPU (bottom-left graph). The coordinator’s CPU usage is
the highest in asynchronous mode. This is due to Java’s par-
allel garbage collection. For in-memory storage, we allocate
memory outside of Java’s heap and therefore performance is
not affected by Java’s garbage collection. The bottom-right
graph of Figure 3 shows the CDF of latency for 32 Kbyte
values. In synchronous disk write mode, more than 90% of
requests take less than 10 milliseconds.

8.3.2 MRP-Store
Setup. In this experiment, we use Yahoo! Cloud Serv-
ing Benchmark (YCSB) [17] to compare the performance of
MRP-Store against Apache’s Cassandra and a single MySQL
instance. These systems provide different consistency guar-
antees, and by comparing them we can highlight the perfor-
mance implications of each guarantee. In the experiments
with MRP-Store, we use three partitions, where partici-
pants in a partition subscribe to a ring local to the par-
tition. Each ring is deployed with three acceptors, all of
which write asynchronously to disk. We test configurations
of MRP-Store where replicas in the partitions subscribe to
a common global ring and where there is no global ring co-
ordinating the replicas (in the graph, “independent rings”).
All the rings are co-located on three machines and clients
run on a separate machine. In the experiments with Cas-
sandra, we initiate three partitions with replication factor
three. MySQL is deployed on a single server. In all cases,
the database is initialized with 1 GByte of data.

Results. With the exception of Workload E, composed of
95% of small range scans and 5% of inserts, Cassandra is
consistently more efficient than the other systems since it
does not impose any ordering on requests (see Figure 4).
Ordering requests within partitions only (i.e., independent
rings) is cheeper than ordering requests within and across
the system. This happens because with independent rings,
each ring can proceed at its own pace, regardless the load
in the other rings. To a certain extent, this can be under-
stood as the cost of ensuring stronger levels of consistency.
In our settings, MRP-Store compares similarly to MySQL.
As we show in the following sections, MRP-Store can scale
with additional partitions while keeping the same ordering
guarantees, something that is not possible with MySQL.

8.3.3 dLog
Setup. In this experiment, we compare the performance of
our dLog service to Apache’s Bookkeeper. Both systems im-
plement a distributed log with strong consistency guaranties.
All requests are written to disk synchronously. The dLog
service uses two rings with three acceptors per ring. dLog
learners subscribe to both rings and are co-located with the
acceptors. Bookkeeper uses an ensemble of the same three
nodes. A multithreaded client runs on a different machine
and sends append requests of 1 KBytes.

Results. Figure 5 compares the performance of our dLog
service with Apache Bookkeeper. The dLog service con-
sistently outperforms Bookkeeper, both in terms of higher
throughput and lower latency. With 200 clients, dLog ap-
proaches the limits of the disk to perform writes synchronously.
The large latency in Bookkeeper is explained by its aggres-
sive batching mechanism, which attempts to maximize disk
use by writing in large chunks.
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Figure 3: Multi-Ring Paxos with different storage modes and request sizes. Four metrics are measured:
throughput in mega bits per second (top-left graph), average latency in milliseconds (top-right graph), CPU
utilization at coordinator (bottom-left graph), and CDF for the latency when requests are 32 KBytes (bottom-
right graph). The y-axis for throughput and latency is in log scale.

8.4 Scalability
In this section, we perform a set of experiments to assess
the scalability of our proposed services. We consider ver-
tical scalability with dLog (i.e., variations in performance
when increasing the resources per machine in a static set of
machines) and horizontal scalability with MRP-Store (i.e.,
variations in performance when increasing the number of
machines).

8.4.1 Vertical scalability
Setup. In this experiment, we evaluate vertical scalability
with the dLog service by varying the number of multicast
groups (rings). Each multicast group (ring) is composed
of three processes, one of which assumes the learner’s role
only and the others are both acceptors and proposers. We
perform experiments with up to 5 disks per acceptor, where
each ring is associated with a different disk. Therefore, by
increasing the number of rings, we add additional resources
to the acceptors. In each experiment, learners subscribe
to k rings and to a common ring shared by all learners,
where k varies according to the number of disks used in
the experiment. Processes in the rings are co-located on
three physical machines. Clients are located on a separate
machine and generate 1 KByte requests, which are batched
into 32 KByte packets by a proxy before being submitted
to Multi-Ring Paxos. The workload is composed of append
requests only. Throughput is shown per ring. The reported
latency is the average over all the rings.

Results. Figure 6 shows the throughput and latency of
Multi-Ring Paxos as the number of rings increases. Through-

put improves steadily with the number of rings. The percent
numbers shows the linear scalability relative to the previ-
ous values. The latency CDF corresponds to the reported
throughput for writes to disk 1.

8.4.2 Horizontal scalability
Setup. In this experiment, we evaluate horizontal scala-
bility with the MRP-Store service, globally deployed across
four Amazon EC2 regions (one in eu-west, two in us-west,
and one in us-east). In each region there is one ring com-
posed of a replica with three proposers/acceptors, and one
client running on a separate machine. Replicas from all the
rings are also part of a global ring. Clients send 1 KByte
commands to their local partitions (rings) only. Each client
machine batches the requests into packets of 32 Kbytes be-
fore sending them. The workload is composed of update
requests only. Latency is measured in the us-west-2 region.

Results. Similarly to the dLog service, throughput in-
creases as new partitions are added to the collection (see
Figure 7). As expected, latency is almost constant with the
number of rings. We note that the local throughput of a
region is not influenced by other regions, the reason for the
scalability of the service. The percent numbers shows the
linear scalability relative to the previous values.

8.5 Impact of recovery on performance
In this section, we evaluate the impact of failure recovery on
the system’s performance using the MRP-Store service.
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Figure 4: Performance of Apache’s Cassandra, two
configurations of MRP-Store, and MySQL, under
Yahoo! cloud serving benchmark (YCSB). The
graphs show throughput in operations per second
(top) and average latency in msecs (bottom).

Setup. We deploy one ring with three acceptors, all per-
forming asynchronous disk writes, and three replicas. The
system operates at 75% of its peak load and there is one
client generating requests against the replicas. The repli-
cas periodically checkpoint their in-memory data store syn-
chronously to disk to allow the acceptors to trim their log.
One replica is terminated after 20 seconds and restarts af-
ter 240 seconds, at which point it retrieves the most recent
checkpoint from an operational replica. The instances that
are not included in the checkpoint will be retrieved directly
from the acceptors.

Results. Figure 8 shows the impact of recovery on per-
formance. As seen in the graph, re-starting a terminated
replica causes a short reduction in performance. Writing
checkpoints synchronously to the disk does not disrupt the
service either. We note that checkpoints are not written
to disk at the same time by all the replicas and that the
client waits only for the first response form any replica. Per-
formance is mostly affected by trimming the acceptor logs
and also when the recovering replica retrieves and installs a
checkpoint.

9. RELATED WORK
In this section, we review related work on atomic multicast,
distributed logging, and recovery.

Atomic multicast. The first atomic multicast protocol can
be traced back to [9], where an algorithm was devised for
failure-free scenarios. To decide on the final timestamp of
a message, each process in the set of message addressees
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Figure 5: Performance of dLog and Apache’s Book-
keeper. The workload is composed of 1 Kbyte ap-
pend requests. The graphs show throughput in op-
erations per second (top) and average latency in
msecs (bottom).

locally chooses a timestamp, exchanges its chosen times-
tamps, deterministically agrees on one of them, and delivers
messages according to the message’s final timestamp. As
only the destinations of a message are involved in finalizing
the message’s timestamp, this algorithm is scalable. More-
over, several works have extended this algorithm to tolerate
failures [22, 25, 41, 42], where the main idea is to replace
failure-prone processes by fault-tolerant disjoint groups of
processes, each group implementing the algorithm by means
of state-machine replication. The algorithm in [20] proposes
to daisy-chain the set of destination groups of a message
according to the unique group ids. The first group runs con-
sensus to decide on the delivery of the message and then
hands it over to the next group, and so on. Thus, the la-
tency of a message depends on the number of destination
groups.

While most works on multicast algorithms have a theoreti-
cal focus, Spread [3] implements a highly configurable group
communication system, which supports the abstraction of
process groups. Spread orders messages by the means of
interconnected daemons that handle the communication in
the system. Processes connect to a daemon to multicast
and deliver messages. To the best of our knowledge, Multi-
Ring Paxos is the first high-performance atomic multicast
library available for download. Similarly to Mencius [35],
coordinators in Multi-Ring Paxos account for load imbal-
ances by proposing null values in consensus instances. Dif-
ferently from Mencius, which is an atomic broadcast pro-
tocol, Multi-Ring Paxos implements atomic multicast by
means of the abstraction of groups. Multi-Ring Paxos’s de-
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terministic merge strategy is similar to the work proposed
in [2], which totally orders message streams in a widely dis-
tributed publish-subscribe system.

Distributed logging. Atomic broadcast is not the only so-
lution to totally order requests in a distributed environment.
Distributed logging is an alternative approach, where ap-
pending a log entry corresponds to executing a consensus in-
stance in an atomic broadcast protocol. CORFU [34] imple-
ments a distributed log with a cluster of network-connected
flash devices, where the log entries are partitioned among
the flash units. Each log entry is then made fault-tolerant
using chain replication and a set of flash devices. New data
is always appended to the end of the distributed log. To
append a message, a client of CORFU (e.g., application
server) retrieves and reserves the current tail of the dis-
tributed log through a sequencer node. Although appends
are directly applied to the flash devices, the scalability of re-
trieving the log’s next available offset is determined by the
centralized sequencer’s capacity. In our dLog service, the
increasing append load is smoothly absorbed by adding new
rings to the ensemble, and is not subject to central com-
ponents. Disk Paxos [23] is another implementation of a
distributed log that does not rely on a sequencer. However,
Disk Paxos is not network efficient since for appending new
data clients always contend over the log entries. An advan-
tage with CORFU and similar systems [27] is that the distri-
bution of appends among the storage units can be balanced.
Tango [5], builds on CORFU to implement partitioned ser-
vices, where a collection of log entries is allocated to each
partition. The replicas at each partition only execute the
subset of the log entries corresponding to their partitions,
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Figure 7: Horizontal scalability of MRP-Store in
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and skip the rest. Globally ordering the entire set of log
entries simplifies ensuring consistency with cross partition
queries. However, the number of partitions a service can be
divided into is limited by the log’s capacity at handling the
appends. In our dLog service, an unbounded number of par-
titions can be created by adding new rings; moreover, queries
concerning disjoint partitions are not globally ordered.

Recovery. Recovery protocols often negatively affect a sys-
tem’s performance. Several optimizations can be applied to
the logging, checkpointing, and state transfer to minimize
the overhead of recovery as we discuss next.

Optimized logging. A common approach to efficient logging
is to log requests in batches [7, 16, 12, 45, 30]. Since stable
storage devices are often block-based it is more efficient to
write a batch of requests into one block rather than to write
multiple requests on many different blocks. Another opti-
mization is to parallelize the logging of batches [7]. Parallel
logging benefits most the applications in which the time for
processing a batch of requests is higher than the time re-
quired for logging a batch. The overhead of logging can
be further reduced by using solid-state disks (SSD) or raw
flash devices instead of magnetic disks [40]. Similarly, in our
dLog service we support both harddisks and SSDs, and syn-
chronous and asynchronous disk writes to enable batched
flushes to the disk.

Optimized checkpointing. Checkpoints are often produced
during the normal operation of a system, while processing
of the requests is halted [12, 33, 45, 30, 40]. Not handling
requests during these periods makes the system unavailable
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to clients and reduces performance. If instead processes
take checkpoints at non-overlapping intervals, there will al-
ways be operational processes that can continually serve the
clients. Building on this idea, in [7] processes schedule their
checkpoints for different intervals. As the operation of a
quorum of processes is sufficient for their system to make
progress, a minority of processes can perform checkpointing
while the others continue to operate. Another optimiza-
tion is to use a helper process to take checkpoints asyn-
chronously [15]. In this scheme, two threads, primary and
the helper, execute concurrently. While the primary pro-
cesses requests, the helper takes checkpoints periodically.
Similarly, in our dLog service replicas can take snapshots at
different non-overlapping intervals.

Optimized state transfer. State transfer has its own impli-
cations on performance. During state transfer, a fraction
of the source processes’s resources (e.g., CPU, network) are
devoted to the transmission of the state, which is not to the
advantage of performance. To protect performance, state
transfer can be delayed to a moment in which the demand
on the system is low enough that both the execution of new
requests and the transfer of the state can be handled [28].
Another optimization is to reduce the amount of transferred
information. Representing the state through efficient data
structures [12], using incremental checkpoints [15, 13], or
compressing the state are among these techniques. In [7],
authors propose a collaborative state transfer protocol to
evenly distribute the transfer load across replicas.

10. CONCLUSIONS
When replicating services in large-scale settings, one com-
mon approach to scale performance and reduce latency is
to weaken consistency. Weak consistency, however, places
the burden on the service users, who must cope with non-
intuitive service behavior. Providing strong consistency in
globally distributed settings requires ordering requests across
multiple datacenters. While some proposals impose a to-
tal order on requests, some other systems partially order
requests across datacenters by means of ad hoc protocols
(e.g., two-phase commit). In this paper, we argued that
atomic multicast is the proper abstraction to implement
highly available and scalable systems without sacrificing con-
sistency. We showed the practicality of our argument by
implementing a high-performance atomic multicast library
equipped with efficient recovery to build globally distributed,
consistent, and durable key-value store and logging services.
Moreover, the results of our experiments demonstrate both
horizontal and vertical scalability of our proposed techniques.
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