Mutable Checkpoint-Restart: Automating Live Update
for Generic Server Programs

Cristiano Giuffrida

giuffrida@cs.vu.nl

ABSTRACT

The pressing demand to deploy software updates without
stopping running programs has fostered much research on
live update systems in the past decades. Prior solutions,
however, either make strong assumptions on the nature of
the update or require extensive and error-prone manual ef-
fort, factors which discourage live update adoption.

This paper presents Mutable Checkpoint-Restart (MCR),
a new live update solution for generic (multiprocess and mul-
tithreaded) server programs written in C. Compared to prior
solutions, MCR can support arbitrary software updates and
automate most of the common live update operations. The
key idea is to allow the new version to restart as similarly to
a fresh program initialization as possible, relying on existing
code paths to automatically restore the old program threads
and reinitialize a relevant portion of the program data struc-
tures. To transfer the remaining data structures, MCR relies
on a combination of precise and conservative garbage collec-
tion techniques to trace all the global pointers and apply
the required state transformations on the fly. Experimen-
tal results on popular server programs (Apache hitpd, nginz,
OpenSSH and vsftpd) confirm that our techniques can effec-
tively automate problems previously deemed difficult at the
cost of negligible run-time performance overhead (2% on av-
erage) and moderate memory overhead (3.9x on average).

Categories and Subject Descriptors

D.2.9 [Software Engineering]: Management

General Terms

Management

Keywords
Live update, DSU, Record-Replay, Garbage collection

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.

Middleware ’ 14, December 08 - 12 2014, Bordeaux, France
Copyright 2014 ACM 978-1-4503-2785-5/14/12 ...$15.00
http://dx.doi.org/10.1145/2663165.2663328.

Calin lorgulescu
VU University Amsterdam o EPFL
calin.iorgulescu@epfl.ch

Andrew S. Tanenbaum
VU University Amsterdam

ast@cs.vu.nl

1. INTRODUCTION

Live update, also known as dynamic software updating |42,
has growingly gained momentum as a solution to the update-
without-downtime problem, i.e., deploying software updates
without stopping running programs or disrupt their state.
Compared to the most common alternative—i.e., rolling up-
grades |20]—live update systems require no redundant hard-
ware and can automatically preserve program state across
versions. Ksplice [10] is perhaps the best known live update
success story. According to its website, Ksplice has already
been used to deploy more than 2 million live updates on over
100,000 productions systems at more than 700 companies.

Despite decades of research in the area—with the first pa-
per on the subject dating back to 1976 [21]—existing live
update systems still have important limitations. In-place
live update solutions |7}/10L/19}/41}/42| can transparently re-
place individual functions in a running program, but are
inherently limited in the types of updates they can support
without significant manual effort. Ksplice, for instance, is
explicitly tailored to small security patches |4]. Prior whole-
program live update solutions [23}/30], in turn, can efficiently
support several classes of updates, but require a nontrivial
annotation effort which increases the maintenance burden
and ultimately discourages adoption of live update.

This paper presents Mutable Checkpoint-Restart (MCR),
a new live update solution for generic server programs writ-
ten in C. Building on kernel support for emerging user-
space checkpoint-restart techniques |2], MCR (i) checkpoints
the running version—freezing its execution in a quiescent
state [28]—(ii) restarts the new version—reinitializing it from
scratch in a controlled way—(iii) restores the checkpointed
state in the new version—transferring the necessary state
(e.g., open connections) from the old version. This is simi-
lar, in spirit, to classic checkpoint-restart [2}3,/5,9L27], but
the mutability between versions yields a whole-program live
update strategy with support for arbitrary software updates.

To minimize the annotation effort involved, MCR relies
on two key observations. First, while transferring the entire
execution state between different program versions is a noto-
riously hard problem [26] and generally requires significant
manual effort [23,/30], this is not necessary for real-world
server programs which typically initialize most of their state
at startup and introduce only relatively small changes dur-
ing their regular execution. Building on this observation,
MCR relies on mutable replay techniques [48| to allow the
new version to start up as similarly to a fresh program ini-
tialization as possible, while piggybacking on existing code
paths to seamlessly reinitialize a relevant portion of the up-

dated state. This mutable reinitialization strategy allows
code in the new version to automatically restore updated
program threads and many data structures—possibly sub-
ject to very complex changes between versions—with little
annotation effort. Second, when transferring the data struc-
tures that are found to have been modified after the old ver-
sion has completed startup operations—and thus cannot be
automatically restored by mutable reinitialization—precise
knowledge on data types in memory—which generally im-
poses a nontrivial annotation effort at full coverage [23|30]—
is only necessary for updated data structures that need to be
type-transformed between versions. Building on this obser-
vation, MCR relies on a combination of precise [44] and con-
servative [16l17] garbage collection (GC) techniques to trace
data structures and transfer them between versions even
with partial type information. This mutable tracing strategy
can drastically reduce the number of user-maintained anno-
tations, only required when data structures with ambigu-
ous type information—and thus normally traced conserva-
tively—are changed by the update—and thus require precise
tracing to unambiguously apply type transformations.

To summarize, our contribution is threefold. First, we in-
troduce mutable reinitialization, a technique which record-
replays startup operations between different program ver-
sions and exploits existing code paths to automatically reini-
tialize the new version, its threads, and a relevant portion of
its data structures. Second, we introduce mutable tracing,
a technique which transfers the remaining data structures
between versions using precise (when possible) and conser-
vative (otherwise) GC-style tracing strategies. Third, we
demonstrate the effectiveness of our techniques in MCR, a
new live update solution for generic server programs written
in C. We present its implementation on Linux and evaluate
it on 4 popular server programs, showing that MCR yields:
(i) low engineering effort to support even complex updates
(334 annotation LOC in total to prepare our programs for
MCR), (ii) realistic update times (< 1 s); (iii) negligible per-
formance overhead in the default configuration (2% on av-
erage); (iv) moderate memory overhead (3.9x on average).

2. BACKGROUND

In the following, we focus on local live update solutions
for operating systems and long-running C programs.

Quiescence detection. Similar to prior work in the area,
MCR relies on quiescence [28| as a way to restrict the num-
ber of possible program states at checkpointing time and
ensure that live updates are only deployed in safe updates
states—e.g., all the program threads blocked waiting for
socket events. Some approaches [38| relax this constraint,
but then automatically remapping all the possible program
states between versions or simply allowing mixed-version ex-
ecution [18}19}/39] becomes quickly intractable without ex-
tensive user annotations. Quiescence detection algorithms
proposed in prior work operate at the level of individual
functions [7}[10,/22]|25] or generic events [12}]13}|23} |41} |42,
45]. The former approach is known for its weak consis-
tency guarantees [23}[29] and typically relies on passive stack
inspection [7,10L/22,/25] that cannot guarantee convergence
in bounded time [38,[39]. The latter approach relies on ei-
ther update-friendly system design [12}/23||45]—rarely an op-
tion for existing C programs—or explicit per-thread update
points |301/381|41}42] —typically annotated at the top of long-
running loops. MCR opts for the latter option—using sim-

ple barrier synchronization similar to [30]—but, in contrast
to prior solutions, relies on a generic quiescence profiler to
run the target program using a test workload and suggest
per-thread (and per-loop) quiescent points to the user.
Control migration. Similar to prior work in the area,
MCR relies on control migration [30] as a way to restore
all the updated program threads after restart. Prior in-
place live update models |7}/10l/12}/18/191/39}/41}/42], however,
provide no support for control migration, implicitly forbid-
ding particular types of updates. Prior whole-program live
update models, in turn, implement control migration using
system design [23[45], stack reconstruction [38], or annota-
tions [30]. The first option is overly restrictive for many
C programs. The second option exposes the user to the
heroic effort of remapping all the possible thread call stacks
across versions. The last option, finally, reduces the effort
by encouraging existing code path reuse, but still delegates
control migration completely to the user. MCR, in contrast,
relies on mutable reinitialization to automatically reuse ex-
isting startup code paths in the new version and restore the
program threads in the quiescent state equivalent to the one
in the old version. Since server programs tend to naturally
quiesce at startup, this strategy can drastically reduce the
annotation effort required to complete control migration.
State transfer. Similar to prior work in the area, MCR
relies on state transfer [25| as a way to remap the pro-
gram state between versions (and applying the necessary
data structure transformations) after restart. Prior in-place
live update solutions, however, either delegate state trans-
fer entirely to the user |7}[10,/12,/18L|19}39] or provide simple
type transformers with no support for pointer transforma-
tions [41,/42]. Such restrictions are inherent to the in-place
live update model, which advocates “patching” the exist-
ing program state in place to adapt it to the new version.
Prior whole-program solutions, in turn, either delegate state
mapping functions to the user [38l|45] or attempt to recon-
struct the state in the new version using precise GC-style
tracing [23,[30]. The latter, however, requires a nontrivial
annotation effort to identify all the global program point-
ers correctly. MCR, in contrast, relies on mutable reinitial-
ization to allow existing startup code paths to seamlessly
reinitialize a relevant portion of the program state, and on
mutable tracing to automatically transfer the remaining por-
tions between versions using hybrid GC techniques. The lat-
ter encourages annotationless semantics by tolerating partial
pointer information and gracefully handling uninstrumented
shared libraries and custom memory allocation schemes.

3. OVERVIEW

Figure [I] illustrates the typical MCR workflow. To pro-
duce an MCR-enabled version of a server program, users first
annotate the program (if necessary, as explained later) and
allow our quiescence profiler to run the server under a given
test workload. This preliminary step helps the user identify
the quiescent points in the program, later used by our instru-
mentation. This is a relatively infrequent operation which
should only be repeated when the quiescent behavior of
the program changes—we envision programmers simply in-
tegrating quiescence profiling as part of their regression test
suite. Building the MCR-enabled version of the program, in
turn, requires specifying compiler flags which instruct the
GNU gold linker (1d.gold) to link the code against our
static library (libmcr.a) and enable our LLVM link-time

o ! N N
prog-vl.c mcr.llvm : prog-vl : prog-v2
1 1
ANNOTATE 1 1
) 1
$: CHECKPOINT : RESTART
. 1 \l 1
Qwesc.ence 1d.gold ' |libmecr.sof ! libmer. so
Profiler : :
1 UPDATE 1
Quiescent® libmer.a 1 mcr-ctl 1
Points : :
1 1
1
Build time 1 Run time (v1) : Run time (v2)

Figure 1: MCR overview.

pass [37] (mcr.1lvm). The latter instruments both the pro-
filed quiescent points for the benefit of our quiescence detec-
tion strategy and the program state for the benefit of muta-
ble tracing. Running the MCR-~enabled version of the pro-
gram, finally, requires preloading our dynamic instrumen-
tation library (libmer.so), which complements our static
LLVM instrumentation with information available only at
runtime (i.e., shared libraries) and enables MCR.

During program startup, MCR records all the operations
(i-e., system calls) performed by the program in a startup log.
The latter is later used by mutable reinitialization in the new
version. After startup, MCR efficiently monitors changes to
existing data structures and marks those modified/created
after startup as dirty in its internal metadata. The latter is
later used by mutable tracing in the new version.

When an update is available, the user can signal the run-
ning version—using our mcr-ctl tool—to request a live up-
date. In response, MCR first relies on our quiescence de-
tection strategy to allow all the program threads to reach a
checkpoint in a quiescent state. Next, it allows our muta-
ble reinitialization strategy to start up the new version from
scratch, replay the necessary operations from the old startup
log to prevent reexecution errors (e.g., attempt to rebind to
port 80), restore the program threads, reinitialize all the
startup-time data structures and in-kernel state (e.g., file
descriptors). When startup in the new version completes,
MCR allows our mutable tracing strategy to transfer the re-
maining (dirty) data structures from the old version to the
new version. At the end of the process, MCR allows the
new version to restart execution and terminates the old ver-
sion. Failure to complete the restart phase due to arbitrary
run-time errors simply causes the new version to terminate
and the old version to resume execution from the checkpoint,
yielding an atomic and reversible update strategy that hides
any live update and rollback event to the clients.

Server example. Listing [I] exemplifies a MCR-enabled
server program with a simple but typical (event-driven) server
structure. The program begins executing on 1ine with the
entire startup code enclosed in the server_init function.
The latter performs the necessary startup operations (e.g.,
socket creation) and also initializes the conf data structure
containing the startup configuration (line @ from persis-
tent storage. After startup, the execution is confined in the
long-running main loop on line[T4] which, in each iteration,
simply waits for a new event (e.g. a new connection) from
the client and handles the event accordingly (e.g., sending
back a welcome message). The function server_get_event

1 /+ Awziliary data structures. x/
2 char b[8];

3 typedef struct list_s {
4 int value;

struct list_s *next;

}olot; 1ot list;

/+* Startup configuration. x/
9 struct conf_s xconf;

11 /% Server implementation. x/
12 int main() {

13 server_init(&conf); // startup

14 while (1) { // main loop

15 void *xe = server_get_event ();

16 server_handle_event (e, conf, b, &list);
17 }

18 return O0;

19}

21 /%« MCR annotations. */
22 MCR.ADD_OBJHANDLER(b, user_b_handler);
23 MCR_ADD_REINIT HANDLER(user_reinit_handler);

Listing 1: A sample M CR-enabled server program.

(invoked on line contains a natural quiescent point for
the server program, given that execution may block wait-
ing for events for an extended period of time with minimal
in-flight state [30]. The function server_handle_event (in-
voked on line , in turn, handles each event in a timely
fashion, possibly reading from the conf data structure and
manipulating the other auziliary data structures (line .

During startup, MCR records all the operations performed
by server_init in the startup log, until the program en-
ters the main loop and reaches its first quiescent state in
server_get_event. After startup, MCR detects changes
to the auxiliary data structures and marks them as dirty.
When live update is requested, MCR induces the main (and
only) program thread to quiesce in server_get_event and
allows the new program version to independently start up.
During startup in the new version, mutable reinitialization
replays all the necessary operations in server_init from the
old startup log, inducing code in the new version to naturally
reach its first quiescent state in server_get_event. With
both versions now in an equivalent quiescent state, mutable
tracing transfers all the dirty auziliary data structures from
the old to the new version, omitting the (nondirty) conf data
structure automatically reinitialized by the startup code.

While MCR can, in principle, handle this simple scenario
in a fully automated way, annotations (line can be spec-
ified by the user to handle more complex server structures
and updates. For example, the MCR_ADD_0BJ_HANDLER state
annotation at the bottom can help MCR identify “hidden”
data structures and pointers stored in the b buffer (see ex-
ample in Figure . Mutable tracing can normally handle
these cases automatically, but cannot alone apply changes
to such data structures when required by the update. Fur-
ther, similar to prior solutions, state annotations are neces-
sary to handle complex updates operating semantic changes
to data structures or to persistent state (e.g., on external
storage) [24,/30]. The MCR_ADD_REINIT_HANDLER annotation,
finally, can help mutable reinitialization replay startup op-
erations when their semantics changes between versions or
restore a quiescent state in the old version not automatically
recreated at startup by the new version—for example, with
more complex servers that dynamically spawn threads/pro-
cesses with long-lived quiescent points after startup.

4. QUIESCENCE DETECTION

To automatically quiesce a program in a stable and re-
producible configuration, MCR, requires instrumenting per-
thread quiescent points that specify safe locations to block
long-lived threads—avoiding synchronization and update-
safety issues [29]—and yield short call stacks with minimal
stack-resident state—avoiding pervasive stack instrumenta-
tion to trace stack-allocated data structures, a nontrivial
source of overhead in prior solutions [38]. To fulfill both re-
quirements, MCR selects blocking calls (e.g., accept) found
at the top of long-running thread loops as ideal quiescent
point candidates, similar to analogous update point-based
strategies adopted in prior work in the area [30,41L/42].

In contrast to prior work, however, MCR can automati-
cally instrument the target program, profile it using stan-
dard profiling techniques, and suggest per-thread quiescent
points and the corresponding long-lived loops to the user.
To achieve the necessary profiling coverage, our quiescence
profiler requires a test workload able to drive the program
into all the potential ezecution-stalling states (e.g., a thread
blocked on an idle connection) that must accepted as legal
quiescent states at live update time. In our experience, this
workload is typically domain-specific—can be reused across
several programs of the same class—and often simple to ex-
trapolate from existing regression test suites.

To detect per-thread quiescent points, our profiler relies on
statistical profiling of library calls. Intuitively, a quiescent
point is simply identified by the blocking call where a given
thread spends most of its time during the execution-stalling
test workload. To detect per-thread long-lived loops, our
profiler relies on standard loop profiling. Intuitively, a long-
lived loop is simply identified by the thread’s deepest loop
that never terminates during the test workload. At the end
of the profiling run, our quiescence profiler produces a report
with all the (short-lived and long-lived) classes of threads
identified, their long-lived loops, and their quiescent points.

MCR’s static instrumentation pass relies on all the quies-
cent points determined to wrap every corresponding block-
ing library call site in a way that it allows what we refer
to as unblockification. Unblockification exposes the original
library call semantics to the program, but guarantees that
every wrapped blocking call never truly blocks user-space
execution for an extended period of time while periodically
calling a predetermined quiescence hook. Our wrappers in-
ternally implement this strategy using either asynchronous
(e.g., aio_read) or timeout-based (e.g., semtimedop) ver-
sions of standard blocking library calls. When quiescence is
requested, MCR’s current quiescence hook implementation
enforces a barrier synchronization protocol to immediately
block all the running program threads, a simple strategy
that prior studies on server programs have shown effective
in the practical cases of interest |2§].

S. MUTABLE REINITIALIZATION

Mutable reinitialization seeks to restore all the updated
program threads (and processes) in the new version in the
quiescent state equivalent to the one obtained in the old ver-
sion at update time. This is to complete control migration
in the new version and also automatically reinitialize the
largest possible portion of the global data structures. To
minimize the number of annotations, mutable reinitializa-
tion relies on the key observation that running a server pro-

gram’s startup code tends to naturally initialize long-lived
server threads (and processes) and converge to a quiescent
state that closely matches the one in the old version. When
the server model yields stable quiescent states (e.g., in event-
driven servers), in particular, this strategy fully automates
the entire process with no additional annotations required.

Piggybacking on existing startup-time code paths, how-
ever, raises two challenges: (i) how to prevent the startup
code from accepting new server requests, which would vio-
late MCR’s atomic live update semantics and hamper the
ability to rollback failed update attempts; (ii) how to allow
the startup code to complete correctly without clashing or
disrupting the old version, which is blocked but still active
in the background. Mutable reinitialization addresses the
first challenge by allowing a controller thread to reinitiate
the quiescence detection protocol before allowing the startup
code to run. This forces all the long-lived threads to safely
block at their quiescent points without being exposed to new
external events. To address the second challenge, Mutable
reinitialization carefully controls the startup process in the
new version by replaying the necessary startup-time oper-
ations (i.e., system calls) from the log recorded in the old
version, providing the code in the new version with the illu-
sion that the program is starting up from a fresh state.

Unlike traditional record-replay [8||3643,|46], however,
mutable reinitialization does not attempt to deterministi-
cally replay execution, a strategy which would otherwise
forbid any startup-time changes. The idea is to replay only
the operations that refer to immutable state objects (e.g.,
file descriptors), that is objects which MCR sets out to in-
herit from the old version at startup and cannot be mutated
between versions to guarantee correctness and reversibility
(i.e., rollback) of the live update process (see below). The
rest of the startup code—potentially very different between
versions—in turn, is executed live. Since the replayed op-
erations all refer to state already inherited in the new ver-
sion by construction, execution can seamlessly transition be-
tween live and replay mode without the specialized kernel
support required in traditional mutable replay [35,48]. Our
record-replay implementation, in contrast, is simply based
on library-level interception of all the startup-time syscalls.

Matching operations. Mutable reinitialization opts for a
conservative matching and conflict resolution strategy when
replaying the operations from the startup log recorded in the
old version. Syscalls are only automatically replayed when
a perfect match is found with the log. For instance, if the
startup code in the new version is updated to omit a previ-
ously recorded syscall, mutable reinitialization immediately
flags a conflict—which results in a rollback if not explic-
itly resolved by the user. While more sophisticated record-
replay strategies based on best-fit conflict resolution are pos-
sible [48], our conservative strategy guarantees correctness
of control migration while detecting complex changes that
inevitably require user annotations. Further, since the re-
play surface is small, we expect unnecessary conflicts caused
by startup-time changes to be minimal in practice.

To enforce a conservative matching strategy in presence
of reordering of operations due to nondeterminism or ar-
bitrary version changes, mutable reinitialization relies on
call stack IDs associated to every operation considered. A
call stack ID expresses the context of every recorded (or
replayed) system call in a version-agnostic way and is com-
puted by simply hashing all the active function names on

the call stack of the thread issuing the system call. Call
stack IDs are used to match every system call observed at
replay time with the corresponding system call recorded in
the old startup log. When a mismatch is found, mutable
reinitialization suspends replay operations and immediately
flags a conflict. Despite its conservativeness—function re-
naming between versions may produce different call stack
IDs for equivalent operations and thereby introduce unnec-
essary conflicts—we found this matching strategy to be gen-
erally more robust to addition/deletion/reordering of system
calls and changes to their arguments than alternative strate-
gies based on global or partial orderings of operations [48].
Finally, mutable reinitialization conservatively flags a con-
flict when matching system calls are issued with nonmatch-
ing arguments between versions. To tolerate benign changes
to syscall invocations, however, MCR follows pointers and
performs a deep comparison of the arguments similar to [48].
Immutable state objects. In the new version, Mutable
reinitialization replays only the startup-time syscalls operat-
ing on immutable state objects. Immutable state objects are
all the objects that refer to external (e.g., in-kernel) state,
which MCR must conservatively inherit and preserve in the
new version. In other words, these are the only objects al-
lowed to violate the mutable MCR semantics. For exam-
ple, the file descriptor associated to the server’s main listen-
ing socket—automatically inherited by MCR at startup—
cannot be altered (or recreated) by the startup code or the
associated in-kernel state will be lost. Nevertheless, the
startup code in the new version may expect such file de-
scriptor to be created and stored in global data structures.
Thus, replaying all the operations associated to such file de-
scriptor (e.g., socket()) is crucial to allow the new startup
code to complete correctly and without disrupting the file
descriptor inherited but still “shared” with the old version.
MCR currently supports three main classes of immutable
objects based on our experience with real-world server pro-
grams: (i) file descriptor numbers inherited from the old
version—immutable due to the associated in-kernel state;
(ii) immutable memory object addresses identified by muta-
ble tracing (see below)—immutable due to partial knowledge
on global pointers; (iii) process/thread IDs—immutable since
they carry process-specific state potentially stored in global
data structures that must be transferred to the new version.
Unfortunately, mapping and preserving immutable ob-
jects inherited from the old version at replay time is chal-
lenging in a multiprocess context (e.g., a server with one
master and one worker process). The problem is exacer-
bated by the need to avoid unnecessary—and potentially
expensive—immutable object tracking during normal exe-
cution. Consider the naive solution for file descriptors—but
similar considerations apply to other immutable objects as
well—which would allow every newly created process (e.g.,
the new worker process) in the new version to simply inherit
all the file descriptors from its old counterpart (i.e., the old
worker process). There are two major problems with this ap-
proach. First, the multiprocess nature of the startup process
may result in an old file descriptor number clashing with an-
other one already inherited from the parent process at fork
time. Second, file descriptor numbers may be reused during
or after startup, which implies that mutable reinitialization
can no longer unambiguously determine whether a file de-
scriptor number inherited from the old version matches the
one associated to a particular operation in the old startup

log. This hampers the ability to establish whether a given
operation should be replayed or not in the new version.
Mutable reinitialization addresses both challenges by en-
forcing two key principles: global inheritance and global sep-
arability. Global inheritance allows the first process in the
new version to inherit all the immutable objects from all
the processes in the old version before allowing the startup
code to run. The idea is to preallocate all the necessary im-
mutable objects to avoid object clashing and progressively
propagate all the objects down the process hierarchy in the
new version for replay purposes. For example, this trans-
lates to a master process inheriting all the old file descrip-
tors at startup and every newly created worker process au-
tomatically inheriting all of them as dictated by the fork se-
mantics. All the immutable objects that do not participate
in replay operations in a given process are simply garbage
collected when control migration completes. Global separa-
bility, in turn, allows all the immutable objects created at
startup to acquire globally unique identifiers, preventing the
ambiguity introduced by reuse. For example, this translates
to the file descriptor number 10 allocated at startup never
allowed to be reallocated after control migration completes.
MCR enforces these properties in different ways for differ-
ent classes of immutable objects. Immutable static memory
objects (e.g., global variables) are inherited using a linker
script and naturally guarantee global inheritance and sep-
arability by design (no identifier ambiguity possible). Im-
mutable dynamic memory objects (e.g., heap objects) are
inherited using global reallocation (see below). Separability
is enforced by deferring all the free operations at the end of
startup (no startup-time address reuse) and explicitly flag-
ging startup-time heap objects in allocator metadata (no
ambiguity from memory reuse after startup). Immutable
file descriptors are inherited using UNIX domain sockets.
Separability is enforced by intercepting startup-time file de-
scriptor creation operations (e.g., open) to (i) allocate new
file descriptor numbers in a reserved (nonreusable) range at
the end of the file descriptor space and (ii) structurally pre-
vent startup-time reuse. Immutable process and thread IDs
are handled similarly to file descriptor numbers, except they
cannot be simply inherited from the old version. To enforce
global inheritance, MCR intercepts startup-time thread and
process creation operations (e.g., fork) and relies on Linux
namespaces [15] to force the kernel to assign a specific ID.
This strategy follows the same approach adopted by emerg-
ing user-space checkpoint-restart techniques for Linux [2].
Global reallocation. A key challenge is how to imple-
ment global reallocation of immutable dynamic memory ob-
jects, ensuring that each object is reallocated in the new
version with the same virtual address as in the old version.
MCR addresses this challenge using different strategies, coa-
lescing overlapping memory objects from different processes
in the old version into “superobjects” reallocated in the new
version at startup (and deallocated later when no longer
in use). In particular, shared libraries are copied and pre-
linked [34] in a separate directory before startup. MCR
instructs the dynamic linker to use our copies, allowing the
libraries to be remapped at the same virtual address as in
the old version. This also allows MCR to reallocate all the
dynamically loaded libraries correctly using dlopen. Mem-
ory mapped objects, in turn, are remapped at the same ad-
dress using standard interfaces (i.e., MAP_FIXED). To provide
strong safety guarantees in case of rollback, we also envision

memory shared with the old version to be “shadowed” during
startup and remapped as expected only at the end, a strat-
egy that our current prototype does not yet fully support.
Heap objects, finally, require dedicated allocator support to
enforce a given memory layout in a fresh heap state. MCR
implements this strategy for ptmalloc (glibc allocator).

6. MUTABLE TRACING

Mutable tracing seeks to traverse all the dirty global data
structures (i.e., state objects) in the old version and remap
them to the new version, possibly reallocating and type-
transforming updated state objects on the fly. This is to
complete state transfer in the new version for all the objects
not automatically restored by mutable reinitialization. This
strategy raises two challenges: (i) how to identify the dirty
state objects modified after startup in the old version; (ii)
how to remap and transfer those objects with minimal man-
ual effort, even with partial knowledge on global pointers.

To address the first challenge, mutable tracing relies on
soft-dirty bits tracking, a lightweight user-level dirty mem-
ory page tracking mechanism available in recent Linux re-
leases and already adopted by emerging user-space check-
point-restart techniques for incremental checkpointing pur-
poses [2]. The idea is to first clear all the kernel-maintained
soft-dirty bits (associated to each memory page in each pro-
cess) when program startup completes. This causes the ker-
nel to mark all the memory pages as soft-clean and write-
protect them to detect write accesses. As a result, the first
memory write issued by the program into a given page after
startup causes the kernel to regain control, mark the page
as soft-dirty, and unprotect the page again—with no further
tracking overhead for subsequent accesses. Finally, at live
update time, right after our update-time quiescence detec-
tion protocol completes, all the soft-dirty bits are retrieved
from the kernel and used to determine all the dirty memory
pages (and the objects contained) on a per-process basis.

To address the second challenge, mutable tracing relies on
three key observations. First, annotations in prior whole-
program state transfer strategies [23\{30] were only necessary
to compensate for C’s lack of rigorous type semantics. This
information is needed to unambiguously identify types in the
program state and to implement full-coverage GC-style heap
traversal, given a set of root pointers. Not surprisingly, prior
work has already demonstrated that annotationless whole-
program state transfer is possible for managed languages
like Java [47]. Second, similar problems are well-understood
in the garbage collection literature [11}|31,/44]. In particu-
lar, the problem of remapping the program state in face of
cross-version type and memory layout changes faces the very
same challenges of a precise and moving tracing garbage
collector for C [|44]. By precise, we refer to the ability to
accurately identify object types, necessary to apply on-the-
fly type transformations. By moving, we refer to the abil-
ity to relocate objects, necessary to support arbitrary state
changes in the new version—induced by type transforma-
tions, compiler optimizations, or ASLR. Prior work identi-
fied many real-world scenarios in which annotations are nec-
essary in this context, such as: explicit or implicit unions,
custom allocation schemes, uninstrumented libraries, point-
ers as integers [24l/44]. Third, conservative garbage collec-
tors are well-known solutions to these problems [16,|17], in
that they do not require explicit type information at the
cost, however, of being unable to support moving behavior—

A e — | A
R 3
|0x9da§3e3| 5 | 0x000000 L |0x9f19330| 5 | 0x000000 | 0

{value} A{_n_?xt:) \

[oxsaas1o0 TN HEE R W

{value} A{ﬂl.axt) \Z{new)2

M
PN i

char b[8] [char x4] [chaf/xA]

A 0N
(FDEEGELN 0x806a038 | 0x9da6104

char b[8] [char x4] [chaf/xd]

—

| 0x806a02c | -1 | 0x9da68e8 | | 0x804a044 | -1 | 0x9£19830 | 0

1 t list {value} {next} 1_t list {value} {next} Z{new)2

Run time (v1) . Run time (v2)
Figure 2: State mapping using mutable tracing.

and thus limiting state transformations in our case.

Building on these observations, mutable tracing relies on
a hybrid GC-style heap traversal strategy, which starts from
a set of root pointers and precisely traces types and point-
ers in face of complete and unambiguous type information,
but resorts to a conservative (but less update-friendly) trac-
ing strategy otherwise. For example, when visiting a linked
list node allocated by an uninstrumented library, mutable
tracing recognizes that no type information is available and
conservatively tries to locate and traverse all the possible
pointers therein with no assumption on the actual object lay-
out. To implement this strategy for state transfer purposes,
MCR gracefully relaxes the original full-coverage data struc-
ture transformation requirement, marking static/dynamic
memory objects that are conservatively traversed (and thus
cannot be safely relocated after restart) as immutable state
objects and raising a conflict when such objects with in-
complete or ambiguous type information (e.g., the linked
list node in our example) are found changed by the update.
This strategy allows the user to tradeoff the initial annota-
tion effort against the number of update-induced state trans-
formations that can be automatically remapped by mutable
tracing without additional annotations. We envision users
deploying an annotationless version of MCR at first, and
then incrementally add annotations only on the data struc-
tures that change more often if their experience with the
system generates an undesirable number of conflicts. Even
when a fully annotated state is desirable from the user per-
spective, our conservative strategy can help the user identify
missing annotations or other problematic cases.

Our mutable tracing strategy is exemplified in Figure [2}
with immutable state objects grayed out and wavy lines
highlighting type transformations automatically operated in
the new version. In the example, two global objects from
Listing [T} i.e., the linked list head 1ist and the array b, are
traversed following all the possible pointers to reconstruct
the reachable (heap-allocated) data structures. In the case
of list, mutable tracing relies on the accurate type informa-
tion available to precisely locate and follow the next pointer
into the heap-allocated list node in the old version (on the
top left). Given the complete knowledge on pointers and
types, all the list nodes are marked as mutable and automat-
ically relocated and type-transformed (i.e., with the newly
added field new) in the new version. The array b, in turn,
is treated as a generic buffer with unknown type and thus
conservatively scanned for possible pointers. In the example,
legal pointer values are found to point into a heap-allocated
array and b itself. Since both values are inherently ambigu-
ous and thus prone to false positives, all the pointed objects
in the old version are marked as immutable and forcefully
remapped at the same address in the new version.

Precise tracing. There are two common strategies to
implement the precise tracing strategy required by muta-
ble tracing: (i) type-aware traversal functions generated by
the frontend compiler [11}{30/31] or (ii) in-memory data type
tags associated to the individual state objects to define their
types [23]. The former is generally more space- and time-
efficient, but the latter can better deal with polymorphic be-
havior and provide more flexible type management. MCR
implements the latter strategy to seamlessly switch from pre-
cise to conservative tracing as needed at runtime.

Similar to prior precise tracing strategies based on data
type tags [23,/44], MCR relies on static instrumentation to
store relocation and data type tags for all the relevant static
objects (i.e., global variables, functions, etc.) and change all
the allocator invocations to call ad-hoc wrapper functions
that maintain relocation and data type tags in in-band al-
locator metadata. To determine the allocation type on a
per-callsite basis, MCR relies on static analysis of allocator
operations, similar to [44]. MCR also borrows the tracking
technique for generic stack variables, maintaining a linked
list of overlay stack metadata nodes [44]. While inspired
by prior work, our instrumentation has a number of unique
properties. First, ambiguous cases like unions require no
annotations 23] or tagging [44], given that our tracing strat-
egy can be made conservative when needed. Similarly, MCR
does not require full allocator instrumentation for complex
allocation schemes. Our allocation type analysis can cur-
rently only support standard allocators (i.e., malloc) or—
using annotations—region-based allocators [14]. For more
complex allocator abstractions, our allocation type analysis
resorts to fully conservative behavior. Finally, stack vari-
able tracking—expensive at full coverage |[44]—is limited to
all the functions that quiescence profiling found active on
the call stack of some thread blocked at a quiescent point.

MCR’s precise tracing strategy operates in each quiescent
process in the new version, fully parallelizing the state trans-
fer operations in a multiprocess context. Each process re-
quests a central coordinator to connect to its counterpart in
the old version (if any) identified by the same creation-time
call stack ID. Once a connection is established with the old
process, MCR creates a fast read-only shared memory chan-
nel to transfer over all the relocation and data type tags from
the old version. Starting from root global and stack objects,
MCR traces pointer chains to reconstruct the entire program
state in the old version and remap each object found in the
traversal to the new version—copying data, reallocating ob-
jects, and applying type transformations as needed, similar
to [23][30]. We also allow user-specified traversal handlers
to handle complex semantic state transformations (similar
to [23]), as exemplified earlier at the object level in Listing][T]

To recognize object pairs across versions for remapping
purposes (i.e., variable x in the old version is to be remapped
to variable x in the new version), we use a number of strate-
gies dictated by the MCR model. We use symbol names
to match static objects and allocation site information to
match dynamic objects not automatically reallocated by mu-
table reinitialization at startup time—which must thus be
reallocated at state transfer time. Dynamic objects already
reallocated at startup time, in contrast, are matched by
their call stack ID, similar to the analogous startup-time op-
erations. Individual program threads, finally, are matched
based on their creation-time call stack IDs and all their stack
variables remapped using the associated symbol names.

Conservative tracing. The conservative tracing strat-
egy adopted by mutable tracing operates obliviously to its
precise counterpart. The idea is to first perform a conser-
vative analysis to identify hidden pointers (i.e., pointers not
explicitly exposed by the type information available) and
derive a number of necessary invariants for the state ob-
jects in the old version. Once the invariants are conserva-
tively preserved across versions, state transfer can be sim-
ply implemented on top of precise tracing without worrying
about hidden pointers and type ambiguity. In particular,
our conservative tracing strategy generates two possible in-
variants for every object in the old version: immutability—
the object is immutable and cannot be relocated in the new
version—and nonupdatability—the object cannot be type-
transformed by our precise tracing strategy in the new ver-
sion (a conflict is generated in case of type changes detected).

To identify such invariants, MCR operates similarly to a
conservative garbage collector |16|/17], scanning opaque (i.e.,
type-ambiguous) memory areas looking for likely pointers—
that is, aligned memory words that point to a valid live
object in memory. Objects pointed by likely pointers are
marked as immutable and nonupdatable—we could restrict
the latter to only interior pointers (i.e., pointers in the mid-
dle of an object), but we have not implemented this op-
tion yet. Objects that contain likely pointers are marked as
nonupdatable—we could restrict the latter to only certain
type changes, but we have not implemented this option yet.
Note that our strategy is only partly conservative: MCR
traverses the program state using our precise strategy by de-
fault and switches to conservative mode only when encoun-
tering opaque areas. Further, when possible, our pointer
analysis uses the data type tag associated to the pointed
object to reject illegal (i.e., unaligned) likely pointers.

Run-time policies decide when a traversed memory area
must be treated as opaque. Our default is to do so for
unions, pointer-sized integers, char arrays, and uninstru-
mented allocator operations, but different program-driven
policies are also possible. Currently, MCR does not conser-
vatively analyze nor transfer shared library state by default,
since we have observed that most real-world server programs
already reinitialize shared libraries and their state correctly
at startup time. Nonetheless, the user can instruct MCR to
transfer—and conservatively analyze—the state of particular
uninstrumented libraries in an opaque way, when necessary.

Our conservative tracing strategy raises two main issues:
accuracy—i.e., how conservative is the analysis in determin-
ing updatability coverage—and timing—i.e., when to per-
form the analysis. In our experience, the former is rarely
a issue in real-world programs. Prior work has reported
that even fully conservative GC rarely suffers from type-
accuracy problems on 64-bit architectures—although more
issues have been reported on 32-bit architectures |32]. Other
studies confirm that type accuracy is marginal compared
to liveness accuracy [33|. In our context, liveness accuracy
problems are only to be expected for uninstrumented allo-
cator abstractions that aggressively use free lists—or other
forms of reuse. Nevertheless, these cases can be easily iden-
tified and compensated by annotations/instrumentation, if
necessary. Also note that, unlike standard conservative GC
techniques, accuracy problems—i.e., likely pointers not re-
flecting real and live pointers—result only in a larger number
of immutable objects that MCR cannot automatically type-
transform, but not in the introduction of memory leaks.

As for the latter, our analysis should be normally per-
formed after quiescing the old version. This strategy, how-
ever, would normally block the running version for the time
to relink the program and prelink the shared libraries to
remap nonrelocatable immutable objects (e.g., global vari-
ables). Fortunately, we have observed very stable immutable
behavior for such objects. As a result, our current strategy
is to simply run the analysis and the relinking operations of-
fline. If a mismatch is found after quiescence—although we
have never encountered this scenario in practice—we could
simply expand the set of immutable objects, resume exe-
cution, allow relinking operations in the background, and
repeat the entire procedure until convergence is detected.

7. VIOLATING ASSUMPTIONS

We report on the key issues that might allow server pro-
grams found “in the wild” to violate MCR’s annotationless
semantics—excluding user extensions required to support
complex semantic updates. The intention is to foster future
research in the field, but also allow programmers to design
more “live update-friendly” (and better) software.

Our quiescence detection strategy might require extra man-
ual effort when the test workload used for profiling purposes
fails to cover some quiescent points. While this is subject to
the quality of the workload, our experience with real-world
server programs shows that the number of quiescent points
is generally limited and relatively simple to cover in practice.

Our mutable reinitialization strategy requires extra man-
ual control migration effort when the quiescent state ob-
tained at startup time in the new version does not match
the update-time one in the old version. We found this sce-
nario to be relatively common in practice for server programs
that dynamically spawn threads and processes on demand.
A possible solution is to extend our record-replay strategy to
code paths leading to all the possible quiescent points, but
this may also introduce nontrivial run-time overhead. While
annotations are possible, we believe these cases are gener-
ally better dealt with at design time. Purely event-driven
servers (e.g., nginx) are an example, with a single possible
quiescent state allowed throughout the execution.

Mutable reinitialization might also require extra manual
effort in the following cases: (i) unsupported immutable ob-
jects (e.g., process-specific IDs with no namespace support,
such as System V shared memory IDs, stored into global
variables); (ii) nondeterministic process model (e.g., a server
dynamically adjusting worker processes depending on the
load); (iii) nonreplayed operations actively trying to violate
MCR semantics (e.g., a server aborting initialization when
detecting another running instance). We believe these cases
to be relatively common, the last two in particular—Apache
httpd being an example. While the last case is trivial to
address at design time, the others require better run-time
support and more sophisticated process mapping strategies.

Finally, our mutable tracing strategy shares a number of
problematic cases that require extra manual effort with prior
GC strategies for C [44]. Examples include storing a pointer
on the disk or relying on specialized encoding to store pointer
values in memory. In the MCR model, these cases are best
described as examples of immutable objects not supported
by our run-time system. While seemingly uncommon and
easy to tackle at design time, we did find 1 real-world pro-
gram (i.e., nginx) using pointer encoding in our evaluation.

8. EVALUATION

We have implemented MCR on Linux (x86), with support
for generic server programs written in C. Static instrumenta-
tion—implemented in C++ using the LLVM v3.3 API [37]—
accounts for 728 (quiescence profiler) and 8,064 LOC h (the
other MCR components). MCR instrumentation relies on
a static library, implemented in C in 4,531 LOC. Dynamic
instrumentation—implemented in C in a shared library—
accounts for 3,476 (quiescence profiler) and 21,133 LOC (the
other MCR components). The mcr-ctl tool, which allows
users to signal live updates to the MCR backend using UNIX
domain sockets, is implemented in C in 493 LOC.

We evaluated MCR on a workstation running Linux v3.12
(x86) and equipped with a 4-core 3.0 Ghz AMD Phenom II
X4 B95 processor and 8 GB of RAM. For our evaluation, we
considered the two most popular open-source web servers—
Apache httpd (v.2.2.23) and nginx (v0.8.54)—and, for com-
parison purposes, a popular FTP server—vsftpd (v1.1.0)—
and a popular SSH server—the OpenSSH daemon (v3.5pl).
We configured our programs (and benchmarks) with their
default settings and instructed Apache httpd to use the
worker module with 2 servers and 50 worker threads without
dynamically adjusting its process model. We benchmarked
our programs using the Apache benchmark (AB) [1] (web
servers), the pyftpdlib FTP benchmark [6] (vsftpd), and the
built-in test suite (OpenSSH daemon). We repeated all our
experiments 11 times and report the median.

Our evaluation answers 4 key questions: (i) Engineering
effort: How much effort does MCR require? (ii) Perfor-
mance: Does MCR yield low overhead? (iii) Update time:
Does MCR yield reasonable update time? (iv) Memory us-
age: How much memory does MCR, use?

Engineering effort. To evaluate the engineering effort
required to deploy our techniques, we first prepared our test
programs for MCR and profiled their quiescent points. To
put together an appropriate workload for our quiescence pro-
filer, we used three simple test scripts. The first script—used
for the web servers—opens a number of long-lived HTTP
connections and issues one HT'TP request for a very large file
in parallel. The second and third scripts—used for OpenSSH
and vsftpd, respectively—open a number of long-lived SSH
(or FTP) connections—in authentication/post-authentica-
tion state—and, for vsftpd, issue one FTP request for a very
large file in parallel. Note that our workload is not meant
to be necessarily general—Apache httpd, for instance, sup-
ports plugins that can potentially create several new qui-
escent points—but rather to cover all the quiescent points
that we have observed being stressed by the execution of our
benchmarks. Our experience shows that, with some knowl-
edge on the tasks carried out by the server, it is generally
straightforward to put together a suitable test workload.
Next, we considered a number of releases following our orig-
inal program versions, and prepared them for MCR. In par-
ticular, we selected 5 updates for Apache httpd (v2.2.23-
v2.3.8), vsftpd (v1.1.0-v2.0.2), and OpenSSH (v3.5-v3.8),
and 25 updates for nginx (v0.8.54-v1.0.15)—nginx’s tight
release cycle generally produces much smaller patches than
those of all the other programs considered. Table [1| presents
our findings, with an overview of all the programs and up-
dates considered and the effort required to support MCR.

The first six grouped columns summarize the data gener-

Lines of code reported by David Wheeler’s SLOCCount.

Quiescence profiling Updates Changes Engineering effort
| SL LL QP Per Vol | Num LOC | Fun Var Type | Ann LOC ST LOC
Apache httpd 2 8 8 5 3 5 10,844 829 28 48 181 302
nginx 1 2 2 2 0 25 9,681 711 51 54 22 335
vsftpd 0 5 5 1 4 5 5,830 305 121 35 82 21
OpenSSH 3 3 3 1 2 5 14,370 894 84 33 49 135
Total | 6 18 18 9 9 | 40 40,725 | 2,739 284 170 | 334 793

Table 1: Overview of all the programs and updates used in our evaluation.
Precise pointers Likely pointers

Total Static Dynamic Lib Total Static Dynamic Lib

| Ptr Src Targ Src Targ Targ | Ptr Src Targ Src Targ Targ

Apache httpd | 2,373 2,272 2,151 101 219 3| 16,252 185 2,060 16,067 14,201 1

nginx 1,242 1,226 1,214 16 26 2 4,049 51 293 3,998 3,755 1

nginXreg 2,049 1,226 1,455 823 592 2 3,522 51 149 3,471 3,372 1

vsftpd 149 148 131 1 4 14 6 6 0 0 6 0

OpenSSH 237 226 211 11 19 7 56 5 16 51 32 8

Table 2: Mutable tracing statistics aggregated after the execution of our benchmarks.

ated by our quiescence profiler. The first two columns de-
tail the number of short-lived and long-lived thread classes
identified during the test workload. The short-lived thread
classes detected derive from daemonification (all the pro-
grams except vsftpd), initialization tasks (Apache httpd), or
exec()ing other helper programs (OpenSSH daemon). The
long-lived thread classes detected, in turn, originated a to-
tal of 18 quiescent points, divided equally in persistent (Per)
and volatile (Vol)—that is, whether they are already visible
or not right after startup. OpenSSH and vsftpd’s simple
process model resulted in only 1 persistent quiescent point
associated to the master process. All the server programs re-
ported volatile quiescent points with the exception of nginx,
given its rigorous event-driven programming model. The
quiescent points reported were used as is for our quiescence
instrumentation with no extra annotations necessary.

The second two grouped columns provide an overview of
the updates considered for each program and the number
of LOC changed by them. As shown in the table, the pro-
gram changes included in the 40 updates considered account
for 40,725 LOC overall. The third group, in turn, shows
the number of functions, variables, and types changed (i.e.,
added, deleted, or modified) by the updates, with a total
of 2,739, 284, and 170 changes (respectively). The fourth
group, finally, shows the engineering effort (LOC) in terms
of annotations required to prepare our programs for MCR
and the extra state transfer code required by our updates.

As shown in the table, the annotation effort required by
MCR is relatively low. Adding annotations was also greatly
simplified by the conflicts flagged by mutable reinitialization
and mutable tracing. When supporting only persistent qui-
escent points—corresponding to stable thread configurations
automatically reconstructed by mutable reinitialization—in
particular, Apache httpd required only 8 LOC to prevent the
server from aborting prematurely after actively detecting its
own running instance and 10 LOC to ensure deterministic
custom allocation behavior. Both changes were necessary
to allow mutable reinitialization to complete correctly. Fur-
ther, nginx required 22 LOC to annotate a number of global
pointers using special data encoding—storing metadata in

the 2 least significant bits. The latter is necessary for muta-
ble tracing to interpret pointer values correctly. Extending
mutable reinitialization to all the other nonpersistent quies-
cent points profiled, on the other hand, required an extra
82 LOC for vsftpd, 49 LOC for OpenSSH, and 163 LOC
for Apache httpd. In addition, we had to manually write
793 LOC to allow state transfer to complete correctly across
all the updates considered. The extra code was necessary
to implement complex semantic state transformations that
could not be automatically remapped by MCR. Moreover,
two of our test programs rely on custom allocation schemes:
nginx uses slabs and regions [14], Apache httpd uses nested
regions [14]. Extending allocator instrumentation to cus-
tom allocation schemes increases updatability, but also in-
troduces extra complexity and overhead on allocator opera-
tions. To analyze the tradeoff, we allowed MCR to instru-
ment only nginx’s region allocator—slabs and nested regions
are not yet supported by our current MCR prototype—
and instructed mutable tracing to produce quiescent-time
statistics—for both precisely and conservatively identified
pointers—after the execution of our benchmarks (Table 2)).

In the two cases, the table reports the total number of
pointers detected (Ptr), also classifying them by source (Src)
and target (Targ) memory region. The source and target
memory regions are further classified into Static (e.g., global
variables, but also strings, which attracted the majority of
likely pointers into static objects), Dynamic (e.g., heap), Lib
(i.e., static/dynamic shared libraries). We draw three main
conclusions from our analysis. First, there are many (23,885)
legitimate cases of likely pointers—we sampled a number of
cases to check for accuracy—which cannot be ignored at
state transfer time. Prior whole-program strategies would
delegate the nontrivial effort of handling such cases to the
user. In MCR, such pointers result in a fraction of target ob-
jects marked as immutable—0.7%-31.9% for our programs,
but heavily program/allocator dependent in general—which
MCR can automatically handle with no user annotations as
long as the corresponding data structures are not affected by
the update. Second, we note a number of program pointers
into shared library state (28411). This confirms the im-

Unblock +SInstr +DInstr +QDet
Apache httpd 0.977 1.040 1.043 1.047
nginx 1.000 1.000 1.000 1.000
nginXreg 1.000 1.175 1.192 1.186
vsftpd 1.024 1.027 1.028 1.028
OpenSSH 0.999 0.999 1.001 1.001

Table 3: Run time normalized against the baseline.

portance of marking shared library objects as immutable if
library state transfer is desired. Finally, our results confirm
the impact of allocator instrumentation. Apache httpd’s
uninstrumented allocations produce the highest number of
likely pointers (16,067), with nginx following with 3,998.
Our (partial) allocator instrumentation on nginx (nginxregq)
can mitigate, but not eliminate this problem (3,471 likely
pointers). Further, even in the case of a fully instrumented
allocator (vsftpd and OpenSSH), we still note a number of
likely pointers originating from legitimate type-unsafe id-
ioms (6 and 56, respectively), which suggests annotations
in prior solutions can hardly be eliminated even in the op-
timistic cases. Overall, we regard MCR as an important
step forward over prior solutions [23,30,|38}/41]: (i) much
less annotation effort is required to deploy MCR and sup-
port updates; (ii) much less inspection effort is required to
identify issues with pointers, allocators, and shared libraries.

Performance. To evaluate the run-time overhead im-
posed by MCR, we measured the time to complete the ex-
ecution of our benchmarks compared to the baseline. We
configured the Apache benchmark to issue 100,000 requests
and retrieve a 1 KB HTML file. We configured the pyft-
pdlib benchmark to allow 100 users and retrieve a 1 MB
file. In all the experiments, we observed marginal CPU uti-
lization increase (i.e., < 3%). Run-time overhead results,
in turn, are shown in Table] We comment on results
for uninstrumented region allocators first. As expected, un-
blockification alone (Unblock) introduces marginal run-time
overhead (2.4% in the worst case for vsftpd). The reported
speedups are well within the noise caused by memory layout
changes [40]. When unblockification is combined with our
static instrumentation (+SInstr), the run-time overhead is
somewhat more visible (4% worst-case overhead for Apache
httpd). The latter originates from our allocator instrumen-
tation, which maintains in-band metadata for mutable trac-
ing. The overhead is fairly stable when adding our dynamic
instrumentation (+DInstr)—which also tracks all the allo-
cations from shared libraries, other than maintaining process
and thread metadata. Finally, our quiescence detection in-
strumentation (+@Det) introduces, as expected, marginal
overhead. This translates to the final 4.7% worst-case over-
head (Apache httpd) for the entire MCR solution.

To further investigate the overhead on allocator opera-
tions, we instrumented all the SPEC CPU2006 benchmarks
with our static and dynamic allocator instrumentation. We
reported a 5% worst-case overhead across all the bench-
marks, with the exception of perlbench (36%), a memory-
intensive benchmark which essentially provides a microbench-
mark for our instrumentation. Our results confirm the per-
formance impact of allocator instrumentation. This is also
evidenced by the cost of our region instrumentation on ng-
inx, which incurs 19.2% worst-case overhead (nginxreg in
Table . While our implementation may be poorly opti-
mized for nginx’s allocation behavior, this extra cost does

Apache httpd —e—
600 nginx ——%— [
vsftpd
OpenSSH

State transfer time (ms)
W
8
1

0 10 20 30 40 50 60 70 80 90 100
Number of open connections

Figure 3: State transfer time vs. open connections.

evidence the tradeoff between the precision of our muta-
ble tracing strategy and run-time performance, which MCR
users should take into account when deploying our solution.

Our results show that MCR overhead is generally lower [39)
or comparable [30,/41}/42] to prior solutions. The extra costs
(unblockification and allocator instrumentation) provide sup-
port for automated quiescence detection and simplify state
transfer. For example, the tag-free heap traversal strategy
proposed in Kitsune [30] would eliminate the overhead on al-
locator operations, but at the cost of no support for interior
or void* pointers without pervasive user annotations.

Update time. To evaluate the update time—the time the
program is unavailable during the update, and thus a mea-
sure of the client-perceived latency—we analyzed its three
main components in detail: (i) quiescence time; (ii) control
migration time; (iii) state transfer time. To evaluate qui-
escence time, we allowed our quiescence detection protocol
to complete during the execution of our benchmarks. We
found that all our programs always converge in comparable
time (less than 100 ms) and in a workload-independent way,
confirming results reported in prior work for similar barrier
synchronization-based quiescence protocols [30].

To evaluate control migration time, we measured the time
to complete mutable reinitialization across versions. We
found that both the record and replay phase complete in
comparable time (less than 50 ms), with modest overhead
(1-45%) compared to the original startup time across all our
test programs and configurations. Finally, to evaluate state
transfer time, we allowed a number of users to connect to our
test programs after completing the execution of our bench-
marks and measured the time to transfer the state between
versions using mutable tracing. Figure |3| depicts the result-
ing time as a function of the number of open connections at
live update time. Our results acknowledge the impact of the
number of open connections on state transfer time, due to a
generally larger heap state and more processes to transfer for
programs handling each connection in a separate process—
i.e., vsftpd and OpenSSH. Compared to recent program-
level solutions such as Kitsune [30]—which only evaluated
the impact of a single connection on the update time—
however, Figure[3]shows that MCR scales fairly well with the
number of open connections, with an average state transfer
time increase of 371 ms at 100 connections, compared to a
baseline of between 28-187 ms with no connections. This
behavior stems from our parallel state transfer strategy—
which operates concurrent state transformations through-

out the process hierarchy—and our dirty object tracking
strategy—which drastically reduces the amount of state to
transfer (68%-86% reduction with 100 connections).

Overall, while generally higher than prior in-place solu-
tions [411/42]—but comparable and more scalable than prior
program-level solutions [30438]—we believe our update times
to be sustainable for most programs. The benefit is full-
coverage (and reversible) multiprocess state transfer able to
automatically handle C’s ambiguous type semantics.

Memory usage. MCR instrumentation leads to larger
memory footprints. This stems from mutable tracing meta-
data, process hierarchy metadata, the in-memory startup
log, and the required MCR libraries. In detail, we measured
a binary size overhead of 118.7%-235.2% and a run-time res-
ident set size (RSS) overhead of 110.0%-483.6% (288.5% on
average) when running our benchmarks.

As expected, MCR requires more memory than prior in-
place live update solutions, while being, at the same time,
comparable to other whole-program solutions that rely on
data type tags such as PROTEOS [23|. A tag-free tracing im-
plementation such as the one adopted in Kitsune |30] would
help reduce the overhead in this case as well, but also im-
pose the limitations already discussed earlier. MCR favors
annotationless semantics over memory usage, given the in-
creasingly low cost of RAM in these days. Also note that we
have not attempted to optimize the occupancy of our tags,
which are extremely space-inefficient given that our code is
shared across several projects with orthogonal goals.

9. CONCLUSION

This paper presented Mutable Checkpoint-Restart (MCR),
a new live update solution for generic server programs writ-
ten in C. MCR’s design goals dictate support for arbitrary
software updates and minimal annotation effort for real-
world multiprocess and multithreaded server programs. To
achieve these ambitious goals, the MCR model carefully de-
composes the live update problem into three well-defined
tasks: (i) checkpoint the running version; (ii) restart the new
version from scratch; (iii) restore the checkpointed execution
state in the new version. For each of these tasks, MCR in-
troduces novel techniques to significantly reduce the number
of user annotations and provide effective solutions to previ-
ously deemed difficult problems. To quiesce all the long-
lived program threads at checkpointing time, MCR relies
on standard profiling techniques to identify the per-thread
quiescent points in the program and implement a simple
barrier synchronization protocol. To implement control mi-
gration at restart time, MCR relies on mutable reinitializa-
tion to record-replay startup-time operations and create the
illusion that the new version is starting up as similarly to
a fresh program initialization as possible. This strategy is
also crucial to reinitialize a relevant portion of the program
state and thus drastically reduce the state transfer surface,
resulting in shorter update times and reduced annotation ef-
fort to handle complex state transformations. To implement
state transfer for the remaining state objects, finally, MCR
relies on mutable tracing to traverse global data structures
even with partial type and pointer information, thanks to a
carefully balanced combination of precise and conservative
GC-style tracing techniques. Owur experience with server
programs found “in the wild” demonstrates that our tech-
niques are practical, efficient, and raise the bar in terms of
deployability and maintenance effort over prior solutions.

10. ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their
comments. This work was supported by European Research
Council under grant ERC Advanced Grant 2008 - R3S3.

11. REFERENCES

[1] Apache benchmark (AB). http:
//httpd.apache.org/docs/2.0/programs/ab.htmll

[2] CRIU. http://criu.org.

[3] Cryopid2.
http://sourceforge.net/projects/cryopid2.

[4] Ksplice performance on security patches.
http://www.ksplice.com/cve-evaluation.

[5] OpenVZ. http://wiki.openvz.org.

[6] pyftpdlib. https://code.google.com/p/pyftpdlib.

[7] G. Altekar, I. Bagrak, P. Burstein, and A. Schultz.
OPUS: Online patches and updates for security. In
Proc. of the 14th USENIX Security Symp., pages
19-19, 2005.

[8] G. Altekar and I. Stoica. ODR: Output-deterministic
replay for multicore debugging. In Proc. of the 22nd
ACM Symp. on Operating Systems Principles, pages
193-206, 2009.

[9] J. Ansel, K. Arya, and G. Cooperman. DMTCP:
Transparent checkpointing for cluster computations
and the desktop. In Proc. of the IEEE Int’l Symp. on
Parallel and Distributed Processing, pages 1-12, 2009.

[10] J. Arnold and M. F. Kaashoek. Ksplice: Automatic
rebootless kernel updates. In Proc. of the Fourth ACM
European Conf. on Computer Systems, pages 187—198,
20009.

[11] J. Baker, A. Cunei, T. Kalibera, F. Pizlo, and
J. Vitek. Accurate garbage collection in uncooperative
environments revisited. Concurr. Comput.: Pract.
Exper., 21(12):1572-1606, 2009.

[12] A. Baumann, J. Appavoo, R. W. Wisniewski, D. D.
Silva, O. Krieger, and G. Heiser. Reboots are for
hardware: Challenges and solutions to updating an
operating system on the fly. In Proc. of the USENIX
Annual Tech. Conf., pages 1-14, 2007.

[13] A. Baumann, G. Heiser, J. Appavoo, D. Da Silva,

O. Krieger, R. W. Wisniewski, and J. Kerr. Providing
dynamic update in an operating system. In Proc. of
the USENIX Annual Tech. Conf., page 32, 2005.

[14] E. D. Berger, B. G. Zorn, and K. S. McKinley.
Reconsidering custom memory allocation. In Proc. of
the 17th ACM Conf. on Object-Oriented
Programming, Systems, Languages, and Applications,
pages 1-12, 2002.

[15] E. W. Biederman. Multiple instances of the global
Linux namespaces. In Proc. of the Linux Symposium,
2006.

[16] H.-J. Boehm. Space efficient conservative garbage
collection. In Proc. of the ACM SIGPLAN Conf. on
Programming Language Design and Implementation,
pages 197-206, 1993.

[17] H.-J. Boehm. Bounding space usage of conservative
garbage collectors. In Proc. of the 29th ACM
SIGPLAN-SIGACT Symp. on Principles of
Programming Languages, pages 93-100, 2002.

[18] H. Chen, R. Chen, F. Zhang, B. Zang, and P.-C. Yew.

http://httpd.apache.org/docs/2.0/programs/ab.html
http://httpd.apache.org/docs/2.0/programs/ab.html
http://criu.org
http://sourceforge.net/projects/cryopid2
http://www.ksplice.com/cve-evaluation
http://wiki.openvz.org
https://code.google.com/p/pyftpdlib

21

22

23

24

31

32

33

]

]

]

]

]

]

]

Live updating operating systems using virtualization.
In Proc. of the Second Int’l Conf. on Virtual
Ezecution Environments, pages 35—44, 2006.

H. Chen, J. Yu, R. Chen, B. Zang, and P.-C. Yew.
POLUS: A POwerful live updating system. In Proc. of
the 29th Int’l Conf. on Software Eng., pages 271-281,
2007.

T. Dumitras and P. Narasimhan. Why do upgrades fail
and what can we do about it?: Toward dependable,
online upgrades in enterprise system. In Proc. of the
10th Int’l Conf. on Middleware, pages 1-20, 2009.

R. S. Fabry. How to design a system in which modules
can be changed on the fly. In Proc. of the Second Int’l
Conf. on Software Eng., pages 470-476, 1976.

O. Frieder and M. E. Segal. On dynamically updating
a computer program: From concept to prototype. J.
Syst. Softw., 14(2):111-128, 1991.

C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum. Safe
and automatic live update for operating systems. In
Proc. of the 18th Int’l Conf. on Architectural Support
for Programming Languages and Operating Systems,
pages 279-292, 2013.

C. Giuffrida and A. Tanenbaum. Safe and automated
state transfer for secure and reliable live update. In
Proc. of the Fourth Int’l Workshop on Hot Topics in
Software Upgrades, pages 16—20, 2012.

D. Gupta and P. Jalote. On-line software version
change using state transfer between processes. Softw.
Pract. and Ezper., 23(9):949-964, 1993.

D. Gupta, P. Jalote, and G. Barua. A formal
framework for on-line software version change. IEEE
Trans. Softw. Eng., 22(2):120-131, 1996.

P. H. Hargrove and J. C. Duell. Berkeley lab
checkpoint/restart (BLCR) for Linux clusters. Journal
of Physics: Conference Series, 46(1):494, 2006.

C. Hayden, K. Saur, M. Hicks, and J. Foster. A study
of dynamic software update quiescence for
multithreaded programs. In Proc. of the Fourth Int’l
Workshop on Hot Topics in Software Upgrades, pages
6-10, 2012.

C. Hayden, E. Smith, E. Hardisty, M. Hicks, and

J. Foster. Evaluating dynamic software update safety
using systematic testing. IEEE Trans. Softw. Eng.,
38(6):1340-1354, 2012.

C. M. Hayden, E. K. Smith, M. Denchev, M. Hicks,
and J. S. Foster. Kitsune: Efficient, general-purpose
dynamic software updating for C. In Proc. of the
ACM Conf. on Object-Oriented Programming,
Systems, Languages, and Appilcations, 2012.

F. Henderson. Accurate garbage collection in an
uncooperative environment. In Proc. of the 3rd Int’l
Symp. on Memory management, pages 150-156, 2002.
M. Hirzel and A. Diwan. On the type accuracy of
garbage collection. In Proc. of the 2nd Int’l Symp. on
Memory Management, pages 1-11, 2000.

M. Hirzel, A. Diwan, and J. Henkel. On the usefulness
of type and liveness accuracy for garbage collection
and leak detection. ACM Trans. Program. Lang. Syst.,
24(6):593-624, 2002.

J. Jelinek. Prelink
http://people.redhat.com/jakub/prelink.pdf.

(35]

(36]

37]

(38]

39]

(40]

(41]

42]

(43]

(44]

(45]

(46]

(47]

(48]

I. Kravets and D. Tsafrir. Feasibility of mutable replay
for automated regression testing of security updates.
In Workshop on Runtime Environments, Systems,
Layering and Virtualized Environments, 2012.

O. Laadan, N. Viennot, and J. Nieh. Transparent,
lightweight application execution replay on commodity
multiprocessor operating systems. In Proc. of the Int’l
Conf. on Measurement and Modeling of Computer
Systems, pages 155—-166, 2010.

C. Lattner and V. Adve. LLVM: A compilation
framework for lifelong program analysis &
transformation. In Proc. of the Int’l Symp. on Code
Generation and Optimization, page 75, 2004.

K. Makris and R. Bazzi. Immediate multi-threaded
dynamic software updates using stack reconstruction.
In Proc. of the USENIX Annual Tech. Conf., pages
397-410, 2009.

K. Makris and K. D. Ryu. Dynamic and adaptive
updates of non-quiescent subsystems in commodity
operating system kernels. In Proc. of the Second ACM
FEuropean Conf. on Computer Systems, pages 327-340,
2007.

T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F.
Sweeney. Producing wrong data without doing
anything obviously wrong! In Proc. of the 14th Int’l
Conf. on Architectural Support for Programming
Languages and Operating Systems, pages 265-276,
2009.

I. Neamtiu and M. Hicks. Safe and timely updates to
multi-threaded programs. In Proc. of the ACM
SIGPLAN Conf. on Programming Language Design
and Implementation, pages 13-24, 2009.

I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol.
Practical dynamic software updating for C. In Proc. of
the ACM SIGPLAN Conf. on Programming Language
Design and Implementation, pages 72-83, 2006.

S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik,

K. H. Lee, and S. Lu. PRES: Probabilistic replay with
execution sketching on multiprocessors. In Proc. of the
22nd ACM Symp. on Operating Systems Principles,
pages 177-192, 2009.

J. Rafkind, A. Wick, J. Regehr, and M. Flatt. Precise
garbage collection for C. In Proc. of the Int’l Symp. on
Memory management, pages 39-48, 2009.

M. Siniavine and A. Goel. Seamless kernel updates. In
Proc. of the 43rd Int’l Conf. on Dependable Systems
and Networks, 2013.

D. Subhraveti and J. Nieh. Record and transplay:
Partial checkpointing for replay debugging across
heterogeneous systems. In Proc. of the Int’l Conf. on
Measurement and Modeling of Computer Systems,
pages 109-120, 2011.

S. Subramanian, M. Hicks, and K. S. McKinley.
Dynamic software updates: a VM-centric approach. In
Proc. of the ACM SIGPLAN Conf. on Programming
Language Design and Implementation, pages 1-12,
2009.

N. Viennot, S. Nair, and J. Nieh. Transparent mutable
replay for multicore debugging and patch validation.
In Proc. of the 18th Int’l Conf. on Architectural
Support for Programming Languages and Operating
Systems, pages 127-138, 2013.

http://people.redhat.com/jakub/prelink.pdf

	Introduction
	Background
	Overview
	Quiescence Detection
	Mutable Reinitialization
	Mutable Tracing
	Violating Assumptions
	Evaluation
	Conclusion
	Acknowledgments
	References

