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Abstract 
Packet capture is an essential function for many network 
applications. However, packet drop is a major problem 
with packet capture in high-speed networks. 

This paper presents WireCAP, a novel packet capture 
engine for commodity network interface cards (NICs) in 
high-speed networks. WireCAP provides lossless zero-copy 
packet capture and delivery services by exploiting multi-
queue NICs and multicore architectures. WireCAP intro-
duces two new mechanisms—the ring-buffer-pool mecha-
nism and the buddy-group-based offloading mechanism—
to address the packet drop problem of packet capture in 
high-speed network. WireCAP is efficient. It also facilitates 
the design and operation of a user-space packet-processing 
application. Experiments have demonstrated that WireCAP 
achieves better packet capture performance when compared 
to existing packet capture engines.  

In addition, WireCAP implements a packet transmit 
function that allows captured packets to be forwarded, po-
tentially after the packets are modified or inspected in 
flight. Therefore, WireCAP can be used to support middle-
box-type applications. Thus, at a high level, WireCAP pro-
vides a new packet I/O framework for commodity NICs in 
high-speed networks.  

1 Introduction 
Packet capture is an essential function for many network 
applications, including intrusion detection systems (IDS) 
[1, 2, 3], and packet-based network performance analysis 
applications [4]. Packets are typically captured from the 
wire, temporarily stored at a data capture buffer, and final-
ly delivered to the applications for processing. Because 
these operations are performed on a per-packet basis, pack-
et capture is typically computationally and I/O throughput 
intensive. In high-speed networks (10 Gbps and above), 
packet capture faces significant performance challenges.  

Packet drop is a major problem with packet capture in 
high-speed networks. There are two types of packet drop: 
packet capture drop and packet delivery drop. Packet cap-
ture drop is mainly caused by the inabilities of packet cap-
ture to keep pace with the incoming packet rate. Conse-
quently, packets may be dropped because they cannot be 
captured in time. Packet delivery drop is mainly caused by 
the inability of the application to keep pace with the packet 
capture rate. Consequently, the data capture buffer over-
flows, and packet drops occur- even when 100% of the 
network traffic is captured from the wire. Any type of 

packet drop will degrade the accuracy and integrity of net-
work monitoring applications [2, 5]. Thus, avoiding packet 
drops is a fundamental design goal in packet capture tools. 

There are two approaches to performing packet cap-
ture. The first approach is to use a dedicated packet capture 
card to perform the function in hardware [6, 7]. This ap-
proach requires the least amount of CPU intervention, thus 
saving the CPU for packet processing. A dedicated packet 
capture card can ensure that 100% of the network packets 
are captured and delivered to applications without loss. 
However, this approach demands custom hardware solu-
tions, which tend to be more costly, relatively inflexible, 
and not very scalable.  

An alternative approach is to use a commodity system 
with a commodity NIC to perform packet capture. In this 
approach, the commodity NIC is put into promiscuous 
mode to intercept network packets. A packet capture engine 
(a software driver) receives the intercepted packets and 
provides support to allow user-space applications to access 
the captured packets. This capture solution depends mainly 
on the software-based packet capture engine, which is flex-
ible and cost-effective, but requires significant system CPU 
and memory resources. Therefore, this solution is not suit-
able for resource-limited systems where resource competi-
tion between packet capture and packet processing might 
lead to drops. However, with recent technological advances 
in multicore platforms and multi-queue NICs, this approach 
becomes more appealing due to the availability of ample 
system CPU resources and I/O throughputs, and paves the 
way for a new paradigm in packet capturing and processing 
[8, 9, 10].  

The new paradigm typically works as follows. A mul-
ti-queue NIC is logically partitioned into n receive queues, 
with each queue tied to a distinct core of a multicore sys-
tem (Figure 1). Packets are distributed across the queues 
using a hardware-based traffic-steering mechanism, such as 
receive-side scaling (RSS) [11]. A thread (or process) of a 
packet-processing application runs on each core that has a 
tied queue. Each thread captures packets via a packet cap-
ture engine and handles a portion of the overall traffic. On 
a multicore system, there are several programming models 
(e.g., the run-to-completion model and the pipeline model 
[12]) for a packet-processing application. Here, the applica-
tion may be of any type. This new paradigm essentially 
exploits the computing parallelism of multicore systems 
and the inherent data parallelism of network traffic to ac-
celerate packet capturing and processing. A basic assump-
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tion associated with this approach is that the hardware-
based balancing mechanism is capable of evenly dis-
tributing the incoming traffic among cores. Thus, each core 
would handle 1/n of the overall traffic and the packet rate at 
each core would be reduced to 1/n of the overall packet rate 
from the network, with a significantly reduced chance of 
causing a packet drop. However, this assumption is often 
not the case in practice [8]. Typically, a NIC’s traffic-
steering mechanism distributes packets to cores based on a 
per-flow policy that assigns packets of the same flow to the 
same core. A flow is defined by one or more fields of the 
IP 5-tuple. Such a traffic-steering mechanism maintains 
core affinity in network processing [11], helping to pre-
serve application logic (i.e., packets belonging to the same 
flow must be delivered to the same application). However, 
this method of traffic steering can lead to a load imbalance 
condition in which certain cores become overloaded while 
others remain idle. In the worst-case scenario, a single core 
will be flooded with all the network traffic at wire speed.  
 There are two types of load imbalance. The first type is 
a short-term load imbalance on one or several cores. In this 
situation, an overloaded core experiences bursts of packets 
on a short scale. Here, “short” typically refers to time inter-
vals up to 100 – 500 ms [13]. The second type is a long-
term load imbalance, which may be due to an uneven dis-
tribution of flow groups in the NIC. Our research reveals 
that (1) load imbalance of either type occurs frequently on 
multicore systems; and (2) existing packet capture engines 
(e.g., PF_RING [14], NETMAP [15], and DNA [16]) can 
suffer significant packet drops when they experience load 
imbalance of either type in a multicore system, due to one 
or several of the following limitations: inability to capture 
packets at wire speed, limited buffering capability, and 
lacking of an effective offloading mechanism to address 
long-term long imbalance.  
 In order to avoid packet drops, load imbalances on 
multicore systems must be handled properly. There are 
several approaches for solving this problem. A first ap-
proach is to apply a round-robin traffic steering mechanism 
at the NIC level to distribute the traffic evenly across the 
queues. However, this approach cannot preserve the appli-

cation logic (see Section 2.3). A second approach is to use 
existing packet capture engines (e.g., DNA) and handle 
load imbalance in the application layer. But an application 
in user space has little knowledge of low-level layer condi-
tions, and cannot effectively handle load imbalance (see 
Section 2.3). A third approach is to design a new packet-
capture engine that addresses load imbalance at the packet-
capture level. A packet-capture engine has full knowledge 
of low-level layer conditions, placing it in a better position 
to deal with load imbalance. In addition, this approach sim-
plifies the design of a packet-processing application. In this 
paper, we focus on the third approach. 

This paper presents WireCAP, a novel packet capture 
engine for commodity NICs in high-speed networks. 
WireCAP is designed to support the packet capturing and 
processing model shown in Figure 1. It has several salient 
features. 
 (1) WireCAP provides lossless packet capture and 
delivery services by exploiting multi-queue NICs and multi-
core architectures. We have designed two new mechanisms 
to handle load imbalance in order to avoid packet drops. 
 For short-term load imbalance, we design and imple-
ment a ring-buffer-pool mechanism. A ring buffer pool, 
which consists of chunks of packet buffers, is allocated for 
each receive queue in kernel. Through dynamic packet 
buffer management, each chunk of packet buffers can be 
used to receive packets flowing through the network, and 
temporarily store received packets. A ring buffer pool’s 
capacity is configurable. When a large pool capacity is con-
figured, a ring buffer pool can provide sufficient buffering 
at the NIC’s receive ring level to accommodate short-term 
bursts of packets.  
 To handle long-term load imbalance, we apply a bud-
dy-group-based offloading mechanism. The basic idea is 
simple: a busy packet capture engine offloads some of its 
traffic to less busy or idle queues (cores) where the traffic 
can be processed by other threads. However, the challenge 
of our design is how to preserve application logic—traffic 
belonging to the same flow must be delivered to the same 
application when multiple applications are running in the 
system. We introduce a buddy group concept: the receive 
queues accessed by threads (or processes) of a single appli-
cation can form a buddy group. Traffic offloading is only 
allowed within a buddy group.  
 (2) WireCAP is efficient.  WireCAP employs several 
optimization techniques—including pre-allocated large 
packet buffers, packet-level batching processing, and zero-
copy—to reduce the packet capture and delivery costs. 
These optimization techniques have been used in the past 
and are well understood [14—16, 23]. The challenge in 
designing WireCAP was to understand how to combine 
these techniques with our ring-buffer-pool and buddy-
group-based offloading mechanisms in an effective solu-
tion to achieve high performance.  
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Figure 1 A new packet capturing and processing paradigm 
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 In high-speed networks, excessive data copying results 
in poor performance [15, 17, 18, 19]. Zero-copy is widely 
used in our design. WireCAP can achieve zero-copy packet 
capture and delivery (i.e., a network packet can be captured 
and delivered to an application with zero-copy), and zero-
copy forwarding (i.e., a captured packet can be forwarded 
with zero-copy).  
 We specifically separate short-term load imbalance 
from long-term load imbalance and address them appropri-
ately. When only short-term load imbalance occurs, 
WireCAP not only avoids packet drops but also ensures 
that packets belonging to the same flow are handled in the 
same core. This design improves performance. 
 (3) With WireCAP, the design of a packet-processing 
application can be simplified. WireCAP addresses load 
imbalance in the packet-capture engine level to avoid pack-
et drops. Therefore, an application need not implement its 
own mechanism to handle load imbalance in the applica-
tion layer.  
 (4) With WireCAP, the performance of a packet pro-
cessing application can be improved. WireCAP provides 
large ring buffer pools in the kernel to accommodate cap-
tured packets and supports zero-copy packet capture and 
delivery. Therefore, an application need not copy captured 
packets from low-level ring buffer pools and store them 
into its own set of buffers in user space. Instead, the appli-
cation can use ring buffer pools as its own data buffers, and 
process the captured packets directly from there. This strat-
egy helps to improve application performance. 
 (5) WireCAP implements a packet transmit function 
that allows captured packets to be forwarded, potentially 
after being analyzed in flight. Thus, WireCAP can be used 
to support middlebox-type applications. 

Ultimately, WireCAP is intended to advance the state-of-
the-art for packet capture engines on commodity multicore 
systems. Our design is unique in the sense that we seek to 
address off-the-wire packet capture concerns in conjunc-
tion with packet delivery issues to the application. The in-
novation in our design is twofold. First, we develop a new 
NIC ring-buffer-pool management mechanism that dramat-
ically increases packet ingest buffering capabilities. Se-
cond, we introduce a load imbalance management mecha-
nism that optimizes captured packet processing for multi-
core systems. Together, these innovations potentially pave 
the way for advancement of packet analysis tools to deal 
with emerging high-speed networks. 
 We implemented WireCAP in Linux. It consists of a 
kernel-mode driver and a user-mode library. The optimized 
kernel-mode driver manages commodity NICs and pro-
vides WireCAP’s low-level packet capture and transmit 
services. The user-mode library is Libpcap-compatible 
[20], which provides a standard interface for low-level 

network access and allows existing network monitoring 
applications to use WireCAP without changes. We evaluat-
ed WireCAP with several experiments. Experiments have 
demonstrated that WireCAP achieves better performance 
compared with existing packet captures engines. 

2 Background and Motivation 
2.1 Problems with existing packet capture engines  

When a commodity system with a commodity NIC is used 
for packet capture, the NIC is put into promiscuous mode 
to capture network packets. A packet capture engine man-
ages the NIC and provides packet capture services to user-
space applications. 
 Capturing packets from the wire. Packet capture is a 
special case of packet reception [21]. Typically, a commod-
ity NIC can be logically partitioned into one or multiple 
receive queues. For each receive queue, the NIC maintains 
a ring of receive descriptors, called a receive ring. The 
number of receive descriptors in a ring is device-dependent. 
For example, an Intel 82599-based 10 GigE NIC has 8192 
receive descriptors [22]. Assuming that the NIC is config-
ured with n receive queues, each receive queue will have, 
at most, a ring size of 8192 𝑛 . A receive descriptor must 
be initialized and pre-allocated with an empty ring buffer in 
host memory—in the ready state—to receive a packet. Be-
fore packet capture begins, the packet capture engine per-
forms this receive ring initialization. When network pack-
ets arrive, the NIC moves packets from the wire to the ring 
buffers via direct memory access (DMA). Subsequently, 
applications can access the received packets through the 
OS services provided by the packet capture engine. Receive 
descriptors are used circularly and repeatedly. The packet 
capture engine needs to reinitialize a used receive de-
scriptor and refill it with an empty ring buffer as quickly as 
possible because incoming packets will be dropped if the 
receive descriptors in the ready state aren’t available. 

Existing packet capture engines. The protocol stack 
of a general purpose OS can provide standard packet cap-
ture services through raw sockets (e.g., PF_PACKET). 
However, because the protocol stack is designed to support 
a wide range of network applications, it is not optimized for 
packet capture. Consequently, the performance is inade-
quate for packet capture in high-speed networks. A number 
of packet capture engines, such as PF_RING [14], 
NETMAP [15], and DNA [16], have been developed. The-
se packet capture engines essentially bypass the standard 
protocol stack and achieve improved performance through 
techniques such as pre-allocated large packet buffer, pack-
et-level batch processing, and zero-copy [15, 23]. Existing 
packet capture engines can be classified into two types, 
depending on how captured packets are delivered from ring 
buffers to applications: 
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 Type-I Packet Capture Engine, represented by 
PF_RING, pre-allocates a large packet buffer in kernel 
space for each receive ring. The large packet buffer con-
sists of fixed-size cells. Each cell corresponds to a ring 
buffer and is assigned to a receive descriptor in the ring. A 
receive descriptor and its assigned ring buffer are 1-to-1 
mapped to one another. The ring buffers are used circularly 
and repeatedly; a used receive descriptor is refilled with the 
same assigned ring buffer. In addition, PF_RING allocates 
an intermediate data buffer, termed pf_ring, within the ker-
nel and uses it as data capture buffer for each receive ring. 
When the network packets arrive, the NIC moves the pack-
ets from the wire to the ring buffers via DMA. Subsequent-
ly, the packet capture engine copies packets from the ring 
buffers to pf_ring (for example, using NAPI polling in 
Linux [21]). Finally, a user-space application accesses cap-
tured packets from pf_ring. To improve performance, 
pf_ring is memory-mapped into the address space of the 
user-space application to avoid copying.  
 Type-II Packet Capture Engine, represented by DNA 
and NETMAP. Like PF_RING, DNA and NETMAP im-
plement a similar pre-allocated large packet buffer scheme 
for ring buffer operations. DNA and NETMAP expose 
shadow copies of receive rings to user-space applications. 
The ring buffers of a receive ring are memory-mapped into 
the address space of a user-space application. The ring 
buffers not only are used to receive packets but are also 
employed as data capture buffer to temporarily store the 
packets. When network packets arrive, the NIC moves 
packets from the wire to the ring buffers via DMA. A user-
space application accesses packets directly from the 
memory-mapped ring buffers. The advantage of this design 
is that it avoids the costs of unnecessary data movement. 
 The problems. A Type-I packet capture engine re-
quires at least one copy to move a packet from the NIC ring 
into the user space. At high packet rates, excessive data 
copying results in poor performance. In addition, it may 
suffer the receive livelock problem in user context [24].  
 A Type-II packet capture engine has limited buffering 
capability. For DNA or NETMAP, a received packet is 
kept in a NIC ring buffer until it is consumed. During this 
period, the ring buffer and its associated receive descriptor 
cannot be released and reinitialized. Because a NIC ring 
has a limited number of receive descriptors, the receive 
descriptors in the ready state can be rapidly depleted if the 
received packets are not consumed in a timely manner. 
Consequently, subsequent packets would be dropped. 
 Neither type of packet capture engine has an effective 
offloading mechanism to address the long-term load imbal-
ance problem. 

2.2 Experimental proof 

We conduct two experiments to support our claims. In the 
first, we demonstrate that load imbalance occurs frequently 

in multicore systems. In the second, we demonstrate the 
deficiencies of existing packet capture engines, including 
PF_RING, DNA, and NETMAP.  

Experiment tools. The first tool is called queue_profiler. It 
is a single-threaded application that captures packets from a 
specific receive queue and counts the number of packets 
captured every 10 ms.   
 The second tool is called pkt_handler and is single-
threaded. It captures and processes packets from a specific 
queue and executes a repeating while loop. In each loop, a 
packet is captured and applied with a Berkeley Packet Fil-
ter (BPF) [25] x times before being discarded. By varying 
x, we simulate different packet-processing rates of real ap-
plications during monitoring. In our experiments, the BPF 
filter “131.225.2 and UDP” is used, and x is set to 0 and 
300, respectively. With x=0, no packet-processing load is 
actually applied. We use this value to evaluate whether a 
packet capture engine can capture packets at wire speed 
with no loss. With x=300, the packet-processing rate of a 
single 2.4 GHz CPU is 38,844 p/s. The value 300 was se-
lected to emulate a heavy load application such as snort [1], 
which is capable of sustaining similar packet-processing 
rates [26]. 
 Experiment configuration. The experiment system is 
depicted in Figure 2. It consists of two Intel E5-2690 pro-
cessors and two Intel 82599-based 10 GigE NICs—NIC1 
and NIC2. The system I/O bus is PCIE-Gen3. A traffic 
generator capable of generating traffic at wire speed or 
replaying captured traffic at the speed exactly as recorded 
is connected directly to NIC1. NIC2 is not used in this ex-
periment. 
 The system runs a 64-bit Scientific Linux 6.0 server 
distribution. For packet capture engines, we use driver 
pf_ring_5.5.2 (PF_RING) [14], ixgbe-3.10.16-DNA (DNA) 
[16], and 20131019-netmap (NETMAP) [15]. 
 Experiment data. To ensure that the evaluations are 
practical and repeatable, we capture traffic from the Fer-
milab border router for use as experiment data. The exper-
iment data includes 5 million packets and lasts for approx-
imately 32 seconds. 
 
Experiment 1. The traffic generator replays the captured 
data at the speed exactly as recorded. NIC1 is configured 
with six receive queues (queue 0 – 5), with each queue tied 
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to a distinct core (core 0 – 5). A separate queue_profiler is 
launched to profile traffic for each queue. We use DNA as 
the packet capture engine. No packet drops occur in the 
experiment. Figure 3 presents the time-series of the number 
of packets received during a short time interval for queue 0 
and 3, respectively. The figure shows that a load imbalance 
can occur routinely in a multicore system because the Intel 
NIC distributes packets to cores based on a per-flow policy 
that assigns packets of the same flow to the same core [22]. 
We observed both short-term load imbalance (short-term 
bursts of packets) and long-term load imbalance (queue 0 
receives much more traffic than queue 3). Because network 
traffic is bursty by nature and TCP is the dominant 
transport protocol, a short-term load imbalance occurs 
more frequently in practice. When we vary the number of 
receive queues, similar load imbalance patterns are ob-
served. 
 
Experiment 2. The traffic generator replays the same cap-
tured data as in experiment 1. Again, NIC1 is configured 
with six receive queues (queue 0 – 5), and each queue tied 
to a distinct core (core 0 – 5) on which a separate 
pkt_handler is launched to capture and process the traffic 
for each queue. For pkt_handler, x is set to 0 and 300, re-
spectively. The CPU speed is set at 2.4 GHz. We vary the 
packet capture engines in the experiments, using PF_RING 
(mode 2), DNA, and NETMAP, respectively. Each NIC 
receive ring is configured with a size of 1,024. For 
PF_RING, the size of pf_ring buffer is set to 10,240. We 
calculate the packet capture drop rate and the packet deliv-
ery drop rate. Note: because PF_PACKET’s performance 
is too poor compared with these packet capture engines, we 
do not include PF_PACKET in our experiments. Readers 
can refer to [9] for PF_PACKET evaluation. 

With x=0, each pkt_handler does not incur any packet-
processing load. In the experiments, we did not observe any 
packet drops for DNA or NETMAP. However, we ob-
served that PF-RING suffers small packet capture drops at 
queue 3.  
 With x=300, pkt_handler emulates a heavy load appli-
cation. Table 1 lists the packet drop rates for queue 0 and 3, 
respectively. At queue 0, the incoming packet rate sustains 
approximately 80,000 p/s from 10s to 35s (Figure 3, Note: 

the traffic is binned in 10ms interval), which far exceeds 
the packet-processing speed of a 2.4 GHz CPU (38,844 
p/s). Because the pkt_handler at queue 0 is over-flooded by 
incoming packets, all packet capture engines suffer sub-
stantial packet drops. DNA and NETMAP suffer substan-
tial packet capture drops because they use ring buffers as 
data capture buffers, which has a limited buffering capabil-
ity. PF_RING avoids packet capture drops but suffers sub-
stantial packet delivery drops due to both the inability of 
the application to keep pace with the packet capture rate 
and the receive livelock problem [24]. In addition, because 
PF_RING requires at least one copy to move a packet from 
the NIC ring into the user space, PF_RING incurs higher 
packet capture costs than DNA and NETMAP. Conse-
quently, PF_RING suffers higher overall packet drops than 
DNA and NETMAP. Table 1 demonstrates that the existing 
packet capture engines lack an offloading capability to mi-
grate traffic to less busy or idle cores, where other thread 
would process it. 
 At queue 3, the incoming packet rate sustains approx-
imately 20,000 p/s between 1s and 32s (Figure 3). While 
this rate is less than the packet processing speed of a 2.4 
GHz CPU (38,844 p/s), DNA and NETMAP still suffer 
significant packet capture drops due to the limited buffing 
capability for dealing with short-term bursts of packets. For 
example, during the time interval [3.86s 3.97s], 2724 pack-
ets are sent to queue 3. Because pkt_handler can process 
only 10ms * 38,844 p/s = 388 packets during the interval 
and because the ring buffers can temporarily buffer 1024 
packets at most, packet capture drops inevitably occur. PF-
RING also suffers small packet capture drops. 

2.3 How to avoid packet drops that are caused by load 
imbalance? 

The experiments reveal that existing packet-capture en-
gines suffer significant packet drops when they experience 
load imbalance in a multicore system. To avoid packet 
drops, we must handle load imbalance. There are several 
possible approaches. 
  A first approach is to apply a round-robin traffic steer-
ing mechanism at the NIC level to distribute the traffic 
evenly across the queues. However, this approach cannot 
preserve the application logic because packets belonging to 

 NETMAP DNA PF_RING 
Receive Queue 0:    
Packet Capture Drops 46.5% 50.1% 0% 
Packet Delivery Drops 0% 0% 56.8% 

Receive Queue 3:    

Packet Capture Drops 33.4% 9.3% 0.8% 
Packet Delivery Drops 0% 0% 0% 

Table 1 Packet Drop Rates 
Figure 3 Load imbalance, 
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the same flow can be delivered to different applications 
when multiple applications are running in the system.  
 A second approach is to use existing packet capture 
engines (e.g., DNA) and to address load imbalance in the 
application layer. For example, an application thread can 
read packets from a queue, and store them into its own set 
of buffers, and then process a fixed number of packets be-
fore reading again. When load imbalance occurs, the appli-
cation thread can move packets in some flows over to other 
threads if its own buffers were filling up. However, this 
approach has several limitations:  
• An application in user space has little knowledge of 

low-level layer conditions. If the application thread 
cannot read data from a queue in time, bursts of net-
work packets would overrun low-level packet buffers 
and cause packet drops.  

• Because existing packet capture engines have a limited 
buffering capability, this approach must involve copy-
ing captured packets into user space. At high packet 
rates, excessive data copying leads to poor perfor-
mance [15, 17, 18, 19].  

• This approach would make the application complex 
and difficult to design. 

Our approach is to design a new packet-capture engine that 
addresses load balance in the packet-capture level. We be-
lieve a packet capture engine is in a better position to ad-
dress load imbalance because it has full knowledge of low-
level layer conditions. WireCAP is our solution. 

3 The WireCAP Design & Implementation 
3.1 Design goals 

WireCAP is designed to support the packet capturing and 
processing paradigm as shown in Figure 1. We have sever-
al design goals:  
• Providing lossless packet-capture services in high-

speed networks is our primary goal. WireCAP aims to 
provide lossless packet capture services in high-speed 
networks by exploiting multicore architecture and mul-
ti-queue NICs. Therefore, WireCAP must handle load 
imbalance that frequently occurs in multicore systems. 

• Providing efficient packet delivery.  
• WireCAP must be efficient. In a multicore system, 

core affinity on network processing can significantly 
improve performance. Therefore, when short-term load 
imbalance occurs, WireCAP must not only avoid 
packet drops but also ensure core affinity on network 
processing. However, when long-term load imbalance 
occurs, WireCAP has to perform traffic offloading to 
avoid packet drops. We believe this is an appropriate 
tradeoff.  

• WireCAP must facilitate the design and operation of a 
packet-processing application in user space.  

• WireCAP must have wide applicability and can be 
easily adopted.  

• WireCAP should implement a transmit function that 
allows captured packets to be forwarded. Such a func-
tion would allow WireCAP to support middlebox-type 
applications. 

3.2 WireCAP design 

We begin by describing our ring-buffer-pool and buddy-
group-based offloading mechanisms. Then, we discuss the 
WireCAP architecture.  

3.2.1 The mechanisms  

Ring-buffer-pool. Assume each receive queue has a ring 
of N descriptors. Under WireCAP, each receive ring is di-
vided into descriptor segments. A descriptor segment con-
sists of M receive packet descriptors (e.g., 1024), where M 
is a divisor of N. In kernel space, each receive ring is allo-
cated with R packet buffer chunks, termed the ring buffer 
pool. In this case, R is greater than N/M. A packet buffer 
chunk consists of M fixed-size cells, with each cell corre-
sponding to a ring buffer. Both M and R are configurable. 
Within a pool, a packet buffer chunk is identified by a 
unique chunk_id. Globally, a packet buffer chunk is 
uniquely identified by a {nic_id, ring_id, chunk_id} tuple. 
Here, nic_id and ring_id refer to the NIC and to the receive 
ring that the packet buffer chunk belongs to. 

When an application opens a receive queue to capture 
packets, the ring buffer pool for the receive queue will be 
mapped into the application’s process space. Therefore, a 
packet buffer chunk has three addresses, DMA_address, 
kernel_address, and process_address, which are used by 
the NIC, the kernel, and the application, respectively. The-
se addresses are maintained and translated by the kernel. A 
cell within a chunk is accessed by its relative address with-
in the chunk.  

A packet buffer chunk can exist in one of three states: 
“free”, “attached”, and “captured”. A “free” chunk is main-
tained in the kernel, available for (re)use. In the “attached” 
state, the chunk is attached to a descriptor segment in its 
receive ring to receive packets. Each cell in the chunk is 
sequentially tied to the corresponding packet descriptor in 
the descriptor segment. A “captured” chunk is one that has 
been filled with received packets and captured into the user 
space. 

A ring-buffer-pool provides operations to allow a user-
space application to capture packets. These operations can 
be accessed through the ioctl interface: 
 Open. Opens a specific receive queue for packet cap-
ture. It maps its ring buffer pool into the application’s pro-
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cess space and attaches each descriptor segment in the re-
ceive ring with a “free” packet buffer chunk. 
 Capture. Captures packets in a specific receive queue. 
The capture operation is performed in the units of the pack-
et buffer chunk; a single operation can move multiple 
chunks to the user space. To	   capture	   a	   packet	   buffer	  
chunk	  to	  user	  space,	  only	   its	  metadata	  {{nic_id,	  ring_id,	  
chunk_id},	   process_address,	   pkt_count}	   is	   passed.	   The	  
chunk	   itself	   is	   not	   copied.	   Here,	   pkt_count	   counts	   the	  
number	  of	  packets	   in	   the	   chunks.	  When a packet buffer 
chunk attached to the receive ring is captured to the user 
space, the corresponding descriptor segment must be at-
tached with a new “free” chunk to receive subsequent 
packets. Because the NIC moves incoming packets to the 
empty ring buffers without CPU intervention, a packet 
buffer chunk cannot be safely moved unless it is full. Oth-
erwise, packet drops might occur. Thus, our capture opera-
tion works as follows. (1) If no packet is available, the cap-
ture operation will be blocked until incoming packets wake 
it up. (2) Else if full packet buffer chunks are available, the 
capture operation will return immediately, with one or mul-
tiple full chunks moved to the user space. The correspond-
ing descriptor segment will be attached with a new “free” 
chunk. (3) Else, the capture operation will be blocked with 
a timeout. The process will continue as stated in (2) if new 
full packet buffer chunks become available before the 
timeout expires. If the timeout expires and the incoming 
packets only partially fill an attached packet buffer chunk, 
we copy them to a “free” packet buffer chunk, which is 
moved to the user space instead. This mechanism avoids 
holding packets in the receive ring for too long. 
 Recycle. In the user space, once the data in a “captured” 
packet buffer chunk are finally processed, the chunk will be 
recycled for future use. To recycle a chunk, its metadata are 
passed to the kernel, which will be strictly validated and 
verified; the kernel simply changes the chunk’s state to 
“free”. 
 Close. Closes a specific receive queue for packet cap-
ture and performs the necessary cleaning tasks. 	  
Through the capture and recycle operations, each chunk of 
packet buffers can be used to receive packets flowing 
through the network, and temporarily store received pack-
ets. A ring buffer pool’s capacity is configurable. When a 
large pool capacity is configured, a ring buffer pool can 
provide sufficient buffering at the NIC’s receive ring level 
to accommodate short-term bursts of packets. Thus, it helps 
to avoid packet drops.  

Buddy-group-based offloading. The basic concept is sim-
ple: a busy packet capture engine offloads some of its traf-
fic to less busy or idle queues (cores) where it can be pro-
cessed by other threads. However, the challenge is how to 
preserve application logic—traffic belonging to the same 
flow must be delivered to the same application when multi-

ple applications are running in the system. Therefore, we 
introduce a buddy group concept: the receive queues ac-
cessed by a single application can form a buddy group. 
Traffic offloading is only allowed within a buddy group. 
We illustrate the buddy group concept in Figure 4.  In the 
system, each receive queue (RQ1—RQ4) is tied to a dis-
tinct core. Application 1’s threads are running at core 1 and 
2 while application 2’s threads are running at core 3 and 4. 
In this scenario, RQ1 and RQ2 can form a buddy group to 
implement the offloading mechanism for application 1. 
Similarly, RQ3 and RQ4 can form a buddy group to im-
plement the offloading mechanism for application 2.  

3.2.2 The WireCAP architecture 

Figure 5 shows the WireCAP architecture. It consists of a 
kernel-mode driver and a user-mode library.  
• The kernel-mode driver manages commodity NICs and 

provides low-level packet capture and transmit ser-
vices. It applies the ring-buffer-pool mechanism to 
handle short-term load imbalance.  

• The user-mode library extends and builds upon the 
services provided by the kernel-mode driver and exe-
cutes several mechanisms: it provides a Libpcap-
compatible interface for low-level network access, and 
it applies the buddy-group-based offloading mecha-
nism to handle long-term load imbalance.  

Core2

R
Q

1

R
Q

2

R
Q

3

R
Q

4

Multi-Core 
Host System

Multi-Queue 
NIC

application 1 application 2

Core1

Thd1 Thd2

Core3 Core4

Thd1 Thd2

Buddy group 1 Buddy group 2

Figure 4 The buddy-group concept 

C
apture

R
ecycle

Buddy list

Recv ring

Libpcap-compatible Interface

Capture thread

Work 
Queue

Free Chunks

A
ttach

RX Queue 

Packet Buffer Chunks

App Thread

...
...

U
ser-M

ode Library
K

ernel-M
ode D

river

Tx Queue 

Transmit ringring-buffer-pool

Forwarding 
captured pkts

Figure 5 The WireCAP architecture 



 8 

a. Lossless zero-copy packet capture and delivery 

WireCAP captures packets on a per-receive-queue basis. 
When a user-space application opens a receive queue to 
capture packets, the kernel-mode driver maps the ring buff-
er pool associated with the receive queue into the applica-
tion’s process space, and the use-mode library creates and 
assigns three key entities in the user space for the receive 
queue: 
• A capture thread performs the low-level capture and 

recycle operations, and implements the offloading 
mechanism. Typically, a capture thread and an appli-
cation thread do not run in the same core. The system 
can dedicate one or several cores to run all capture 
threads. 

• A work-queue pair consists of a capture queue and a 
recycle queue. A capture queue keeps the metadata of 
captured packet buffer chunks, and a recycle queue 
keeps the metadata of packet buffer chunks that are 
waiting to be recycled.  

• A buddy l i s t  keeps the buddies of a receive queue in 
a buddy group. It is used to implement the buddy-
group-based offloading mechanism. The receive 
queues in a buddy group are buddies. The user-mode 
library provides functions to allow an application to 
populate the buddies of a receive queue.  

 
WireCAP captures packets in two modes—the basic mode 
and the advanced mode. 

In the basic mode, WireCAP handles each receive 
queue independently. Figure 6a illustrates how this process 
works. (1) For each receive queue, its dedicated capture 
thread executes the low-level capture operations to move 
filled packet buffer chunks into the user space. The packet 
buffer chunks captured from a particular receive queue are 
placed into its capture queue in the user space. (2) To in-
gest packets from a particular receive queue, a packet-
processing thread accesses the receive queue’s capture 
queue in the user space through a Libpcap-compatible API 
such as pcap_loop() or pcap_dispatch(). Packet buffer 
chunks in the capture queue are processed one by one; a 

used packet buffer chunk is placed into the associated recy-
cle queue. (3) A capture thread executes the low-level re-
cycle operations to recycle used packet buffer chunks from 
its associated recycle queue.  
 A ring buffer pool can temporarily store R*M packets. 
Assuming Pin is the maximum incoming packet burst rate at 
a receive queue and Pp is the processing rate of the corre-
sponding packet-processing thread. WireCAP in the basic 
mode can handle a maximum burst of Pin*(R*M)/(Pin-Pp) 
packets without loss at the receive queue. However, 
WireCAP in the basic mode cannot handle long-term load 
imbalance. When one core is over-flooded by incoming 
packets, the corresponding capture queue in the user space 
will soon be filled. Because the captured packet buffer 
chunks cannot be processed and recycled in time, the free 
packet buffer chunks in the corresponding ring buffer pool 
become depleted, causing packet capture drops. 

In the advanced mode, WireCAP updates the basic 
mode operation (1) with the buddy-group-based offloading 
mechanism to handle long-term load imbalance. Figure 6b 
illustrates how this process works: (1.a) For each receive 
queue, its dedicated capture thread executes the low-level 
capture operations to move filled packet buffer chunks into 
the user space. (1.b) When a capture thread moves a chunk 
into the user space, the thread examines its associated cap-
ture queue in the user space. If the queue length does not 
exceed an offloading percentage threshold (T), WireCAP’s 
indicator of long-term load imbalance, the thread will place 
the chunk into its own capture queue. (1.c) When the 
threshold T is exceeded, the thread will query the associat-
ed buddy queue list and (1.d) place the chunk into the cap-
ture queue of an idle or less busy receive queue. The as-
sumption is that, when a capture queue is empty or shorter, 
the corresponding core is idle or less busy. 

In our design, a ring buffer pool is mapped into an applica-
tion’s process space. Thus, a network packet can be cap-
tured and delivered to the application with zero-copy. In 
addition, WireCAP addresses load imbalance to avoid 
packet drops. Therefore, WireCAP can achieve lossless 
zero-copy packet capture and delivery.  

b. Zero-copy packet forwarding 

A multi-queue NIC can be configured with one or multiple 
transmit queues for outbound packets. For each transmit 
queue, the NIC maintains a ring of transmit descriptors, 
called a transmit ring. To transmit a packet from a transmit 
queue, the packet should be attached to a transmit de-
scriptor in the transmit ring of the queue. The transmit de-
scriptor helps the NIC locate the packet in the system. After 
that, the NIC transmits the packet. 

With WireCAP, an application can use ring buffer 
pools as its own data buffers and handle captured packets 
directly from there. Therefore, the application can forward 
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a captured packet by simply attaching it to a specific 
transmit queue, potentially after the packet has been ana-
lyzed and/or modified. Attaching a packet to a transmit 
queue only involves metadata operations. The packet itself 
is not copied. 

c. Safety considerations 

Two aspects of WireCAP would raise safety concerns: (1) 
the sharing of memory between the kernel and the user-
space applications and (2) the offloading mechanism. 
However, WireCAP should not cause any safety problems. 
A misbehaving application will not crash the kernel. 
WireCAP only maps ring-buffer pools, which do not in-
volve critical kernel memory regions, into the address 
space of user-space applications. In addition, when a used 
packet buffer chunk is to be recycled, its metadata will be 
strictly validated and verified by the kernel. Similarly, a 
misbehaving application will not crash other applications. 
The offloading mechanism is implemented across the re-
ceive queues of a buddy group belonging to the same ap-
plication. Different applications do not interfere with one 
another. 

d. Supporting multiple NICs 

Because WireCAP operates on a per-receive-queue basis, 
WireCAP naturally supports multiple NICs. In Section 4, 
we run experiments to demonstrate that WireCAP supports 
multiple NICs. 

e. Application support 

Upon work-queue pairs, WireCAP supports a Libpcap-
compatible interface. Packets can be read with APIs such 
as pcap_dispatch () or pcap_loop (). Both blocking and 
non-blocking modes can be supported.  

3.3 Implementation 

WireCAP was developed on Linux. The kernel-mode driv-
er was implemented on the Intel 82599-based 10GigE NIC. 
We modified the ixgbe driver to implement the WireCAP 
functions, and the modifications involve a few hundred 
lines of code. We also implemented a user-mode library. 
The current version supports a simple Libpcap-compatible 
interface. We plan to release WireCAP for public access 
soon. 

4 Performance evaluations 
We evaluate WireCAP using the experiment tools and con-
figuration described in Section 2.2. In addition, we develop 
a third tool for our experiments. It is a multi-threaded ver-
sion of pkt_handler, called multi_pkt_handler, which can 
spawn one or multiple pkt_handler threads that share the 
same address space.  
 A simple name convention is used in the following 
sections. WireCAP-B-(M, R) represents WireCAP in the 

basic mode with a descriptor segment size of M and a ring 
pool size of R, while WireCAP-A-(M, R, T) represents 
WireCAP in the advanced mode with a descriptor segment 
size of M, a ring pool size of R, and an offloading threshold 
of T. 
 We compare WireCAP with existing packet capture 
engines (PF_RING, DNA, and NETMAP). The perfor-
mance metric is packet drop rate. In the experiments, these 
packet capture engines suffer different types of packet 
drops: (1) WireCAP suffers only packet capture drops, 
which can occur when the free packet buffer chunks in a 
ring buffer pool are depleted; (2) DNA and NETMAP suf-
fer only packet capture drops; and (3) PF_RING suffers 
both packet capture drops and packet delivery drops. To 
make the comparison easier, we only calculate the overall 
packet drop rate. Each NIC receive ring is configured with 
a size of 1,024 for all packet capture engines. PR_RING is 
set to run at mode 2, and the size of pf_ring buffer is set to 
10,240. The CPU frequency is set to 2.4 GHz. 

Packet capture in the basic mode. The traffic generator 
transmits P 64-Byte packets at the wire rate (14.88 million 
p/s). P varies, ranging from 1,000 to 10,000,000. NIC1 is 
configured with a single receive queue, tied to a core, on 
which a pkt_handler is launched to capture and process 
traffic for that queue. For pkt_handler, x is set to 0 and 300.  
 With x=0, pkt_handler does not incur any packet-
processing load. We test WireCAP with various R and M 
values. No packet drops are observed (Figure 7), indicating 
that WireCAP can capture packets at wire speed without 
loss. No packet drops were observed for NETMAP and 
DNA. However, PF-RING suffers significant packet drops 
(both packet delivery drops and packet capture drops).  
 With x=300, pkt_handler emulates a heavy load appli-
cation. Because the incoming packet rate (14.88 million 
p/s) far exceeds the packet-processing speed of pkt_handler 
on a 2.4 GHz CPU (38,844 p/s), the maximum P that a 
packet capture engine can handle without packet loss re-
flects its buffering capability for short-term bursts of pack-
ets. As shown in figure 8, WireCAP demonstrates superior 
buffering capability for short-term bursts of packets. For 
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example, DNA suffers a 15% packet drop at P=6,000, 
while WireCAP-B-(256, 500) has no packet drops even at 
P=100,000. WireCAP’s resilient buffering capability 
comes from its unique ring-buffer-pool design and is pro-
portional to the ring-buffer pool capacity R*M. WireCAP-
B-(256, 500) clearly has a  higher buffering capability than 
WireCAP-B-(256,100). At P=100,000, WireCAP-B-
(256,500) has no packet drops, whereas WireCAP-B-(256, 
100) has a packet drop rate of 71%. 
 Figure 9 illustrates that WireCAP’s buffering capabil-
ity is proportional to the overall ring buffer capacity R*M. 
The individual R or M does not affect the overall perfor-
mance. In the experiment, R and M are varied, but R*M is 
fixed. The results indicate that WireCAP-B-(64, 400), 
WireCAP-B-(128, 200), and WireCAP-B-(256, 100) have 
approximately the same packet drop rates at different P 
values.  

Packet capture in the advanced mode. The traffic genera-
tor replays the captured data at the speed exactly as record-
ed. NIC1 is configured with n receive queues, with each 
queue tied to a distinct core. A multi_pkt_handler runs at 
the system and spawns n pkt_handler threads. Each thread 
runs on a core that has a tied receive queue. It captures and 
processes traffic from its queue. For pkt_handler, x is set to 
300. We vary the packet capture engines in the experi-
ments, using PF_RING, DNA, NETMAP, and WireCAP in 
the basic mode and WireCAP in the advanced mode, re-
spectively. For WireCAP in the advanced mode, the n 
queues form a single buddy group.  

In the basic mode, WireCAP can capture packets at wire 
speed and effectively handle short-term bursts of packets. 
Although WireCAP in the basic mode achieves better per-
formance than existing packet capture engines, it still suf-
fers significant packet losses, due to long-term load imbal-
ance (Figure 10). WireCAP in the advanced mode imple-
ments the buddy-group-based offloading mechanism to 
address that problem. This mechanism allows the system 
resources to be better utilized. It is evident that the offload-
ing mechanism achieves a significantly improved perfor-
mance (Figure 10). For WireCAP in the advanced mode, 
the offloading mechanism is triggered when the queue 
length of a capture queue exceeds the offloading percent-
age threshold (T). In general, WireCAP performs better 
when T is set to a relatively lower value (Figure 11).  

Packet forwarding. We repeated the above experiments 
with a small modification to pkt_handler: a processed 
packet is forwarded through NIC2 (Figure 2) instead of 
being discarded. NIC2 is directly connected to a packet 
receiver. By counting the number of packets that the traffic 
generator sends and the number of packets the traffic re-
ceiver receives, we calculate the packet drop rate. Figure 12 
illustrates the experiment results.  
 The experiments demonstrate that WireCAP’s packet 
forwarding function is capable of supporting middlebox 
applications. Again, the experiments reveal that the buddy-
group-based offloading mechanism can achieve a signifi-
cant improved performance.  
 We cannot make multi_pkt_handler work under 
NETMAP in this experiment. Under NETMAP, a 

 
Figure 10 WireCAP packet capture in the advanced mode, 
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Figure 11 WireCAP packet capture in the advanced mode 
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pkt_handler thread cannot synchronize between receiving 
and transmitting because NETMAP’s NIOCTXSYNC (or 
NIOCRXSYNC) operations do not work on a per-receive-
queue (or per-transmit-queue) basis.  

WireCAP scalability. We now evaluate and discuss 
WireCAP’s scalability performance. In the experiments, 
each of NIC1 and NIC2 is connected directly to a traffic 
generator. The generators transmit 1x109 64-Byte or 100-
Byte packets at the wire rate. Each NIC is configured with 
n receive queues, with each queue tied to a distinct core.  
• For	   NIC1,	   a	   multi_pkt_handler	   is	   launched,	   which	  

spawns	  n	  pkt_handler	  threads.	  Each	  thread	  runs	  on	  
a	  core	  that	  has	  a	  tied	  receive	  queue	  of	  NIC1.	  It	  cap-‐
tures	   and	   processes	   traffic	   from	   its	   queue.	   For	  
pkt_handler,	   x	   is	   set	   to	   0,	   with	   processed	   packet	  
forwarded	  on	  through	  NIC2.	  

• For	  NIC2,	   a	  multi_pkt_handler	   is	   similarly	   launched	  
except	   that	   captured	   packets	   are	   forwarded	   on	  
through	  NIC1.	  
	  

In	  this	  experiment,	  we	  only	  compare	  DNA	  and	  WireCAP	  
in	   the	  advanced	  mode	  because	  PF_RING’s	  performance	  
is	  too	  poor	  and	  we	  cannot	  make	  multi_pkt_handler	  work	  
under	  NETMAP.	  With	  WireCAP	   in	   the	   advanced	  mode,	  
NIC1’s	   queues	   form	   a	   buddy	   group	   and	  NIC2’s	   queues	  
form	   another	   buddy	   group.	   Each	   of	   NIC1	   and	   NIC2	   is	  
directly	  connected	  to	  a	  packet	  receiver.	  By	  counting	  the	  
number	  of	  packets	   that	   the	   traffic	  generators	  send	  and	  
the	  number	  of	  packets	  that	  the	  traffic	  receivers	  receive,	  
we	  calculate	   the	  packet	  drop	  rate.	  Figure	  13	   illustrates	  
the	  experiment	  results.	  
	   When	   the	   generators	   transmit	   100-‐Byte	   packets,	  
NIC1	   and	   NIC2	   in	   together	   receive	   approximately	   20	  
million	   p/s.	   We	   did	   not	   observe	   any	   packet	   loss	   for	  
WireCAP	   and	   DNA.	   The	   experiment	   indicates	   that	  
WireCAP	   scales	   well	   with	   multiple	   NICs.	   Please	   note:	  
NIC1	   and	  NIC2	   are	   installed	   in	  a	   single	  NUMA	  node	  on	  
our	  experiment	  system	  (Figure	  2)	  
	   When	  the	  generators	  transmit	  64-‐Byte	  packets,	  the	  
system	  needs	  to	  handle	  an	  approximate	  rate	  of	  30	  mil-‐
lion	  p/s.	  Under	  such	  conditions,	  the	  experiment	  system	  
bus	  becomes	  saturated,	  causing	  both	  DNA	  and	  WireCAP	  

to	  suffer	  significant	  packet	  drops.	  Compared	  with	  DNA,	  
WireCAP	   requires	   extra	   I/O	   operations	   and	   memory	  
accesses	   to	   implement	   its	   ring-‐buffer-‐pool	   and	   buddy-‐
group-‐based	   offloading	   mechanisms.	   When	   the	   system	  
bus	   is	   saturated,	   the	   I/O	   operations	   and	   memory	   ac-‐
cesses	   become	   costly.	   As	   a	   consequence,	  WireCAP	   suf-‐
fers	   a	   higher	   packet	   drop	   rate	   than	   DNA.	   However,	  
WireCAP	  is	  designed	  to	  use	  additional	  system	  resources	  
to	  address	  the	  packet	  drop	  problem.	  Certainly	  WireCAP	  
of	  such	  a	  design	  will	  lose	  some	  scalability	  performance.	  
We	  believe	  this	  is	  an	  appropriate	  tradeoff.	  

5 Related work 
RSS and Flow Director [11, 22] are advanced NIC technol-
ogies that enable the efficient distribution of packets across 
receive queues in a multi-queue NIC. RSS uses a hash 
function in the NIC. The NIC computes a hash value for 
each incoming packet. Based on hash values, the NIC as-
signs packets of the same flow to a single queue. Flow Di-
rector maintains a flow table in the NIC to assign packets 
across queues. Each flow has an entry in the table. The 
entry tracks which queue a flow should be assigned to. The 
flow table is established and updated by traffic in both the 
forward and reverse directions. Flow Director is typically 
not used in a packet capture environment because the traf-
fic is unidirectional. 
 The protocol stack of a general purpose OS can pro-
vide standard packet capture services through raw sockets 
(e.g., PF_PACKET). However, research [9] show that the 
performance is inadequate for packet capture in high-speed 
networks. 
 Several packet I/O engines have been proposed to 
boost the performance of commodity NICs in packet cap-
ture, such as NETMAP [15], DNA [16], PF_RING [14], 
and the PacketShader I/O engine (PSIOE) [23], These 
packet capture engines essentially bypass the standard pro-
tocol stack and achieve improved performance. Table 2 
compares WireCAP and the existing packet-capture en-
gines. 
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WireCAP 
Goal: avoiding packet drops. 
Deficiency: requiring additional resources. 

DNA 
NETMAP 

Goal: minimizing packet capture costs. 
Deficiency: limited buffering capability, 

no offloading mechanism. 

PSIOE 
Goal: maximizing system throughput. 
Deficiency: limited buffering capability; 

copying in packet capture. 

PF_RING 

Goal: minimizing packet capture costs. 
Deficiency: copying in packet capture; 

receive livelock problem;  
no offloading mechanism. 

Table 2 WireCAP vs. existing packet-capture engines 

PSIOE is similar to PF_RING, except that PSIOE uses a 
user-space thread, instead of Linux NAPI polling, to copy 
packets from receive ring buffers to a consecutive user-
level buffer (user buffer). For PacketShader, the copy oper-
ation in packet capture makes little impact on performance 
and does not consume additional memory bandwidth be-
cause the user buffer likely resides in CPU cache [23]. 
However, this result does not have wide applicability. If a 
network application that uses PSIOE to capture packets has 
a large working set, the user buffer is not likely to reside in 
CPU cache. Under such condition, copying will have a 
significant impact on performance. PSIOE was specifically 
designed and optimized for PacketShader. It provides only 
a limited buffering capability for the incoming packets. 
PSIOE is not suitable for a heavy-load application. 
 At a high level, WireCAP provides a new packet I/O 
framework for commodity NICs in high-speed networks. 
Therefore, there are some similarities between WireCAP 
and Intel DPDK [27]. Intel DPDK provides a set of librar-
ies and drivers for fast packet processing on x86 platforms. 
However, Intel DPDK does not provide a complete solution 
to avoid packet drops in high-speed networks as WireCAP 
does.  

6 Conclusion & discussion 
In this paper, we have described our architectural approach 
in developing a novel packet capture engine for commodity 
NICs in high-speed networks. Experiments have demon-
strated that WireCAP achieves better packet capture per-
formance than that of the existing packet capture engines 
through the use of additional resources. WireCAP employs 
additional computing resources by dedicating a capture 
thread to perform low-level ioctl operations for each re-
ceive queue. A modern multicore system can provide suffi-
cient computing resources to support WireCAP operations.   
 WireCAP utilizes large amounts of kernel space 
memory to support its ring-buffer-pool mechanism. For 

WireCAP-B-(M, R) or WireCAP-A-(M, R, T), a single pool 
requires R*M*2K bytes of memory (Note: a cell is two 
Kbytes in the current implementation). If n receive queues 
are configured, then n*R*M*2K bytes are required. Be-
cause WireCAP’s buffering capability is proportional to the 
ring buffer capacity R*M, there is a tradeoff between 
WireCAP’s buffering capability and its memory consump-
tion. 
 Determining an optimal value for T in WireCAP’s 
advanced mode operation also presents tradeoff challenges. 
Offloading is necessary to prevent packet drops due to a 
long-term load imbalance. However, redirecting packets to 
different, less busy capture queues can result in a degraded 
CPU efficiency caused by a loss of the core affinity on 
packet processing [11]. Therefore, a simple guideline for 
configuring T is as follows: When avoiding packet drops is 
critical to the application, T should be set to a relatively 
lower value (e.g., 50%); otherwise, T should be set to a 
relatively higher value (e.g., 80%). 
 WireCAP uses batch processing to reduce packet cap-
ture costs. Applying this type of technique may entail side 
effects, such as latency increases and inaccurate time-
stamping [28]. 
 Ideally, WireCAP is designed to support the packet 
capturing and processing paradigm as shown in Figure 1. 
Within a multi-queue NIC, packets are distributed across 
receive queues using a hardware-based traffic-steering 
mechanism. And each receive queue is handled by a thread 
(or process) of a packet processing application. Because 
this paradigm uses NIC hardware, instead of CPU, to clas-
sify and steer packets across cores, it helps to save CPU for 
packet capturing and processing. On the other hand, mod-
ern NICs are becoming more powerful, and typically fea-
ture advanced traffic filtering, classification, and steering 
mechanisms. We believe this packet capturing and pro-
cessing paradigm is a promising approach.  
 However, WireCAP is flexible and robust enough to 
support other types of packet capturing and processing par-
adigms: 
• Multiple threads (or processes) of a packet-processing 

application can access a single NIC receive queue, 
through the queue’s corresponding work-queue pair in 
user space. Certainly, this approach incurs extra syn-
chronization overheads across these threads.	  

• Upon WireCAP work-queue pairs, a packet-processing 
application can implement its own traffic steering and 
classification mechanisms to create packet queues at 
the application level, in the cases of the NIC hardware-
based traffic classification and steering mechanism 
cannot meet the application requirements; or there are 
not enough physical queues in the NIC. 	  

In these paradigms, a simple approach is to copy captured 
packets from WireCAP into the application’s own set of 



 13 

buffers. This approach simplifies WireCAP’s recycle oper-
ations while the benefit of zero-copy delivery will not be 
available. However, WireCAP still provides lossless packet 
capture and delivery services. 
 WireCAP can be configured to switch between sup-
porting different packet capturing and processing para-
digms. 
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