
1

WireCAP: a Novel Packet Capture Engine for Commodity NICs in High-speed Networks

Wenji Wu, Phil DeMar
Fermilab, USA

wenji@fnal.gov; demar@fnal.gov

Abstract
Packet capture is an essential function for many network
applications. However, packet drop is a major problem
with packet capture in high-speed networks.

This paper presents WireCAP, a novel packet capture
engine for commodity network interface cards (NICs) in
high-speed networks. WireCAP provides lossless zero-copy
packet capture and delivery services by exploiting multi-
queue NICs and multicore architectures. WireCAP intro-
duces two new mechanisms—the ring-buffer-pool mecha-
nism and the buddy-group-based offloading mechanism—
to address the packet drop problem of packet capture in
high-speed network. WireCAP is efficient. It also facilitates
the design and operation of a user-space packet-processing
application. Experiments have demonstrated that WireCAP
achieves better packet capture performance when compared
to existing packet capture engines.

In addition, WireCAP implements a packet transmit
function that allows captured packets to be forwarded, po-
tentially after the packets are modified or inspected in
flight. Therefore, WireCAP can be used to support middle-
box-type applications. Thus, at a high level, WireCAP pro-
vides a new packet I/O framework for commodity NICs in
high-speed networks.

1 Introduction
Packet capture is an essential function for many network
applications, including intrusion detection systems (IDS)
[1, 2, 3], and packet-based network performance analysis
applications [4]. Packets are typically captured from the
wire, temporarily stored at a data capture buffer, and final-
ly delivered to the applications for processing. Because
these operations are performed on a per-packet basis, pack-
et capture is typically computationally and I/O throughput
intensive. In high-speed networks (10 Gbps and above),
packet capture faces significant performance challenges.

Packet drop is a major problem with packet capture in
high-speed networks. There are two types of packet drop:
packet capture drop and packet delivery drop. Packet cap-
ture drop is mainly caused by the inabilities of packet cap-
ture to keep pace with the incoming packet rate. Conse-
quently, packets may be dropped because they cannot be
captured in time. Packet delivery drop is mainly caused by
the inability of the application to keep pace with the packet
capture rate. Consequently, the data capture buffer over-
flows, and packet drops occur- even when 100% of the
network traffic is captured from the wire. Any type of

packet drop will degrade the accuracy and integrity of net-
work monitoring applications [2, 5]. Thus, avoiding packet
drops is a fundamental design goal in packet capture tools.

There are two approaches to performing packet cap-
ture. The first approach is to use a dedicated packet capture
card to perform the function in hardware [6, 7]. This ap-
proach requires the least amount of CPU intervention, thus
saving the CPU for packet processing. A dedicated packet
capture card can ensure that 100% of the network packets
are captured and delivered to applications without loss.
However, this approach demands custom hardware solu-
tions, which tend to be more costly, relatively inflexible,
and not very scalable.

An alternative approach is to use a commodity system
with a commodity NIC to perform packet capture. In this
approach, the commodity NIC is put into promiscuous
mode to intercept network packets. A packet capture engine
(a software driver) receives the intercepted packets and
provides support to allow user-space applications to access
the captured packets. This capture solution depends mainly
on the software-based packet capture engine, which is flex-
ible and cost-effective, but requires significant system CPU
and memory resources. Therefore, this solution is not suit-
able for resource-limited systems where resource competi-
tion between packet capture and packet processing might
lead to drops. However, with recent technological advances
in multicore platforms and multi-queue NICs, this approach
becomes more appealing due to the availability of ample
system CPU resources and I/O throughputs, and paves the
way for a new paradigm in packet capturing and processing
[8, 9, 10].

The new paradigm typically works as follows. A mul-
ti-queue NIC is logically partitioned into n receive queues,
with each queue tied to a distinct core of a multicore sys-
tem (Figure 1). Packets are distributed across the queues
using a hardware-based traffic-steering mechanism, such as
receive-side scaling (RSS) [11]. A thread (or process) of a
packet-processing application runs on each core that has a
tied queue. Each thread captures packets via a packet cap-
ture engine and handles a portion of the overall traffic. On
a multicore system, there are several programming models
(e.g., the run-to-completion model and the pipeline model
[12]) for a packet-processing application. Here, the applica-
tion may be of any type. This new paradigm essentially
exploits the computing parallelism of multicore systems
and the inherent data parallelism of network traffic to ac-
celerate packet capturing and processing. A basic assump-

FERMILAB-PUB-14-308-CD

Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy.

 2

tion associated with this approach is that the hardware-
based balancing mechanism is capable of evenly dis-
tributing the incoming traffic among cores. Thus, each core
would handle 1/n of the overall traffic and the packet rate at
each core would be reduced to 1/n of the overall packet rate
from the network, with a significantly reduced chance of
causing a packet drop. However, this assumption is often
not the case in practice [8]. Typically, a NIC’s traffic-
steering mechanism distributes packets to cores based on a
per-flow policy that assigns packets of the same flow to the
same core. A flow is defined by one or more fields of the
IP 5-tuple. Such a traffic-steering mechanism maintains
core affinity in network processing [11], helping to pre-
serve application logic (i.e., packets belonging to the same
flow must be delivered to the same application). However,
this method of traffic steering can lead to a load imbalance
condition in which certain cores become overloaded while
others remain idle. In the worst-case scenario, a single core
will be flooded with all the network traffic at wire speed.
 There are two types of load imbalance. The first type is
a short-term load imbalance on one or several cores. In this
situation, an overloaded core experiences bursts of packets
on a short scale. Here, “short” typically refers to time inter-
vals up to 100 – 500 ms [13]. The second type is a long-
term load imbalance, which may be due to an uneven dis-
tribution of flow groups in the NIC. Our research reveals
that (1) load imbalance of either type occurs frequently on
multicore systems; and (2) existing packet capture engines
(e.g., PF_RING [14], NETMAP [15], and DNA [16]) can
suffer significant packet drops when they experience load
imbalance of either type in a multicore system, due to one
or several of the following limitations: inability to capture
packets at wire speed, limited buffering capability, and
lacking of an effective offloading mechanism to address
long-term long imbalance.
 In order to avoid packet drops, load imbalances on
multicore systems must be handled properly. There are
several approaches for solving this problem. A first ap-
proach is to apply a round-robin traffic steering mechanism
at the NIC level to distribute the traffic evenly across the
queues. However, this approach cannot preserve the appli-

cation logic (see Section 2.3). A second approach is to use
existing packet capture engines (e.g., DNA) and handle
load imbalance in the application layer. But an application
in user space has little knowledge of low-level layer condi-
tions, and cannot effectively handle load imbalance (see
Section 2.3). A third approach is to design a new packet-
capture engine that addresses load imbalance at the packet-
capture level. A packet-capture engine has full knowledge
of low-level layer conditions, placing it in a better position
to deal with load imbalance. In addition, this approach sim-
plifies the design of a packet-processing application. In this
paper, we focus on the third approach.

This paper presents WireCAP, a novel packet capture
engine for commodity NICs in high-speed networks.
WireCAP is designed to support the packet capturing and
processing model shown in Figure 1. It has several salient
features.
 (1) WireCAP provides lossless packet capture and
delivery services by exploiting multi-queue NICs and multi-
core architectures. We have designed two new mechanisms
to handle load imbalance in order to avoid packet drops.
 For short-term load imbalance, we design and imple-
ment a ring-buffer-pool mechanism. A ring buffer pool,
which consists of chunks of packet buffers, is allocated for
each receive queue in kernel. Through dynamic packet
buffer management, each chunk of packet buffers can be
used to receive packets flowing through the network, and
temporarily store received packets. A ring buffer pool’s
capacity is configurable. When a large pool capacity is con-
figured, a ring buffer pool can provide sufficient buffering
at the NIC’s receive ring level to accommodate short-term
bursts of packets.
 To handle long-term load imbalance, we apply a bud-
dy-group-based offloading mechanism. The basic idea is
simple: a busy packet capture engine offloads some of its
traffic to less busy or idle queues (cores) where the traffic
can be processed by other threads. However, the challenge
of our design is how to preserve application logic—traffic
belonging to the same flow must be delivered to the same
application when multiple applications are running in the
system. We introduce a buddy group concept: the receive
queues accessed by threads (or processes) of a single appli-
cation can form a buddy group. Traffic offloading is only
allowed within a buddy group.
 (2) WireCAP is efficient. WireCAP employs several
optimization techniques—including pre-allocated large
packet buffers, packet-level batching processing, and zero-
copy—to reduce the packet capture and delivery costs.
These optimization techniques have been used in the past
and are well understood [14—16, 23]. The challenge in
designing WireCAP was to understand how to combine
these techniques with our ring-buffer-pool and buddy-
group-based offloading mechanisms in an effective solu-
tion to achieve high performance.

Traffic Steering

Core 1 Core 2 Core n

R
Q

 2

R
Q

 n

...

...
C

ap
tu

re
E

ng
in

e

C
ap

tu
re

E
ng

in
e

Network Traffic

Thread Thread Thread

C
ap

tu
re

E
ng

in
e

M
ul

ti-
Q

ue
ue

N

IC
M

ul
ti-

C
or

e
H

os
t S

ys
te

m

R
Q

 1

Figure 1 A new packet capturing and processing paradigm

 3

 In high-speed networks, excessive data copying results
in poor performance [15, 17, 18, 19]. Zero-copy is widely
used in our design. WireCAP can achieve zero-copy packet
capture and delivery (i.e., a network packet can be captured
and delivered to an application with zero-copy), and zero-
copy forwarding (i.e., a captured packet can be forwarded
with zero-copy).
 We specifically separate short-term load imbalance
from long-term load imbalance and address them appropri-
ately. When only short-term load imbalance occurs,
WireCAP not only avoids packet drops but also ensures
that packets belonging to the same flow are handled in the
same core. This design improves performance.
 (3) With WireCAP, the design of a packet-processing
application can be simplified. WireCAP addresses load
imbalance in the packet-capture engine level to avoid pack-
et drops. Therefore, an application need not implement its
own mechanism to handle load imbalance in the applica-
tion layer.
 (4) With WireCAP, the performance of a packet pro-
cessing application can be improved. WireCAP provides
large ring buffer pools in the kernel to accommodate cap-
tured packets and supports zero-copy packet capture and
delivery. Therefore, an application need not copy captured
packets from low-level ring buffer pools and store them
into its own set of buffers in user space. Instead, the appli-
cation can use ring buffer pools as its own data buffers, and
process the captured packets directly from there. This strat-
egy helps to improve application performance.
 (5) WireCAP implements a packet transmit function
that allows captured packets to be forwarded, potentially
after being analyzed in flight. Thus, WireCAP can be used
to support middlebox-type applications.

Ultimately, WireCAP is intended to advance the state-of-
the-art for packet capture engines on commodity multicore
systems. Our design is unique in the sense that we seek to
address off-the-wire packet capture concerns in conjunc-
tion with packet delivery issues to the application. The in-
novation in our design is twofold. First, we develop a new
NIC ring-buffer-pool management mechanism that dramat-
ically increases packet ingest buffering capabilities. Se-
cond, we introduce a load imbalance management mecha-
nism that optimizes captured packet processing for multi-
core systems. Together, these innovations potentially pave
the way for advancement of packet analysis tools to deal
with emerging high-speed networks.
 We implemented WireCAP in Linux. It consists of a
kernel-mode driver and a user-mode library. The optimized
kernel-mode driver manages commodity NICs and pro-
vides WireCAP’s low-level packet capture and transmit
services. The user-mode library is Libpcap-compatible
[20], which provides a standard interface for low-level

network access and allows existing network monitoring
applications to use WireCAP without changes. We evaluat-
ed WireCAP with several experiments. Experiments have
demonstrated that WireCAP achieves better performance
compared with existing packet captures engines.

2 Background and Motivation
2.1 Problems with existing packet capture engines

When a commodity system with a commodity NIC is used
for packet capture, the NIC is put into promiscuous mode
to capture network packets. A packet capture engine man-
ages the NIC and provides packet capture services to user-
space applications.
 Capturing packets from the wire. Packet capture is a
special case of packet reception [21]. Typically, a commod-
ity NIC can be logically partitioned into one or multiple
receive queues. For each receive queue, the NIC maintains
a ring of receive descriptors, called a receive ring. The
number of receive descriptors in a ring is device-dependent.
For example, an Intel 82599-based 10 GigE NIC has 8192
receive descriptors [22]. Assuming that the NIC is config-
ured with n receive queues, each receive queue will have,
at most, a ring size of 8192 𝑛 . A receive descriptor must
be initialized and pre-allocated with an empty ring buffer in
host memory—in the ready state—to receive a packet. Be-
fore packet capture begins, the packet capture engine per-
forms this receive ring initialization. When network pack-
ets arrive, the NIC moves packets from the wire to the ring
buffers via direct memory access (DMA). Subsequently,
applications can access the received packets through the
OS services provided by the packet capture engine. Receive
descriptors are used circularly and repeatedly. The packet
capture engine needs to reinitialize a used receive de-
scriptor and refill it with an empty ring buffer as quickly as
possible because incoming packets will be dropped if the
receive descriptors in the ready state aren’t available.

Existing packet capture engines. The protocol stack
of a general purpose OS can provide standard packet cap-
ture services through raw sockets (e.g., PF_PACKET).
However, because the protocol stack is designed to support
a wide range of network applications, it is not optimized for
packet capture. Consequently, the performance is inade-
quate for packet capture in high-speed networks. A number
of packet capture engines, such as PF_RING [14],
NETMAP [15], and DNA [16], have been developed. The-
se packet capture engines essentially bypass the standard
protocol stack and achieve improved performance through
techniques such as pre-allocated large packet buffer, pack-
et-level batch processing, and zero-copy [15, 23]. Existing
packet capture engines can be classified into two types,
depending on how captured packets are delivered from ring
buffers to applications:

 4

 Type-I Packet Capture Engine, represented by
PF_RING, pre-allocates a large packet buffer in kernel
space for each receive ring. The large packet buffer con-
sists of fixed-size cells. Each cell corresponds to a ring
buffer and is assigned to a receive descriptor in the ring. A
receive descriptor and its assigned ring buffer are 1-to-1
mapped to one another. The ring buffers are used circularly
and repeatedly; a used receive descriptor is refilled with the
same assigned ring buffer. In addition, PF_RING allocates
an intermediate data buffer, termed pf_ring, within the ker-
nel and uses it as data capture buffer for each receive ring.
When the network packets arrive, the NIC moves the pack-
ets from the wire to the ring buffers via DMA. Subsequent-
ly, the packet capture engine copies packets from the ring
buffers to pf_ring (for example, using NAPI polling in
Linux [21]). Finally, a user-space application accesses cap-
tured packets from pf_ring. To improve performance,
pf_ring is memory-mapped into the address space of the
user-space application to avoid copying.
 Type-II Packet Capture Engine, represented by DNA
and NETMAP. Like PF_RING, DNA and NETMAP im-
plement a similar pre-allocated large packet buffer scheme
for ring buffer operations. DNA and NETMAP expose
shadow copies of receive rings to user-space applications.
The ring buffers of a receive ring are memory-mapped into
the address space of a user-space application. The ring
buffers not only are used to receive packets but are also
employed as data capture buffer to temporarily store the
packets. When network packets arrive, the NIC moves
packets from the wire to the ring buffers via DMA. A user-
space application accesses packets directly from the
memory-mapped ring buffers. The advantage of this design
is that it avoids the costs of unnecessary data movement.
 The problems. A Type-I packet capture engine re-
quires at least one copy to move a packet from the NIC ring
into the user space. At high packet rates, excessive data
copying results in poor performance. In addition, it may
suffer the receive livelock problem in user context [24].
 A Type-II packet capture engine has limited buffering
capability. For DNA or NETMAP, a received packet is
kept in a NIC ring buffer until it is consumed. During this
period, the ring buffer and its associated receive descriptor
cannot be released and reinitialized. Because a NIC ring
has a limited number of receive descriptors, the receive
descriptors in the ready state can be rapidly depleted if the
received packets are not consumed in a timely manner.
Consequently, subsequent packets would be dropped.
 Neither type of packet capture engine has an effective
offloading mechanism to address the long-term load imbal-
ance problem.

2.2 Experimental proof

We conduct two experiments to support our claims. In the
first, we demonstrate that load imbalance occurs frequently

in multicore systems. In the second, we demonstrate the
deficiencies of existing packet capture engines, including
PF_RING, DNA, and NETMAP.

Experiment tools. The first tool is called queue_profiler. It
is a single-threaded application that captures packets from a
specific receive queue and counts the number of packets
captured every 10 ms.
 The second tool is called pkt_handler and is single-
threaded. It captures and processes packets from a specific
queue and executes a repeating while loop. In each loop, a
packet is captured and applied with a Berkeley Packet Fil-
ter (BPF) [25] x times before being discarded. By varying
x, we simulate different packet-processing rates of real ap-
plications during monitoring. In our experiments, the BPF
filter “131.225.2 and UDP” is used, and x is set to 0 and
300, respectively. With x=0, no packet-processing load is
actually applied. We use this value to evaluate whether a
packet capture engine can capture packets at wire speed
with no loss. With x=300, the packet-processing rate of a
single 2.4 GHz CPU is 38,844 p/s. The value 300 was se-
lected to emulate a heavy load application such as snort [1],
which is capable of sustaining similar packet-processing
rates [26].
 Experiment configuration. The experiment system is
depicted in Figure 2. It consists of two Intel E5-2690 pro-
cessors and two Intel 82599-based 10 GigE NICs—NIC1
and NIC2. The system I/O bus is PCIE-Gen3. A traffic
generator capable of generating traffic at wire speed or
replaying captured traffic at the speed exactly as recorded
is connected directly to NIC1. NIC2 is not used in this ex-
periment.
 The system runs a 64-bit Scientific Linux 6.0 server
distribution. For packet capture engines, we use driver
pf_ring_5.5.2 (PF_RING) [14], ixgbe-3.10.16-DNA (DNA)
[16], and 20131019-netmap (NETMAP) [15].
 Experiment data. To ensure that the evaluations are
practical and repeatable, we capture traffic from the Fer-
milab border router for use as experiment data. The exper-
iment data includes 5 million packets and lasts for approx-
imately 32 seconds.

Experiment 1. The traffic generator replays the captured
data at the speed exactly as recorded. NIC1 is configured
with six receive queues (queue 0 – 5), with each queue tied

No
de

 1

P0 P1

I
O
H

I
O
H

NIC1

MemMemNo
de

 0

NIC2

Figure 2 Experiment system

 5

to a distinct core (core 0 – 5). A separate queue_profiler is
launched to profile traffic for each queue. We use DNA as
the packet capture engine. No packet drops occur in the
experiment. Figure 3 presents the time-series of the number
of packets received during a short time interval for queue 0
and 3, respectively. The figure shows that a load imbalance
can occur routinely in a multicore system because the Intel
NIC distributes packets to cores based on a per-flow policy
that assigns packets of the same flow to the same core [22].
We observed both short-term load imbalance (short-term
bursts of packets) and long-term load imbalance (queue 0
receives much more traffic than queue 3). Because network
traffic is bursty by nature and TCP is the dominant
transport protocol, a short-term load imbalance occurs
more frequently in practice. When we vary the number of
receive queues, similar load imbalance patterns are ob-
served.

Experiment 2. The traffic generator replays the same cap-
tured data as in experiment 1. Again, NIC1 is configured
with six receive queues (queue 0 – 5), and each queue tied
to a distinct core (core 0 – 5) on which a separate
pkt_handler is launched to capture and process the traffic
for each queue. For pkt_handler, x is set to 0 and 300, re-
spectively. The CPU speed is set at 2.4 GHz. We vary the
packet capture engines in the experiments, using PF_RING
(mode 2), DNA, and NETMAP, respectively. Each NIC
receive ring is configured with a size of 1,024. For
PF_RING, the size of pf_ring buffer is set to 10,240. We
calculate the packet capture drop rate and the packet deliv-
ery drop rate. Note: because PF_PACKET’s performance
is too poor compared with these packet capture engines, we
do not include PF_PACKET in our experiments. Readers
can refer to [9] for PF_PACKET evaluation.

With x=0, each pkt_handler does not incur any packet-
processing load. In the experiments, we did not observe any
packet drops for DNA or NETMAP. However, we ob-
served that PF-RING suffers small packet capture drops at
queue 3.
 With x=300, pkt_handler emulates a heavy load appli-
cation. Table 1 lists the packet drop rates for queue 0 and 3,
respectively. At queue 0, the incoming packet rate sustains
approximately 80,000 p/s from 10s to 35s (Figure 3, Note:

the traffic is binned in 10ms interval), which far exceeds
the packet-processing speed of a 2.4 GHz CPU (38,844
p/s). Because the pkt_handler at queue 0 is over-flooded by
incoming packets, all packet capture engines suffer sub-
stantial packet drops. DNA and NETMAP suffer substan-
tial packet capture drops because they use ring buffers as
data capture buffers, which has a limited buffering capabil-
ity. PF_RING avoids packet capture drops but suffers sub-
stantial packet delivery drops due to both the inability of
the application to keep pace with the packet capture rate
and the receive livelock problem [24]. In addition, because
PF_RING requires at least one copy to move a packet from
the NIC ring into the user space, PF_RING incurs higher
packet capture costs than DNA and NETMAP. Conse-
quently, PF_RING suffers higher overall packet drops than
DNA and NETMAP. Table 1 demonstrates that the existing
packet capture engines lack an offloading capability to mi-
grate traffic to less busy or idle cores, where other thread
would process it.
 At queue 3, the incoming packet rate sustains approx-
imately 20,000 p/s between 1s and 32s (Figure 3). While
this rate is less than the packet processing speed of a 2.4
GHz CPU (38,844 p/s), DNA and NETMAP still suffer
significant packet capture drops due to the limited buffing
capability for dealing with short-term bursts of packets. For
example, during the time interval [3.86s 3.97s], 2724 pack-
ets are sent to queue 3. Because pkt_handler can process
only 10ms * 38,844 p/s = 388 packets during the interval
and because the ring buffers can temporarily buffer 1024
packets at most, packet capture drops inevitably occur. PF-
RING also suffers small packet capture drops.

2.3 How to avoid packet drops that are caused by load
imbalance?

The experiments reveal that existing packet-capture en-
gines suffer significant packet drops when they experience
load imbalance in a multicore system. To avoid packet
drops, we must handle load imbalance. There are several
possible approaches.
 A first approach is to apply a round-robin traffic steer-
ing mechanism at the NIC level to distribute the traffic
evenly across the queues. However, this approach cannot
preserve the application logic because packets belonging to

 NETMAP DNA PF_RING
Receive Queue 0:
Packet Capture Drops 46.5% 50.1% 0%
Packet Delivery Drops 0% 0% 56.8%

Receive Queue 3:

Packet Capture Drops 33.4% 9.3% 0.8%
Packet Delivery Drops 0% 0% 0%

Table 1 Packet Drop Rates
Figure 3 Load imbalance,

0"
500"

1000"
1500"
2000"
2500"
3000"

0" 5" 10" 15" 20" 25" 30" 35"

N
um

be
r"o

f"P
ac
ke
ts
"

Time"(Second)"<"Traffic"is"binned"in"10ms"interval"

Receive"queue"0"
Receive"queue"3"

 6

the same flow can be delivered to different applications
when multiple applications are running in the system.
 A second approach is to use existing packet capture
engines (e.g., DNA) and to address load imbalance in the
application layer. For example, an application thread can
read packets from a queue, and store them into its own set
of buffers, and then process a fixed number of packets be-
fore reading again. When load imbalance occurs, the appli-
cation thread can move packets in some flows over to other
threads if its own buffers were filling up. However, this
approach has several limitations:
• An application in user space has little knowledge of

low-level layer conditions. If the application thread
cannot read data from a queue in time, bursts of net-
work packets would overrun low-level packet buffers
and cause packet drops.

• Because existing packet capture engines have a limited
buffering capability, this approach must involve copy-
ing captured packets into user space. At high packet
rates, excessive data copying leads to poor perfor-
mance [15, 17, 18, 19].

• This approach would make the application complex
and difficult to design.

Our approach is to design a new packet-capture engine that
addresses load balance in the packet-capture level. We be-
lieve a packet capture engine is in a better position to ad-
dress load imbalance because it has full knowledge of low-
level layer conditions. WireCAP is our solution.

3 The WireCAP Design & Implementation
3.1 Design goals

WireCAP is designed to support the packet capturing and
processing paradigm as shown in Figure 1. We have sever-
al design goals:
• Providing lossless packet-capture services in high-

speed networks is our primary goal. WireCAP aims to
provide lossless packet capture services in high-speed
networks by exploiting multicore architecture and mul-
ti-queue NICs. Therefore, WireCAP must handle load
imbalance that frequently occurs in multicore systems.

• Providing efficient packet delivery.
• WireCAP must be efficient. In a multicore system,

core affinity on network processing can significantly
improve performance. Therefore, when short-term load
imbalance occurs, WireCAP must not only avoid
packet drops but also ensure core affinity on network
processing. However, when long-term load imbalance
occurs, WireCAP has to perform traffic offloading to
avoid packet drops. We believe this is an appropriate
tradeoff.

• WireCAP must facilitate the design and operation of a
packet-processing application in user space.

• WireCAP must have wide applicability and can be
easily adopted.

• WireCAP should implement a transmit function that
allows captured packets to be forwarded. Such a func-
tion would allow WireCAP to support middlebox-type
applications.

3.2 WireCAP design

We begin by describing our ring-buffer-pool and buddy-
group-based offloading mechanisms. Then, we discuss the
WireCAP architecture.

3.2.1 The mechanisms

Ring-buffer-pool. Assume each receive queue has a ring
of N descriptors. Under WireCAP, each receive ring is di-
vided into descriptor segments. A descriptor segment con-
sists of M receive packet descriptors (e.g., 1024), where M
is a divisor of N. In kernel space, each receive ring is allo-
cated with R packet buffer chunks, termed the ring buffer
pool. In this case, R is greater than N/M. A packet buffer
chunk consists of M fixed-size cells, with each cell corre-
sponding to a ring buffer. Both M and R are configurable.
Within a pool, a packet buffer chunk is identified by a
unique chunk_id. Globally, a packet buffer chunk is
uniquely identified by a {nic_id, ring_id, chunk_id} tuple.
Here, nic_id and ring_id refer to the NIC and to the receive
ring that the packet buffer chunk belongs to.

When an application opens a receive queue to capture
packets, the ring buffer pool for the receive queue will be
mapped into the application’s process space. Therefore, a
packet buffer chunk has three addresses, DMA_address,
kernel_address, and process_address, which are used by
the NIC, the kernel, and the application, respectively. The-
se addresses are maintained and translated by the kernel. A
cell within a chunk is accessed by its relative address with-
in the chunk.

A packet buffer chunk can exist in one of three states:
“free”, “attached”, and “captured”. A “free” chunk is main-
tained in the kernel, available for (re)use. In the “attached”
state, the chunk is attached to a descriptor segment in its
receive ring to receive packets. Each cell in the chunk is
sequentially tied to the corresponding packet descriptor in
the descriptor segment. A “captured” chunk is one that has
been filled with received packets and captured into the user
space.

A ring-buffer-pool provides operations to allow a user-
space application to capture packets. These operations can
be accessed through the ioctl interface:
 Open. Opens a specific receive queue for packet cap-
ture. It maps its ring buffer pool into the application’s pro-

 7

cess space and attaches each descriptor segment in the re-
ceive ring with a “free” packet buffer chunk.
 Capture. Captures packets in a specific receive queue.
The capture operation is performed in the units of the pack-
et buffer chunk; a single operation can move multiple
chunks to the user space. To	 capture	 a	 packet	 buffer	
chunk	 to	 user	 space,	 only	 its	 metadata	 {{nic_id,	 ring_id,	
chunk_id},	 process_address,	 pkt_count}	 is	 passed.	 The	
chunk	 itself	 is	 not	 copied.	 Here,	 pkt_count	 counts	 the	
number	 of	 packets	 in	 the	 chunks.	 When a packet buffer
chunk attached to the receive ring is captured to the user
space, the corresponding descriptor segment must be at-
tached with a new “free” chunk to receive subsequent
packets. Because the NIC moves incoming packets to the
empty ring buffers without CPU intervention, a packet
buffer chunk cannot be safely moved unless it is full. Oth-
erwise, packet drops might occur. Thus, our capture opera-
tion works as follows. (1) If no packet is available, the cap-
ture operation will be blocked until incoming packets wake
it up. (2) Else if full packet buffer chunks are available, the
capture operation will return immediately, with one or mul-
tiple full chunks moved to the user space. The correspond-
ing descriptor segment will be attached with a new “free”
chunk. (3) Else, the capture operation will be blocked with
a timeout. The process will continue as stated in (2) if new
full packet buffer chunks become available before the
timeout expires. If the timeout expires and the incoming
packets only partially fill an attached packet buffer chunk,
we copy them to a “free” packet buffer chunk, which is
moved to the user space instead. This mechanism avoids
holding packets in the receive ring for too long.
 Recycle. In the user space, once the data in a “captured”
packet buffer chunk are finally processed, the chunk will be
recycled for future use. To recycle a chunk, its metadata are
passed to the kernel, which will be strictly validated and
verified; the kernel simply changes the chunk’s state to
“free”.
 Close. Closes a specific receive queue for packet cap-
ture and performs the necessary cleaning tasks. 	
Through the capture and recycle operations, each chunk of
packet buffers can be used to receive packets flowing
through the network, and temporarily store received pack-
ets. A ring buffer pool’s capacity is configurable. When a
large pool capacity is configured, a ring buffer pool can
provide sufficient buffering at the NIC’s receive ring level
to accommodate short-term bursts of packets. Thus, it helps
to avoid packet drops.

Buddy-group-based offloading. The basic concept is sim-
ple: a busy packet capture engine offloads some of its traf-
fic to less busy or idle queues (cores) where it can be pro-
cessed by other threads. However, the challenge is how to
preserve application logic—traffic belonging to the same
flow must be delivered to the same application when multi-

ple applications are running in the system. Therefore, we
introduce a buddy group concept: the receive queues ac-
cessed by a single application can form a buddy group.
Traffic offloading is only allowed within a buddy group.
We illustrate the buddy group concept in Figure 4. In the
system, each receive queue (RQ1—RQ4) is tied to a dis-
tinct core. Application 1’s threads are running at core 1 and
2 while application 2’s threads are running at core 3 and 4.
In this scenario, RQ1 and RQ2 can form a buddy group to
implement the offloading mechanism for application 1.
Similarly, RQ3 and RQ4 can form a buddy group to im-
plement the offloading mechanism for application 2.

3.2.2 The WireCAP architecture

Figure 5 shows the WireCAP architecture. It consists of a
kernel-mode driver and a user-mode library.
• The kernel-mode driver manages commodity NICs and

provides low-level packet capture and transmit ser-
vices. It applies the ring-buffer-pool mechanism to
handle short-term load imbalance.

• The user-mode library extends and builds upon the
services provided by the kernel-mode driver and exe-
cutes several mechanisms: it provides a Libpcap-
compatible interface for low-level network access, and
it applies the buddy-group-based offloading mecha-
nism to handle long-term load imbalance.

Core2

R
Q

1

R
Q

2

R
Q

3

R
Q

4

Multi-Core
Host System

Multi-Queue
NIC

application 1 application 2

Core1

Thd1 Thd2

Core3 Core4

Thd1 Thd2

Buddy group 1 Buddy group 2

Figure 4 The buddy-group concept

C
apture

R
ecycle

Buddy list

Recv ring

Libpcap-compatible Interface

Capture thread

Work
Queue

Free Chunks

A
ttach

RX Queue

Packet Buffer Chunks

App Thread

...
...

U
ser-M

ode Library
K

ernel-M
ode D

river

Tx Queue

Transmit ringring-buffer-pool

Forwarding
captured pkts

Figure 5 The WireCAP architecture

 8

a. Lossless zero-copy packet capture and delivery

WireCAP captures packets on a per-receive-queue basis.
When a user-space application opens a receive queue to
capture packets, the kernel-mode driver maps the ring buff-
er pool associated with the receive queue into the applica-
tion’s process space, and the use-mode library creates and
assigns three key entities in the user space for the receive
queue:
• A capture thread performs the low-level capture and

recycle operations, and implements the offloading
mechanism. Typically, a capture thread and an appli-
cation thread do not run in the same core. The system
can dedicate one or several cores to run all capture
threads.

• A work-queue pair consists of a capture queue and a
recycle queue. A capture queue keeps the metadata of
captured packet buffer chunks, and a recycle queue
keeps the metadata of packet buffer chunks that are
waiting to be recycled.

• A buddy l i s t keeps the buddies of a receive queue in
a buddy group. It is used to implement the buddy-
group-based offloading mechanism. The receive
queues in a buddy group are buddies. The user-mode
library provides functions to allow an application to
populate the buddies of a receive queue.

WireCAP captures packets in two modes—the basic mode
and the advanced mode.

In the basic mode, WireCAP handles each receive
queue independently. Figure 6a illustrates how this process
works. (1) For each receive queue, its dedicated capture
thread executes the low-level capture operations to move
filled packet buffer chunks into the user space. The packet
buffer chunks captured from a particular receive queue are
placed into its capture queue in the user space. (2) To in-
gest packets from a particular receive queue, a packet-
processing thread accesses the receive queue’s capture
queue in the user space through a Libpcap-compatible API
such as pcap_loop() or pcap_dispatch(). Packet buffer
chunks in the capture queue are processed one by one; a

used packet buffer chunk is placed into the associated recy-
cle queue. (3) A capture thread executes the low-level re-
cycle operations to recycle used packet buffer chunks from
its associated recycle queue.
 A ring buffer pool can temporarily store R*M packets.
Assuming Pin is the maximum incoming packet burst rate at
a receive queue and Pp is the processing rate of the corre-
sponding packet-processing thread. WireCAP in the basic
mode can handle a maximum burst of Pin*(R*M)/(Pin-Pp)
packets without loss at the receive queue. However,
WireCAP in the basic mode cannot handle long-term load
imbalance. When one core is over-flooded by incoming
packets, the corresponding capture queue in the user space
will soon be filled. Because the captured packet buffer
chunks cannot be processed and recycled in time, the free
packet buffer chunks in the corresponding ring buffer pool
become depleted, causing packet capture drops.

In the advanced mode, WireCAP updates the basic
mode operation (1) with the buddy-group-based offloading
mechanism to handle long-term load imbalance. Figure 6b
illustrates how this process works: (1.a) For each receive
queue, its dedicated capture thread executes the low-level
capture operations to move filled packet buffer chunks into
the user space. (1.b) When a capture thread moves a chunk
into the user space, the thread examines its associated cap-
ture queue in the user space. If the queue length does not
exceed an offloading percentage threshold (T), WireCAP’s
indicator of long-term load imbalance, the thread will place
the chunk into its own capture queue. (1.c) When the
threshold T is exceeded, the thread will query the associat-
ed buddy queue list and (1.d) place the chunk into the cap-
ture queue of an idle or less busy receive queue. The as-
sumption is that, when a capture queue is empty or shorter,
the corresponding core is idle or less busy.

In our design, a ring buffer pool is mapped into an applica-
tion’s process space. Thus, a network packet can be cap-
tured and delivered to the application with zero-copy. In
addition, WireCAP addresses load imbalance to avoid
packet drops. Therefore, WireCAP can achieve lossless
zero-copy packet capture and delivery.

b. Zero-copy packet forwarding

A multi-queue NIC can be configured with one or multiple
transmit queues for outbound packets. For each transmit
queue, the NIC maintains a ring of transmit descriptors,
called a transmit ring. To transmit a packet from a transmit
queue, the packet should be attached to a transmit de-
scriptor in the transmit ring of the queue. The transmit de-
scriptor helps the NIC locate the packet in the system. After
that, the NIC transmits the packet.

With WireCAP, an application can use ring buffer
pools as its own data buffers and handle captured packets
directly from there. Therefore, the application can forward

1.a

1.b1.c
1.d

C
apture

R
ecycle

1. Capture 3. Recycle
Capture thread

Kernel-Mode Driver

C
apture

R
ecycle

3. Recycle

Libpcap-compatible Interface

Capture thread

Work
Queue

2. Processing

Thread

Kernel-Mode Driver

Libpcap-compatible Interface
2. Processing

Thread

a. basic mode b. advanced mode

Buddy listWork
Queue x y z

Figure 6 WireCAP packet-capturing operations

 9

a captured packet by simply attaching it to a specific
transmit queue, potentially after the packet has been ana-
lyzed and/or modified. Attaching a packet to a transmit
queue only involves metadata operations. The packet itself
is not copied.

c. Safety considerations

Two aspects of WireCAP would raise safety concerns: (1)
the sharing of memory between the kernel and the user-
space applications and (2) the offloading mechanism.
However, WireCAP should not cause any safety problems.
A misbehaving application will not crash the kernel.
WireCAP only maps ring-buffer pools, which do not in-
volve critical kernel memory regions, into the address
space of user-space applications. In addition, when a used
packet buffer chunk is to be recycled, its metadata will be
strictly validated and verified by the kernel. Similarly, a
misbehaving application will not crash other applications.
The offloading mechanism is implemented across the re-
ceive queues of a buddy group belonging to the same ap-
plication. Different applications do not interfere with one
another.

d. Supporting multiple NICs

Because WireCAP operates on a per-receive-queue basis,
WireCAP naturally supports multiple NICs. In Section 4,
we run experiments to demonstrate that WireCAP supports
multiple NICs.

e. Application support

Upon work-queue pairs, WireCAP supports a Libpcap-
compatible interface. Packets can be read with APIs such
as pcap_dispatch () or pcap_loop (). Both blocking and
non-blocking modes can be supported.

3.3 Implementation

WireCAP was developed on Linux. The kernel-mode driv-
er was implemented on the Intel 82599-based 10GigE NIC.
We modified the ixgbe driver to implement the WireCAP
functions, and the modifications involve a few hundred
lines of code. We also implemented a user-mode library.
The current version supports a simple Libpcap-compatible
interface. We plan to release WireCAP for public access
soon.

4 Performance evaluations
We evaluate WireCAP using the experiment tools and con-
figuration described in Section 2.2. In addition, we develop
a third tool for our experiments. It is a multi-threaded ver-
sion of pkt_handler, called multi_pkt_handler, which can
spawn one or multiple pkt_handler threads that share the
same address space.
 A simple name convention is used in the following
sections. WireCAP-B-(M, R) represents WireCAP in the

basic mode with a descriptor segment size of M and a ring
pool size of R, while WireCAP-A-(M, R, T) represents
WireCAP in the advanced mode with a descriptor segment
size of M, a ring pool size of R, and an offloading threshold
of T.
 We compare WireCAP with existing packet capture
engines (PF_RING, DNA, and NETMAP). The perfor-
mance metric is packet drop rate. In the experiments, these
packet capture engines suffer different types of packet
drops: (1) WireCAP suffers only packet capture drops,
which can occur when the free packet buffer chunks in a
ring buffer pool are depleted; (2) DNA and NETMAP suf-
fer only packet capture drops; and (3) PF_RING suffers
both packet capture drops and packet delivery drops. To
make the comparison easier, we only calculate the overall
packet drop rate. Each NIC receive ring is configured with
a size of 1,024 for all packet capture engines. PR_RING is
set to run at mode 2, and the size of pf_ring buffer is set to
10,240. The CPU frequency is set to 2.4 GHz.

Packet capture in the basic mode. The traffic generator
transmits P 64-Byte packets at the wire rate (14.88 million
p/s). P varies, ranging from 1,000 to 10,000,000. NIC1 is
configured with a single receive queue, tied to a core, on
which a pkt_handler is launched to capture and process
traffic for that queue. For pkt_handler, x is set to 0 and 300.
 With x=0, pkt_handler does not incur any packet-
processing load. We test WireCAP with various R and M
values. No packet drops are observed (Figure 7), indicating
that WireCAP can capture packets at wire speed without
loss. No packet drops were observed for NETMAP and
DNA. However, PF-RING suffers significant packet drops
(both packet delivery drops and packet capture drops).
 With x=300, pkt_handler emulates a heavy load appli-
cation. Because the incoming packet rate (14.88 million
p/s) far exceeds the packet-processing speed of pkt_handler
on a 2.4 GHz CPU (38,844 p/s), the maximum P that a
packet capture engine can handle without packet loss re-
flects its buffering capability for short-term bursts of pack-
ets. As shown in figure 8, WireCAP demonstrates superior
buffering capability for short-term bursts of packets. For

0%#

20%#

40%#

60%#

80%#

100%#

1000# 10000# 100000# 1000000# 10000000#

Pa
ck
et
#D
ro
p#
Ra

te
#

Number#of#Packets#(Logarithmic#Scale)#

DNA#
PFDRING#
NETMAP#
WireCAPDBD(64,#100)#
WireCAPDBD(128,#100)#
WireCAPDBD(256,#100)#
WireCAPDBD(256,#500)#

Figure 7 WireCAP packet capture in the basic mode, with
no packet processing load (x=0)

 10

example, DNA suffers a 15% packet drop at P=6,000,
while WireCAP-B-(256, 500) has no packet drops even at
P=100,000. WireCAP’s resilient buffering capability
comes from its unique ring-buffer-pool design and is pro-
portional to the ring-buffer pool capacity R*M. WireCAP-
B-(256, 500) clearly has a higher buffering capability than
WireCAP-B-(256,100). At P=100,000, WireCAP-B-
(256,500) has no packet drops, whereas WireCAP-B-(256,
100) has a packet drop rate of 71%.
 Figure 9 illustrates that WireCAP’s buffering capabil-
ity is proportional to the overall ring buffer capacity R*M.
The individual R or M does not affect the overall perfor-
mance. In the experiment, R and M are varied, but R*M is
fixed. The results indicate that WireCAP-B-(64, 400),
WireCAP-B-(128, 200), and WireCAP-B-(256, 100) have
approximately the same packet drop rates at different P
values.

Packet capture in the advanced mode. The traffic genera-
tor replays the captured data at the speed exactly as record-
ed. NIC1 is configured with n receive queues, with each
queue tied to a distinct core. A multi_pkt_handler runs at
the system and spawns n pkt_handler threads. Each thread
runs on a core that has a tied receive queue. It captures and
processes traffic from its queue. For pkt_handler, x is set to
300. We vary the packet capture engines in the experi-
ments, using PF_RING, DNA, NETMAP, and WireCAP in
the basic mode and WireCAP in the advanced mode, re-
spectively. For WireCAP in the advanced mode, the n
queues form a single buddy group.

In the basic mode, WireCAP can capture packets at wire
speed and effectively handle short-term bursts of packets.
Although WireCAP in the basic mode achieves better per-
formance than existing packet capture engines, it still suf-
fers significant packet losses, due to long-term load imbal-
ance (Figure 10). WireCAP in the advanced mode imple-
ments the buddy-group-based offloading mechanism to
address that problem. This mechanism allows the system
resources to be better utilized. It is evident that the offload-
ing mechanism achieves a significantly improved perfor-
mance (Figure 10). For WireCAP in the advanced mode,
the offloading mechanism is triggered when the queue
length of a capture queue exceeds the offloading percent-
age threshold (T). In general, WireCAP performs better
when T is set to a relatively lower value (Figure 11).

Packet forwarding. We repeated the above experiments
with a small modification to pkt_handler: a processed
packet is forwarded through NIC2 (Figure 2) instead of
being discarded. NIC2 is directly connected to a packet
receiver. By counting the number of packets that the traffic
generator sends and the number of packets the traffic re-
ceiver receives, we calculate the packet drop rate. Figure 12
illustrates the experiment results.
 The experiments demonstrate that WireCAP’s packet
forwarding function is capable of supporting middlebox
applications. Again, the experiments reveal that the buddy-
group-based offloading mechanism can achieve a signifi-
cant improved performance.
 We cannot make multi_pkt_handler work under
NETMAP in this experiment. Under NETMAP, a

Figure 10 WireCAP packet capture in the advanced mode,

with a heavy packet-processing load (x=300)

Figure 11 WireCAP packet capture in the advanced mode

(R and M are fixed, T is varied)

Figure 8 WireCAP packet capture in the basic mode, with

a heavy packet-processing load (x=300)

Figure 9 WireCAP packet capture in the basic mode

(R and M are varied, R*M is fixed)

 11

pkt_handler thread cannot synchronize between receiving
and transmitting because NETMAP’s NIOCTXSYNC (or
NIOCRXSYNC) operations do not work on a per-receive-
queue (or per-transmit-queue) basis.

WireCAP scalability. We now evaluate and discuss
WireCAP’s scalability performance. In the experiments,
each of NIC1 and NIC2 is connected directly to a traffic
generator. The generators transmit 1x109 64-Byte or 100-
Byte packets at the wire rate. Each NIC is configured with
n receive queues, with each queue tied to a distinct core.
• For	 NIC1,	 a	 multi_pkt_handler	 is	 launched,	 which	

spawns	 n	 pkt_handler	 threads.	 Each	 thread	 runs	 on	
a	 core	 that	 has	 a	 tied	 receive	 queue	 of	 NIC1.	 It	 cap-‐
tures	 and	 processes	 traffic	 from	 its	 queue.	 For	
pkt_handler,	 x	 is	 set	 to	 0,	 with	 processed	 packet	
forwarded	 on	 through	 NIC2.	

• For	 NIC2,	 a	 multi_pkt_handler	 is	 similarly	 launched	
except	 that	 captured	 packets	 are	 forwarded	 on	
through	 NIC1.	
	

In	 this	 experiment,	 we	 only	 compare	 DNA	 and	 WireCAP	
in	 the	 advanced	 mode	 because	 PF_RING’s	 performance	
is	 too	 poor	 and	 we	 cannot	 make	 multi_pkt_handler	 work	
under	 NETMAP.	 With	 WireCAP	 in	 the	 advanced	 mode,	
NIC1’s	 queues	 form	 a	 buddy	 group	 and	 NIC2’s	 queues	
form	 another	 buddy	 group.	 Each	 of	 NIC1	 and	 NIC2	 is	
directly	 connected	 to	 a	 packet	 receiver.	 By	 counting	 the	
number	 of	 packets	 that	 the	 traffic	 generators	 send	 and	
the	 number	 of	 packets	 that	 the	 traffic	 receivers	 receive,	
we	 calculate	 the	 packet	 drop	 rate.	 Figure	 13	 illustrates	
the	 experiment	 results.	
	 When	 the	 generators	 transmit	 100-‐Byte	 packets,	
NIC1	 and	 NIC2	 in	 together	 receive	 approximately	 20	
million	 p/s.	 We	 did	 not	 observe	 any	 packet	 loss	 for	
WireCAP	 and	 DNA.	 The	 experiment	 indicates	 that	
WireCAP	 scales	 well	 with	 multiple	 NICs.	 Please	 note:	
NIC1	 and	 NIC2	 are	 installed	 in	 a	 single	 NUMA	 node	 on	
our	 experiment	 system	 (Figure	 2)	
	 When	 the	 generators	 transmit	 64-‐Byte	 packets,	 the	
system	 needs	 to	 handle	 an	 approximate	 rate	 of	 30	 mil-‐
lion	 p/s.	 Under	 such	 conditions,	 the	 experiment	 system	
bus	 becomes	 saturated,	 causing	 both	 DNA	 and	 WireCAP	

to	 suffer	 significant	 packet	 drops.	 Compared	 with	 DNA,	
WireCAP	 requires	 extra	 I/O	 operations	 and	 memory	
accesses	 to	 implement	 its	 ring-‐buffer-‐pool	 and	 buddy-‐
group-‐based	 offloading	 mechanisms.	 When	 the	 system	
bus	 is	 saturated,	 the	 I/O	 operations	 and	 memory	 ac-‐
cesses	 become	 costly.	 As	 a	 consequence,	 WireCAP	 suf-‐
fers	 a	 higher	 packet	 drop	 rate	 than	 DNA.	 However,	
WireCAP	 is	 designed	 to	 use	 additional	 system	 resources	
to	 address	 the	 packet	 drop	 problem.	 Certainly	 WireCAP	
of	 such	 a	 design	 will	 lose	 some	 scalability	 performance.	
We	 believe	 this	 is	 an	 appropriate	 tradeoff.	

5 Related work
RSS and Flow Director [11, 22] are advanced NIC technol-
ogies that enable the efficient distribution of packets across
receive queues in a multi-queue NIC. RSS uses a hash
function in the NIC. The NIC computes a hash value for
each incoming packet. Based on hash values, the NIC as-
signs packets of the same flow to a single queue. Flow Di-
rector maintains a flow table in the NIC to assign packets
across queues. Each flow has an entry in the table. The
entry tracks which queue a flow should be assigned to. The
flow table is established and updated by traffic in both the
forward and reverse directions. Flow Director is typically
not used in a packet capture environment because the traf-
fic is unidirectional.
 The protocol stack of a general purpose OS can pro-
vide standard packet capture services through raw sockets
(e.g., PF_PACKET). However, research [9] show that the
performance is inadequate for packet capture in high-speed
networks.
 Several packet I/O engines have been proposed to
boost the performance of commodity NICs in packet cap-
ture, such as NETMAP [15], DNA [16], PF_RING [14],
and the PacketShader I/O engine (PSIOE) [23], These
packet capture engines essentially bypass the standard pro-
tocol stack and achieve improved performance. Table 2
compares WireCAP and the existing packet-capture en-
gines.

0%#
5%#
10%#
15%#
20%#
25%#
30%#

1# 2# 3#

Pa
ck
et
#ro

p#
ra
te
#

Number#of#receive#queues#per#NIC#

DNA@64B# DNA@100B#
WireCAPCAC(256,500,#60%)@64B# WireCAPCAC(256,100,#60%)@64B#
WireCAPCAC(256,100,#60%)@100B# WireCAPCAC(256,500,#60%)@100B#

Figure 13 Scalability experiment
Figure 12 WireCAP packet forwarding	

 12

WireCAP
Goal: avoiding packet drops.
Deficiency: requiring additional resources.

DNA
NETMAP

Goal: minimizing packet capture costs.
Deficiency: limited buffering capability,

no offloading mechanism.

PSIOE
Goal: maximizing system throughput.
Deficiency: limited buffering capability;

copying in packet capture.

PF_RING

Goal: minimizing packet capture costs.
Deficiency: copying in packet capture;

receive livelock problem;
no offloading mechanism.

Table 2 WireCAP vs. existing packet-capture engines

PSIOE is similar to PF_RING, except that PSIOE uses a
user-space thread, instead of Linux NAPI polling, to copy
packets from receive ring buffers to a consecutive user-
level buffer (user buffer). For PacketShader, the copy oper-
ation in packet capture makes little impact on performance
and does not consume additional memory bandwidth be-
cause the user buffer likely resides in CPU cache [23].
However, this result does not have wide applicability. If a
network application that uses PSIOE to capture packets has
a large working set, the user buffer is not likely to reside in
CPU cache. Under such condition, copying will have a
significant impact on performance. PSIOE was specifically
designed and optimized for PacketShader. It provides only
a limited buffering capability for the incoming packets.
PSIOE is not suitable for a heavy-load application.
 At a high level, WireCAP provides a new packet I/O
framework for commodity NICs in high-speed networks.
Therefore, there are some similarities between WireCAP
and Intel DPDK [27]. Intel DPDK provides a set of librar-
ies and drivers for fast packet processing on x86 platforms.
However, Intel DPDK does not provide a complete solution
to avoid packet drops in high-speed networks as WireCAP
does.

6 Conclusion & discussion
In this paper, we have described our architectural approach
in developing a novel packet capture engine for commodity
NICs in high-speed networks. Experiments have demon-
strated that WireCAP achieves better packet capture per-
formance than that of the existing packet capture engines
through the use of additional resources. WireCAP employs
additional computing resources by dedicating a capture
thread to perform low-level ioctl operations for each re-
ceive queue. A modern multicore system can provide suffi-
cient computing resources to support WireCAP operations.
 WireCAP utilizes large amounts of kernel space
memory to support its ring-buffer-pool mechanism. For

WireCAP-B-(M, R) or WireCAP-A-(M, R, T), a single pool
requires R*M*2K bytes of memory (Note: a cell is two
Kbytes in the current implementation). If n receive queues
are configured, then n*R*M*2K bytes are required. Be-
cause WireCAP’s buffering capability is proportional to the
ring buffer capacity R*M, there is a tradeoff between
WireCAP’s buffering capability and its memory consump-
tion.
 Determining an optimal value for T in WireCAP’s
advanced mode operation also presents tradeoff challenges.
Offloading is necessary to prevent packet drops due to a
long-term load imbalance. However, redirecting packets to
different, less busy capture queues can result in a degraded
CPU efficiency caused by a loss of the core affinity on
packet processing [11]. Therefore, a simple guideline for
configuring T is as follows: When avoiding packet drops is
critical to the application, T should be set to a relatively
lower value (e.g., 50%); otherwise, T should be set to a
relatively higher value (e.g., 80%).
 WireCAP uses batch processing to reduce packet cap-
ture costs. Applying this type of technique may entail side
effects, such as latency increases and inaccurate time-
stamping [28].
 Ideally, WireCAP is designed to support the packet
capturing and processing paradigm as shown in Figure 1.
Within a multi-queue NIC, packets are distributed across
receive queues using a hardware-based traffic-steering
mechanism. And each receive queue is handled by a thread
(or process) of a packet processing application. Because
this paradigm uses NIC hardware, instead of CPU, to clas-
sify and steer packets across cores, it helps to save CPU for
packet capturing and processing. On the other hand, mod-
ern NICs are becoming more powerful, and typically fea-
ture advanced traffic filtering, classification, and steering
mechanisms. We believe this packet capturing and pro-
cessing paradigm is a promising approach.
 However, WireCAP is flexible and robust enough to
support other types of packet capturing and processing par-
adigms:
• Multiple threads (or processes) of a packet-processing

application can access a single NIC receive queue,
through the queue’s corresponding work-queue pair in
user space. Certainly, this approach incurs extra syn-
chronization overheads across these threads.	

• Upon WireCAP work-queue pairs, a packet-processing
application can implement its own traffic steering and
classification mechanisms to create packet queues at
the application level, in the cases of the NIC hardware-
based traffic classification and steering mechanism
cannot meet the application requirements; or there are
not enough physical queues in the NIC. 	

In these paradigms, a simple approach is to copy captured
packets from WireCAP into the application’s own set of

 13

buffers. This approach simplifies WireCAP’s recycle oper-
ations while the benefit of zero-copy delivery will not be
available. However, WireCAP still provides lossless packet
capture and delivery services.
 WireCAP can be configured to switch between sup-
porting different packet capturing and processing para-
digms.

References

[1] M. Roesch, Snort: Lightweight Intrusion Detection
[2] A. Papadogiannakis, M. Polychronakis, and E. P.

Markatos, Improving the accuracy of network intru-
sion detection systems under load using selective
packet discarding. In ACM ERUOSEC (2010), pp.
15-21.

[3] M. Jamshed, J. Lee, S. Moon, I. Yun, D. Kim, S.
Lee, Y. Yi, and K. Park, Kargus: a highly-scalable
software-based intrusion detection system. In ACM
CCS (Oct. 2012), pp. 317-328.

[4] V. Paxson, Automated packet trace analysis of TCP
implementations. ACM SIGCOMM CCR 27, 4
(1997).

[5] S. A. Crosby and D. S. Wallach. Denial of service
via algorithmic complexity attacks. In USENIX Se-
curity (Aug. 2003), pp. 29-44.

[6] http://www.endace.com/endace-dag-high-speed-
packet-capture-cards.html.

[7] http://www.napatech.com/.
[8] F. Fusco, and L. Deri, High speed network traffic

analysis with commodity multi-core systems. In
ACM IMC (2010), pp. 218-224.

[9] L. Braun, A. Didebulidze, N. Kammenhuber, and G.
Carle, Comparing and improving current packet cap-
turing solutions based on commodity hardware.
In ACM IMC (2010), pp. 206-217.

[10] N. Bonelli, A. Di Pietro, S. Giordano, and G. Procis-
si, On multi–gigabit packet capturing with multi–
core commodity hardware. In PAM (2012), pp. 64-
73.

[11] W. Wu, P. DeMar, and M. Crawford, A transport-
friendly NIC for multicore/multiprocessor sys-
tems. Parallel and Distributed Systems, IEEE Trans-
actions on, 23(4), 607-615.

[12] C. F. Dcumitrescu, Models for packet processing on
multi-core systems.
http://www.intel.com/content/www/us/en/intelligent
-systems/intel-technology/ia-multicore-packet-
processing-paper.html.

[13] T. Benson, A. Akella, and D. A. Maltz, Network
traffic characteristics of data centers in the wild. In
ACM IMC (2010), pp. 267-280.

[14] PF_RING. www.ntop.org/products/pf_ring/.
[15] L. Rizzo, netmap: a novel framework for fast packet

I/O. In USENIX ATC (2012).
[16] DNA. www.ntop.org/products/pf_ring/dna/.
[17] H. K. J. Chu, Zero-copy TCP in Solaris.

In Proceedings of the 1996 annual conference on
USENIX Annual Technical Conference (pp. 21-21).
Usenix Association.

[18] P. Druschel, and G. Banga, Lazy receiver processing
(LRP): A network subsystem architecture for server
systems. In OSDI (Vol. 96, pp. 261-275).

[19] A. Foong, T. Huff, H. Hum, J. Patwardhan, and G.
Regnier, TCP performance re-visited.
In Performance Analysis of Systems and Software,
2003. ISPASS. 2003 IEEE International Symposium
on (pp. 70-79). IEEE.

[20] TCPDUMP and LIBPCAP public repository.
http://www.tcpdump.org/.

[21] W. Wu, M. Crawford, and M. Bowden, The perfor-
mance analysis of Linux networking–packet receiv-
ing, Computer Communications, 30(5), 1044-1057.

[22] Intel 82599 10GbE Controller Datasheet.
http://www.intel.com/content/www/us/en/ethernet-
controllers/82599-10-gbe-controller-datasheet.html.

[23] S. Han, K. Jang, K. Park, and S. Moon, Pack-
etShader: a GPU-accelerated software router. ACM
SIGCOMM Computer Communication Re-
view, 40(4), 195-206.

[24] J. Mogul, and K. K. Ramakrishnan, Eliminating
receive livelock in an interrupt-driven kernel. In
ACM Transactions on Computer Systems 15.3
(1997): 217-252.

[25] S. McCanne and V. Jacobson, The BSD packet fil-
ter: A new architecture for user-level packet capture.
In Winter USENIX Conference, 1993.

[26] J. S. White, T. Fitzsimmons, and J. N. Matthews,
Quantitative analysis of intrusion detection systems:
Snort and Suricata. In SPIE Defense, Security, and
Sensing, pp. 875704-875704.

[27] Intel DPDK website. http://dpdk.org.
[28] V. Moreno, P. Santiago del Rio, J. Ramos, J. Garni-

ca, and J. Garcia-Dorado, Batch to the future: Ana-
lyzing timestamp accuracy of high-performance
packet I/O engines, IEEE Communications letters,
16(11): 1888-1891, 2012.

