
Web Browser as Platform for Audiovisual Performances
Nuno N. Correia

Goldsmiths, University of London
New Cross, London

SE14 6NW, UK
n.correia@gold.ac.uk

Jari Kleimola
Aalto University, Dept. of Media Technology

Otaniementie 17
02150 Espoo, Finland
jari.kleimola@aalto.fi

with potential for performance (due to portability and
interactive capabilities) such as tablets. These issues raise
the following research question: how to create a tool for
audiovisual performance, allowing for real-time usage of
shared online visual resources, which can be customizable,
and used across a variety of different hardware platforms?
Our hypothesis is that the web browser, together with open
web technologies such as HTML5, JavaScript and SVG
(Scalable Vector Graphics), can provide a foundation for a
customizable, content-sharing and multi-platform approach.

To address this issue, we have developed AVVX
(AudioVisual Vector eXchange)1, an open source2 novel
application for audiovisual performances, based on open
web technologies – HTML5, SVG, CSS and related
JavaScript APIs (Application Programming Interfaces).
Open web technologies have become sufficiently powerful
to handle complex audio and visual manipulation. The
usage of vector graphics files favors a ‘less is more’
approach, instead of relying on the manipulation of video
files, as most tools for VJing do. Vector graphics are
lightweight and easy to include in any project (particularly
important in a web context and in resource-constrained
devices). They are also scalable, and adaptable to any
screen resolution without quality loss. An initial version of
AVVX was released in 2012 [2], implementing a vector
graphics approach. However, it was built on top of a closed
source software platform. In February 2014, we released a
new version of AVVX adopting a browser-based approach.
This paper focuses on the new version of AVVX.

RELATED WORK, CONCEPTS AND TECHNOLOGIES

Related Work and Concepts
There is a long tradition of using abstract geometrical
shapes for audiovisual art. These artworks have
demonstrated the potential of creating engaging content
combining music with simple graphical elements. For
example, Oskar Fischinger (1900–1967), one of the visual
music pioneers, pursued a purely abstract approach in his
animations. Fischinger was inspired by Bernhard Diebold,
who called for “new artists, Bildmusikers [visual
musicians]” to achieve Wagner’s ideal of gesamtkunstwerk
(total artwork), “preferably abstract in nature” [7]. This

1 http://www.avvx.org
2 https://github.com/nunocorreia/avvx

ABSTRACT
The present study aims to address the following research
question: how to create a tool for audiovisual performance,
allowing for real-time usage of shared online visual
resources, which can be customizable, and used across a
variety of different hardware platforms? To address this
issue, we have developed AVVX (AudioVisual Vector
eXchange), a novel application for audiovisual
performances, based on open web technologies such as
HTML5, JavaScript and SVG (Scalable Vector Graphics).
This paper contextualizes AVVX with related work and
technologies, and then presents the design and development
of the software. Taking as a starting point a workshop
conducted with AVVX, the project has been evaluated by
means of a questionnaire and user tests. The results of the
tests indicate that the web browser, together with open web
technologies, can provide a foundation for a customizable,
content-sharing and multi-platform approach to audiovisual
performance.

Author Keywords
Audiovisual; interaction; performing arts; media art; web
browser; web technologies; vector graphics.

ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous; J.5 Arts and humanities: Performing arts.

INTRODUCTION
The preparation of visual content for audiovisual
performance and VJing (Video Jockey performances) is
time and resource consuming, usually relying on
commercial software and video files. Such tools often
consist of proprietary software, limiting the possibilities for
customization and content sharing. Additionally, most
commonly used software for this purpose is not available
across different platforms, particularly emerging platforms

approach was also pursued by a new generation of artists
influenced by Fischinger, such as John Whitney, a pioneer
in the use of computer graphics for animation [4].

As personal computers became more powerful in the 1990s,
real-time video manipulation became easier. In that decade,
the term VJ became more common in the context of live
visual performance – Golo Föllmer and Julia Gerlach place
the emergence of VJing in the clubbing scene of the 1990s
[3]. Chris Salter describes the emergence of “screen-based
performance” in the 1990s, adopting “a long litany of
names such as audiovisual performance, real-time video,
live cinema, performance cinema, and VJ culture” as the
result of two branches of techno-cultural development [9].
According to Salter, this emergence can be explained, on
the one hand, by advances in digital computation,
“particularly the development of hardware and software
components for the capture, processing, and manipulation
of image and sound” and on the other hand, due to “the
international rise of the techno/club scene”, which quickly
exploited these technologies.

VJs have been using not only commercial VJ software such
as ArKaos3, Modul84 and Resolume5, but also custom-made
systems with software such as Processing6,
openFrameworks7 and VVVV8. AVVX fits within the latter
group, but adopting open web standards. Some audiovisual
artistic projects have tentatively adopted web technologies,
but mostly they have consisted of systems with limited
visual customization capabilities, such as FMOL [5] and
AV Clash [1]. Important advances have been made on using
open web technologies to create tools for music making,
such as [8], but there are fewer such explorations in the
audiovisual field. More recently, efforts have been made to
adopt tangible and multi-touch user interfaces for
audiovisual performances [6]. Tablets have lately been
explored for VJing, with the release of commercial
applications targeting these platforms (such as Vjay9 for the
Apple iPad). AVVX also aims to be multi-touch and tablet
compatible.

Open Web Technologies
Browser-based web technologies are standardized in the
World Wide Web Consortium (W3C), whose latest efforts
materialized in the recent release of HTML5 and its related
techniques. The work of the consortium is continuing

3 http://www.arkaos.net/
4 http://www.modul8.ch/
5 http://resolume.com/
6 http://www.processing.org/
7 http://www.openframeworks.cc/
8 http://vvvv.org/
9 http://www.algoriddim.com/vjay

actively with diverse JavaScript API specifications. The
canonical sources for these APIs are the W3C
recommendations [10]. The recommendations relevant for
this work, i.e., the audiovisual and interaction related APIs,
are described briefly below.

The visual techniques comprise vector graphics and native
video playback. The Scalable Vector Graphics (SVG)
specification was released in HTML4, and the current
browser implementations conform to version 1.1 of the
specification [11]. SVG defines a declarative language for
form and appearance markup, and an imperative JavaScript
API for dynamic manipulation. AVVX uses the declarative
part as an interchange format, while the imperative part is
utilized in the interactive animations (behaviors).
Preliminary support for HTML5 video [12] is also included.

HTML5 enables native audio playback. The audio features
of HTML5 are further refined in the Web Audio API
specification [13], which describes a set of audio source and
processor nodes, and their interconnection into stream-
based node-link graphs. AVVX uses the media element and
microphone input nodes as audio sources, and the spectral
analysis processor node for audio-reactive graphics
implementation.

Finally, HTML5 addresses interaction related topics with
touch and mobile sensor APIs. The most widely supported
multi-touch specification is [14], which offers low level
access to the touch points on the surface. Gestures are
excluded from the specification. AVVX user interface
employs touch-aware buttons and sliders, and tracks
horizontal and vertical swipe gestures using the
Hammer.js10 library.

PROJECT DEVELOPMENT AND DESCRIPTION

Project in Use
The target audience for AVVX is mainly artists and
designers with little or no VJing experience; therefore ease
of use is a priority. Preparing visuals for AVVX involves
creating the SVGs and indexing these in a XML file,
aggregating them into groups. These groups (up to 100 are
supported) can be different frames that will compose an
animated sequence, or merely related graphics that the user
decides to join together. The XML file also supports
metadata for the images, such as authorship information.
Upon launching AVVX, the XML file and associated SVG
files are loaded. At the moment, four animation behaviors
are available in AVVX: slide (horizontal or vertical
translations); zoom and zoom out (scaling with rotation);
and trail (random movement of graphics across the screen).
These behaviors take advantage of basic bi-dimensional
vector graphics transformations: scale, translate and rotate.
Users can manipulate different parameters of these
animations, such as speed and direction (see Figure 1).

10 http://eightmedia.github.io/hammer.js/

Behaviors and their parameters can be changed using the
keyboard interface or a GUI (Graphical User Interface). The
GUI is minimal – small buttons, sliders and text positioned
along the edges of the screen, in order to be unobtrusive and
not interfere with the graphical content. Users can also
choose which SVG group to select. All functionalities are
available in both keyboard and GUI interfaces. An on-
screen display gives feedback about the current behavior,
parameters and groups, in addition to author information
(name and URL of the author of the visuals can be added to
the XML). This textual information and can be hidden with
a key press. Sound controls are also available, for MP3
playback or microphone input. The animations are audio-
reactive – the reactivity consists of scaling the animations in
proportion with the sound amplitude (in addition to other
scaling animation taking place).

Figure 1: Screenshot of AVVX. The minimal AVVX GUI with
textual info, buttons and sliders is shown on top of graphics.

Architecture and Technical Development
An initial version of AVVX was originally developed in
2012 [2] using Adobe Flash, as a stand-alone application.
Four workshops took place between 2012 and 2013 using
this version. However, it became clear that the approach of
using Flash was limiting, because: 1) Flash is not well
supported across multiple platforms, notably in Apple’s iOS
devices; 2) being a stand-alone app instead of browser-
based limits its portability and the possibility of loading
content directly from the AVVX library; and 3) Flash is not
free and open source, which creates restrictions, namely for
artistic or teaching purposes.

The implementation of the present AVVX version consisted
of porting, redesign, and deployment phases. The existing
Flash ActionScript implementation was first ported into
JavaScript as is, in order to ensure that the performance of
the browser is on par with the Flash runtime. Since
ActionScript and JavaScript are both dialects of the
ECMAScript language, the porting phase was trivial. As
expected, the SVG implementation required most effort.
The Flash version employed a dedicated SVG library, but

after exploring several JavaScript alternatives, we decided
to implement the SVG functionality directly on top of the
W3C API. Since the vector graphics are crafted outside the
browser, and since their dynamic manipulation is
algorithmically straightforward, the benefits of the higher
level libraries were overshadowed by their processing
overhead. XML parsing and audio playback/analysis
functionality was written from scratch on top of the W3C
APIs as well. The direct port ensured that the browser-
based implementation was feasible, and after minor
optimizations, the performance of the browser (Chrome
v32) was comparable to that of the Flash version.

We then progressed into the second phase to redesign the
AVVX framework. Our design goals were: 1) to make
behaviors extensible, 2) to converge input modalities, and
3) to find an optimal latency vs. performance ratio for
audio-reactive graphics. A simplified block diagram of the
framework is shown in Figure 2.

Figure 2: AVVX framework.

To achieve extensible behaviors, we first analyzed the
existing behavior implementations. Common functionality
was converged into the abstract Behavior superclass, which
defines an interface that all individual behaviors implement.
The interface includes onUpdate (invoked at 60 fps) and
onInput (invoked in response to user interactions) callback
functions, as documented in the Btemplate class. Btrail,
Bslide and Bzoom behaviors were re-implemented to
conform to the interface. The extensibility was assessed
with a new Bprocessing class, which implements
preliminary support for bitmapped graphics.

The existing AVVX keyboard interface was augmented
with touch-aware buttons, sliders and gestures. The
interaction events are first interpreted in low-level event
handlers, and then routed to the active behavior's onInput
function. Key presses and button taps are routed as triggers
with a unified command code as a parameter. The
remaining touch interactions are routed as sliders and
swipes, the first with sliderID/value pair, and the latter with
the swipe direction as a parameter. The framework
interprets behavior and image group swaps internally, but

otherwise, the behaviors may respond to the interactions
independently.

The AudioEngine class enables mp3 file and/or microphone
playback, and provides a spectrum analyzer to approximate
the instant spectral energy of the audio sources. The
analyzer divides the frequency range (0…24 kHz) into 1024
bins, and computes an average magnitude across all the bins
in real time (2048 samples of audio are processed for each
computed average). The worst-case latency for the instant
spectral energy acquisition is therefore 60 ms, including the
latency caused by the 60 Hz screen refresh rate. Although
smaller latency would allow more responsive audio-reactive
graphics, it would also reduce the performance of the vector
graphics rendering engine. We found the 2048 buffer size
optimal for our implementation. The instant value is
available in the active behavior as soundLevel property.

Finally, the deployment phase of the present
implementation addressed both local and cloud-based
configurations. AVVX requires an HTTP server to access
the media configuration file (media.xml) and the actual
media (SVG, audio and video) files. In local configuration,
AVVX runtime is downloaded on a laptop, and a localhost
server is set up to serve the environment. The cloud-based
configuration avoids local server and AVVX runtime
installation, but requires the SVG files to be uploaded to the
cloud server before starting the application. AVVX may
also be launched from the avvx.org website using
predefined graphic and media.xml setups11.

EVALUATION AND RESULTS

Methodology
A workshop was conducted between the 11th and 13th
February 2014 in Helsinki, to disseminate and test the new
version of AVVX. During the workshop, participants
learned how to use AVVX, and prepared an audiovisual
performance for the last day of the workshop. Preparation
involved creating vector graphics (SVGs) to be used in
AVVX, and code customization. 21 persons registered for
the practice part of the workshop, of which 18 concluded
and performed (see Figure 3). For the final performance,
participants were asked to select one music track, and create
visuals for that track. During the performance, each
participant created live visuals with AVVX, based on the
graphics created beforehand. The performance took place in
a bar in Helsinki (Bar Sandro), a “real world” setting for a
live visuals performance (see Figure 4). In terms of further
outcomes of the workshop, 12 of the 18 performing
participants gave permission for their graphics to be
released online, at a specially created repository of SVGs12,
under a Creative Commons attribution license.

11 For example:
http://www.avvx.org/app/#Tatiana_Toutikian
12 http://www.avvx.org/library/

Figure 3: AVVX workshop, February 2014.

Figure 4: AVVX workshop – final performance.

A questionnaire13 and user tests were conducted after the
workshop to evaluate how effective AVVX was as a tool
for live visuals. In particular, the user tests aimed to assess
the multi-platform capabilities of AVVX, and the appeal of
accessing online content. The questionnaire was answered
by 12 out of the 18 workshop attendees. Three of the
workshop attendees volunteered for user tests. The user
tests focused on using tablets (Apple iPads) and accessing
online content. Each of the three users spent 10 minutes
playing with their own visuals in an iPad (see Figure 5).
Then they spent 10 additional minutes accessing, and
playing with, other visuals from the online library. This was
followed by a 30-minute interview with the three
volunteers.

Results - Questionnaire
The respondents were all students (of interactive media,
design, music or media arts), with the exception of 2, which

13 https://docs.google.com/spreadsheet/viewform?formkey=
dEFUdnZvencwcFBfUnpMV0ZKRUxLc1E6MA

were professional designers. Only one had previous
experience as VJ. The majority (9 out of the 12) of the
respondents answered that they would use AVVX again,
and 11 would recommend the tool to someone interested in
live visuals. Answering using a 5-point Likert scale, 6 out
of the 12 respondents considered the audiovisual end result
in the final performance engaging and 3 very engaging,
with the remaining 3 being neutral about the result. Most of
the test users (8 out of 12) considered the release of AVVX
as open source as being very important, with 2 considering
it important, and 2 neutral. The majority of the respondents
consider AVVX to be easy (5 out of 12) or very easy (2 out
of 12) to use. Nevertheless, 3 respondents still consider it
difficult to use. The dual-interface approach of AVVX
seems to have been successful – 7 out of the 12 test users
consider it very useful to have two types of interface in
AVVX (keyboard and GUI), while 3 respondents consider
it useful (see Table 1). Answering a multiple option
question, most (7 out of 12) prefer to use the keyboard,
while 5 use equally both keyboard and GUI.

Figure 5: User testing

Likert scale 1 2 3 4 5

Audiovisual result - engaging? 0 0 3 6 3

Open source - important? 0 0 2 2 8

Ease of use - easy? 0 3 2 5 2

Dual interface - useful? 0 1 1 3 7

Table 1: Number of responses obtained per point in the Likert
scale, from 1 – ‘not at all’ to 5 – ‘very’

Results - User Tests
When asked if AVVX is a good tool for live visuals, and
what are its strengths and weaknesses, all three interviewees
were pleased with the usage of SVG graphics. One of the
interviewees mentioned “I think the highlight of this tool
that makes it very different, or the signature of this tool, is

the usage of SVG files”, which “gives you the possibility to
always have high quality with smooth edges, no matter like
where the display would be”. Another test user confirmed
that “the input from the SVG file is really, really important”
and “quite nice”. The third interviewee highlighted ease of
use: “the ease to use is the most interesting aspect, and also
the vector graphics”.

The GUI, and to a certain extent the way content is
organized in AVVX, is what the interviewees are most
displeased with: one test user mentioned that the interactive
elements “are quite small in a way that it may distract me”
and suggests that AVVX should have “two different
screens”, one for the GUI and another for the graphical
output. Another interviewee considers that “the hierarchy of
the program still needs a lot to be worked on” and that
navigating through content is “difficult unless you have
mastered it, and then you have memorized it pretty well”.
The last interviewee agreed with this observation,
mentioning “you don't rely on anything besides your fingers
or your memory”, since the information in the corner of the
screen “is too small to see”, and added “I'm getting the
feedback straight from the animation”. In addition to these
negative factors, one of the interviewees was also
displeased with the occasional slowness of the software
when dealing with more complex graphics.

The interviewees were then asked about multi-platform
issues: is it relevant to have the tool available across
platforms, such as laptops and tablets, and is it better suited
for some platforms than others? All users agree that the
laptop is preferable for preparing performances, with one
preferring the laptop for live performances and the
remaining two the iPad. Nevertheless, the latter two
stressed that the user interface in the iPad should be further
developed. One of the test users considers that both laptop
and iPad “worked out for me”, although he would rather use
a laptop in a performance because he could “move around
and bring a lot of different things at the same time”.
Another interviewee stated that the computer was better
suited to build and test the visuals, but that she would prefer
to use the iPad for performances since “it's more intuitive”
and allows to communicate better with the audience, adding
that the laptop “blocks” this communication. The third test
user agrees with these views, adding that he would prefer
the iPad more if the iPad interface would be better
implemented.

Regarding preference for type of user interface with the
laptop – keyboard or GUI – one interviewee stated that he
uses both, with the remaining two expressing preference for
the keyboard. The first test user mentioned that he uses the
“right hand on the mouse and the left hand on the
keyboard”, but that the keyboard gives him further
reassurance: it “would kind of assure me that I had pressed
something and something will happen”. The remaining two
interviewees stated that using the mouse is slower, therefore
they prefer the keyboard interface.

Finally, interviewees were asked if it is relevant to have
access to online visual resources, and if the access to those
resources is well implemented. One of the test users does
not consider it very relevant as he is not “a fan of using
other's visuals”, while the other two interviewees consider
this to be an important feature. One of the test users
considers this to be relevant in an open source project as
AVVX, as it favors remixing: “one thing can be kind of like
replicated in a million different ways”. She added that it
would be important to allow for tagging of content, in order
to find specific visuals more easily in the online database.
The third interviewee agreed with these views, emphasizing
that the online visuals reinforce the open source nature of
the project, and adding that it would be appealing to search
visuals “either by tag cloud or by looking at thumbnails”.

CONCLUSIONS
The development and testing of AVVX have confirmed the
hypothesis that the web browser, together with open web
technologies, can provide a foundation for a customizable,
content-sharing and multi-platform approach to audiovisual
performance. The evaluation has shown that test users were
satisfied with the end result when performing with the tool;
that they value its open source approach; as well as its
multi-platform, dual-interface approach (despite a
preference for keyboard, and limitations in the tablet
implementation). The interviews in particular revealed that
the laptop is preferred for preparation, while tablet is best
suited for performances; and that the adoption of an SVG-
based vector graphics approach had been successful.

The study also reveals that work remains to be done in
order to make AVVX easier to use, particularly regarding
tablet usage and GUI. The GUI should be further developed
to provide better feedback and content previewing,
eliminating the need to rely excessively on memory and
practice. Additionally, further work should be done to
transform the AVVX library14 into a more useful repository
for SVGs. Functionalities for uploading, tagging and
previewing visuals should be added. Visuals could then be
loaded into AVVX according to tag, and not just to author.

In addition to improvements arising from results of the
current study, our future work aims to increase the
expressivity and integration aspects of the AVVX platform.
The expressivity can be increased in the sonic domain by
inserting parameterized audio processing nodes – such as
low pass filters and phaser effects – into the audio
processing chain. The visual domain may be extended with
custom behaviors, such as those based on 2D bitmap
graphics and 3D WebGL models. The interactive properties
could be expanded with touchless gestures acquired through
W3C mobile sensor and pointer APIs. Finally, integration
with existing audio streaming services would enable
engaging active music listening scenarios.

14 http://www.avvx.org/library

The present study confirms that open web technologies are
currently powerful enough to be used in audiovisual
performances. Browser-based web technologies have the
potential to open up new creative possibilities in the
audiovisual domain, allowing for the usage of new types of
devices and for sharing online content, enabling
collaboration between artists and the reuse of materials.

ACKNOWLEDGMENTS
We would like to thank Aalto Media Factory for their
support regarding the software development and workshop.
We also thank the participants. This research was supported
by a Marie Curie Intra European Fellowship within the 7th
European Community Framework Programme.

REFERENCES
1. Correia, N.N. AV Clash, Online Audiovisual Project: A

Case Study of Evaluation in New Media Art. Proc. ACE
2011, ACM Press (2011).

2. Correia, N.N. AVVX: A Vector Graphics Tool for
Audiovisual Performances. Leonardo Electronic
Almanac 19, 3 (2013), 134–147.

3. Föllmer, G. and Gerlach, J. Audiovisions. Music as an
Intermedia Art Form. Media Art Net, 2005.
http://www.mediaartnet.org/themes/image-
sound_relations/audiovisions/.

4. Goodman, C. Digital Visions: Computers and Art. Harry
N. Abrams, New York, 1987.

5. Jordà, S. FMOL Toward User-Friendly, Sophisticated
New Musical Instruments. Computer Music Journal 26,
(2002), pp. 23–39.

6. Lew, M. Live Cinema: Designing an Instrument for
Cinema Editing as a Live Performance. Proc. NIME
2004, NIME (2004).

7. Moritz, W. Optical Poetry: The Life and Work of Oskar
Fischinger. John Libbey Publishing, Eastleigh, 2004.

8. Roberts, C., Wakefield, G., and Wright, M. The Web
Browser As Synthesizer And Interface. Proc. NIME
2013, NIME (2013).

9. Salter, C. Entangled: Technology and the
Transformation of Performance. MIT Press,
Massachusetts, 2010.

10. W3C. All Standards and Drafts. http://www.w3.org/TR/.
11. W3C. Scalable Vector Graphics (SVG) 1.1, Second

Edition. http://www.w3.org/TR/SVG11/.
12. W3C. HTML5: Edition for Web Authors – The Video

Element. http://www.w3.org/TR/html5-author/the-
video-element.html.

13. W3C. Web Audio API.
http://www.w3.org/TR/webaudio/.

14. W3C. Touch Events.
http://www.w3.org/TR/touch-events

	WebBrowserPlatformAVPerform-CameraReady.pdf
	WebBrowserPlatformAVPerform-CameraReady.2

