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ABSTRACT

Data outsourcing offers cost-effective computing power to manage
massive data streams and reliable access to data. Data owners can
forward their data to clouds, and the clouds provide data mirror-
ing, backup, and online access services to end users. However,
outsourcing data to untrusted clouds requires data authenticity and
query integrity to remain in the control of the data owners and users.

In this paper, we address the authenticated data-outsourcing
problem specifically for multi-version key-value data that is sub-
ject to continuous updates under the constraints of data integrity,
data authenticity, and “freshness” (i.e., ensuring that the value re-
turned for a key is the latest version). We detail this problem and
propose INCBM-TREE, a novel construct delivering freshness and
authenticity.

Compared to existing work, we provide a solution that offers (i)
lightweight signing and verification on massive data update streams
for data owners and users (e.g., allowing for small memory foot-
print and CPU usage for a low-budget IT department), (ii) imme-
diate authentication of data freshness, (iii) support of authentica-
tion in the presence of both real-time and historical data accesses.
Extensive benchmark evaluations demonstrate that INCBM-TREE

achieves higher throughput (in an order of magnitude) for data
stream authentication than existing work. For data owners and end
users that have limited computing power, INCBM-TREE can be a
practical solution to authenticate the freshness of outsourced data
while reaping the benefits of broadly available cloud services.

1. INTRODUCTION
In the big data era, data sources generate data of large variety,

volume, and at a high arrival rate. Such intensive data streams are
widely observed in system logs, network monitoring logs, social
application logs, and many others. In order to efficiently digest
the large data streams, which can be beyond a regular data owner’s
computing capability, outsourcing data and computation to clouds
becomes a promising approach. Clouds can provide sufficient stor-
age and computing capabilities with the help of large data centers
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and scalable networked software. By delegating processing, stor-
ing, and query serving of data streams to a third-party service, the
data outsourcing paradigm not only relieves a data owner from the
cumbersome management work but also saves significant opera-
tional cost.

For example, stock exchange service providers, social network-
ing companies, and network monitoring companies can benefit
from outsourcing their streaming data to clouds. In a stock ex-
change market, stock buyers and sellers make deals based on the
changing price. To identify stock market trends, stock buyers may
frequently consult exchange providers about historical and real-
time stock prices. With a large number of stocks, the footprint of
the stock price data would easily grow out of a regular company’s
computing capability or its IT budget. Moreover, as there are more
and more stock brokers in the market, it requires huge computing
power to serve such a large customer base. Another example is a
social networking website where the stream of social application
events arrive at a high rate, which can easily exceed the limit of the
server capability of the operating company. Big data streams can be
also observed in a network monitoring scenario where a company
monitors its real-time network traffic.

Despite its advantages, data outsourcing causes issues of trust,
because the cloud, being operated by a third-party entity, is not fully
trustworthy. A cloud company could deliver incomplete query re-
sults to save computation cost or even maliciously manipulate data
for financial incentives, e.g., to gain an unfair advantage by col-
luding with a data user competing with the rest. Therefore, it is
imperative for a data owner to protect data authenticity and fresh-
ness when outsourcing its data to a third-party cloud.

It is crucial to assure temporal freshness of data, i.e., obtain
proofs that the server does not omit the latest data nor return out-
of-date data. Especially when the value of the data is subject to
continuous updates, it is not sufficient to guarantee only the cor-

rectness of data because a data user expects to obtain the “freshest”
data. For example, in the online stock exchange, a broker is inter-
ested in the latest price of a stock.

While there are different types of data authenticity (e.g. basic
data integrity, completeness for range queries [17, 16], etc) in var-
ious outsourced systems, data freshness is particularly challenging
to authenticate. To break the data freshness, malicious clouds can
simply return stale but properly signed data versions. The prob-
lem of freshness authentication can be complicated by the presence
of 1) big data and 2) accessibility to historical data, as observed
in many cloud applications. In order to ensure the users of data
freshness, it is critical for the owner to remember the latest data



Table 1: Comparing INCBM-TREE with prior work

Outsourced Approaches Big Historical Real-time Efficient
systems data access verification signing
Data stores CloudProof [26], SPORC [12] + – – +

Iris [29], Athos [13] + – + –
Streams CADS [25], ProofInfused [17] – – + +
Highly dynamic stores INCBM-TREE + + + +

acknowledged by the cloud; in the case of big data, such “latest
snapshot” of the whole dataset may be simply too big to main-
tain locally, making it impractical for the owner to remember. On
the other hand, accessing historical data (i.e. not only the latest
snapshot) is required by many workloads; for example, predictive
analysis needs to look at the history to predict the future, or con-
sistency control protocols need to know the latest version at a his-
torical time. Authenticating freshness in the presence of historical
data access could even increase the size of local state to maintain on
the owner side, because it needs to maintain not only the snapshot
but also the full update history of the dataset. In this perspective,
we summarize the existing work in Table 1 where symbol +/– de-
notes that an approach support/does not support a feature. In the
table, we consider two additional features for freshness authentica-
tion: 3) real-time detection and 4) data write efficiency. Existing
audit-based approaches [26, 12, 19] rely on an offline process to
detect the violation; such approaches can not guarantee the fresh-
ness in real time. Existing real-time detection approaches, such as
Iris [29], require an up-to-date local state (e.g. root hash of a re-
mote Merkle tree) on the owner side, which can be expensive to
maintain (i.e. each data update requires to read a partial Merkle
tree from the cloud and then to locally update the root).

In this paper, we propose a novel authentication framework for
multi-version key-value data stores. Our freshness authentication
is based on the owner’s promises to frequently sign the updates
within certain time interval; such assumption is practical in the
context of intensive data updates. In this framework, we formalize
the problem of freshness authentication to be a non-membership
test; for instance, the freshness of a data record updated 5 minutes
ago can be authenticated by the non-membership fact that there
were no updates of the data in the last 5 minutes. We formally
describe our problem and authentication framework in §2 and §3,
and introduce a novel construct INCBM-TREE in §4 to address the
non-membership test problem. An INCBM-TREE uses a Bloom fil-
ter [7] for freshness authentication while enabling lightweight sign-
ing and optimized verification. Conceptually, an INCBM-TREE is
a Merkle Hash tree (MHT) [21] that embeds a hierarchy of Bloom
filters (BFs). In an INCBM-TREE, an MHT signs and protects au-
thenticity of data streams along with their associated BFs, whereas
BFs are used in non-membership tests for verifying version fresh-
ness. Furthermore, we design INCBM-TREE in such a way that
it can be incrementally constructed and maintained so that signing
data stream can be done efficiently without reading the historical
data from the cloud.

In summary, our main contributions are as follows.

• To the best of our knowledge, we are the first to solve the
problem of efficiently outsourcing multi-version key-value

stores with verifiable version freshness, enabling devices
with limited computation capabilities to leverage cloud-
based data management while ensuring the freshness and au-
thenticity of the outsourced data.

• We propose a novel construct INCBM-TREE to authenticate
version freshness, which dramatically reduces freshness ver-
ification overhead and signs the data stream efficiently with
small memory footprint.

• We evaluate the implementation of INCBM-TREE and our
results confirm that it applies to generic key-value stores, of-
fering more throughput (in an order of magnitude) for data
stream authentication than existing work.

2. PROBLEM FORMULATION

2.1 System Model
Our system model, illustrated in Figure 1, considers a data out-

sourcing scenario; it involves a single data owner (e.g., a small en-
terprise) and multiple data users (e.g., employees or customers of
the enterprise), who are bridged through a public cloud.
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Figure 1: System model and authentication framework

Specifically, in this scenario the basic data flow (as black solid
arrows in Figure 1) starts from the data source 1, which generates
the big data stream. The semantics of the data stream is that each
stream unit is an update to a record in the outsourced dataset in
the cloud. The data updates are uploaded to the cloud and applied
there.

The data users issue queries against the outsourced data in the
cloud. In this work, we assume an SaaS/PaaS cloud model (i.e.
Software/Platform-as-a-Service); the cloud provides a managed
storage service accessible through the Put/Get API, such as the
Amazon S3 service and many other key-value stores [9, 2, 1].2

With the API, we consider a key-value data model where each ob-
ject has a unique key k, and multiple overwriting values {v}, each
of which is associated with a unique timestamp t. The cloud stor-
age API is formally described as follows. Note that the timestamp
tq is optional in Get; when absent, it means that Get needs to return
the newest version as of now (i.e. the query time).

Put(k, v, t) → ACK (1)

Get(k[, tq]) → 〈v, t〉 (2)

1We use “data owner” and “data source” interchangeably.
2This paper focuses on simple data access, while the support and
optimization for advanced queries (e.g. aggregations) can be future
work of this paper.



2.2 Threat Model
We assume the minimal trust in our system that data users only

trust the data owner.
The public cloud, administrated in a third-party domain, is un-

trusted. In our model, the cloud can do anything with the out-
sourced data at its proposal. To break data freshness, the cloud can
launch a replay attack [18] to return properly signed but stale data
when processing the Get queries. The incentives of mounting such
attacks could be many, such as to save computation costs. While
the malicious behavior could occur, our authentication framework
(as will be described below) guarantees that such behavior can not
occur without being noticed by the data users.

Based on our query and threat models, there are specifically two
desirable security properties to be guaranteed.

DEFINITION 2.1. Given a query Get(k[, tq]), the result re-
turned from the cloud, say 〈v, t〉, is

• fresh if and only if 〈v, t〉 is the latest version updated before
tq and

• correct if and only if 〈v, t〉 is indeed a version that belongs to
the key k and was originally submitted by the data owner.

Table 2: Notations

k: key v: value
t: timestamp B: record size
S: memory size b: KOMT batch size
q: memory ratio for KOMT l: INCBM-TREE depth
E: error rate for non-membership test
Eb: bound for E r: reporting time interval

3. AUTHENTICATION FRAMEWORK
We have described the basic data flow in our system model, and

in this section we describe an extra data flow for authenticating this
basic flow. The key-value data stream, after being generated from
the data source, is locally digested and then signed. As shown by
the red dashed arrow in Figure 1, the digest and signatures are up-
loaded to the cloud. After issuing a query request and receiving the
result from the cloud, the data user needs proofs to verify the result
authenticity; such proofs are constructed by the cloud. To make the
users be able to verify, we assume a key-distribution channel from
the owner to the users.

3.1 Flexibility
In our framework, the data source is in the enterprise domain,

while the data users can be flexible, either inside or outside the do-
main. For example, if a data user is an employee of the enterprise,
s/he is inside the domain, and if the user is an enterprise customer,
s/he can be outside the domain. For the users inside the enterprise
domain, the authentication framework may use symmetric key to
sign and verify the data for performance concerns; such keys are
shared securely between the data source and users in the domain.
If the data needs to be shared with the users outside the enterprise
domain, then the framework can use the public key infrastructure
to authenticate the data and to distribute the public key to the users.
The users outside the enterprise domain may maliciously collabo-
rate with the public cloud to forge a proof for compromised data. It
is thus necessary to use the public keys which gives users only the
ability to verify the data, but not the one to sign the data.

3.2 Freshness Authentication and Non-Membership Test

Our framework primarily focuses on the freshness authentica-
tion3. Given the design of Get API, it is required to authenticate
the result freshness for now or for a historical time tq . In particu-
lar, for freshness as of now, the challenge comes from that the time
“now” is constantly evolving; the freshness of every record needs to
be constantly reported, even when there is no update on the record.
Our framework supports to authenticate relaxed real-time freshness
at a time interval of r minutes (e.g. r = 1 or r = 0.1). We assume
that the owner promises to report the authenticated data updates
every r minutes. This is a reasonable assumption, and it does not
incur dramatically huge overhead onto the owner; in our system,
the owner (e.g. an enterprise) is ingesting a high-rate data stream
and unlike some other offline owners [12] it needs to be 24/7 on-
line anyway. In addition, we assume that the physical time on all
participating parties (including the data owner, the cloud and data
users) is synchronized. Such synchronization can be realized by
a reliable trusted time service4. Under the promise and assump-
tion, the user can easily authenticate data freshness relaxed by a r-
minute interval; that is, the absence of a proper freshness proof for
data more than r minutes ago directly means the misbehavior of the
cloud. The cause of such misbehavior could be various; the cloud
may be unreliable and (unintentionally) lose the data outsourced by
the owner, or the cloud may deliberately neglect the fresh data for
economic reasons.5

The above mechanism of promised frequent reporting provides
sufficient conditions to support that a behaving cloud can prove
the data freshness. In the following, we briefly describe how data
freshness is verified. Proving the freshness of data 〈v, t〉 as of time
tq (or now) is equivalent to saying that no newer version 〈v′, t′〉
exists such that t′ ∈ (t, tq]. Formally, given that the owner’s data
stream is signed in time intervals, it needs to authenticate two facts:

• Membership of 〈k, v, t〉: The outsourced data that is re-
ported in a time interval covering the queried time t indeed
contains the key-value data of key k.

• Non-membership of 〈k, v′, t′〉: The outsourced data whose
time interval falls in (t, tq ] (i.e. the interval’s older time
bound postdates t and newer time bound predates or equals
tq) does not contain any key-value data of key k.

It is thus essential to design a digest structure that enables both
the membership and non-membership tests, which is described in
the next section.

4. INCBM-TREE BASED DIGEST
In this section, we describe our digest. We will first overview the

digest, then specifically describe the proposed INCBM-TREE, and
then the materialization of the digest in our authentication frame-
work. After introducing the mechanism, we will describe policies
to optimize the system performance. At the end, we will describe
the system implementation and deployment.

4.1 Multi-Level Digest
To enable the (non)-membership test, a baseline digest is to use

the Key-ordered Merkle Hash Tree, or KOMT [21, 17, 16, 29, 13].

3Correctness can be easily authenticated using the standard tech-
niques, such as MAC or digital signatures [16].
4http://tf.nist.gov/tf-cgi/servers.cgi
5We consider the use of a strongly consistent data store in the
cloud; that is, the data, once acknowledged being successfully
written to the cloud, is made immediately available to the subse-
quent queries. Real-world data stores of strong consistency include
BigTable [9], HBase [2], and Cassandra [1] under certain configu-
ration.



Given a batch of b key-value records, the KOMT digest is con-
structed by sorting the records based on data key and then building
an MHT on top of the ordered list. The KOMT is not well suited
for our scenario of outsourcing intensive data streams, due to per-
formance concerns. Specifically, KOMT’s performance depends
on the size of the data batch, b. With one setting of b, KOMT may
achieve efficiency in either signing or verification, but not both (e.g.
for a small b, there will be a large number of batches and digests
which increases the number of non-membership tests for verifica-
tion; or for a large b, the owner may need to hold a huge local state
which grows out of its memory space).

In this paper, we propose a multi-level digest for efficient key-
value data authentication. Our digest is a hierarchical structure of
four levels (from the bottom level to the top): 1) a first-level KOMT
which is built for each (small) time interval r and serves for the pur-
poses of real-time reporting, 2) a second-level KOMT with batch
size b configured based on available memory size, 3) INCBM-
TREE that is built on top of the second-level KOMT; it uses Bloom
filters to index non-membership information across KOMT’s, 4)
the chain of root hashes of the previously digested INCBM-TREEs.
In the following, we specifically describe the structure of proposed
INCBM-TREE.

Design goals. INCBM-TREE’s design considers the presence
of both historical and real-time data access. In this context, its de-
sign goals are: (1) to minimize the amount of data stored on the
data-owner side for lightweight data signing, (2) to reduce the proof
size for efficient verification of data freshness on the data-user side,

4.2 INCBM-TREE Structure
The basic idea behind the INCBM-TREE is that a Bloom filter

can summarize a data set in a space-efficient way and thus facili-
tates the non-membership test. The structure of an INCBM-TREE

is illustrated in Figure 2. Comparing to the traditional Merkle tree,
each tree node in the INCBM-TREE maintains not only a hash
digest but also a digest value that summarizes the key set in the
subtree rooted at the node. For a key set of the subtree, the di-
gest includes a Bloom filter and a value range. For instance, a leaf
node 6 maintains a Bloom filter BF6 summarizing key 1 and key
12 under the node and a hash digest h6. Given node 3 which is
the parent of two leaf nodes (node 6 and node 7), its digest is a
Bloom filter of union of its children nodes’ Bloom filters, namely
BF3 = BF6 ∪ BF7. Considering numeric data, the range di-
gest is simply with lower bound 1 and upper bound 23, namely
R3 = [1, 23]. It comes from merging the ranges from its two
children, that is, [1, 12] ∪ [15, 23] (note that there are no data in
[12, 15]). In total, the digest of the tree node is the hash value of
concatenation of all its children’s hashes, the range digest, and the
Bloom filters, that is, h3 = H(h6‖h7‖BF3‖R3). Note that in
an INCBM-TREE, Bloom filters at different levels are of the same
length. Formally, the INCBM-TREE uses the following constructs.

R(node) = R(left_child) ∪ R(right_child) (3)

BF (node) = BF (left_child) ∪ BF (right_child)

h(node) = H(h(left_child)‖h(right_child)‖BF (node)‖R(node))

Security property

THEOREM 4.1. The INCBM-TREE root node can authenticate
any bloom filter in the tree structure.

PROOF. The proof of security is based on the infeasibility
of finding two different Bloom filters BF1 and BF2 such that
H(. . . BF1‖ . . . ) = H(. . . BF2‖ . . . ). If this is feasible, then
it is easy to find two values, v1 = . . . BF1‖ . . . and v2 =

IncBM Tree
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Figure 2: INCBM-TREE structure

. . . BF2‖ . . . , such that H(v1) = H(v2), which contradicts the
fact that H is a collision resistant secure hash.

4.3 Digest Materialization in the Framework
The digest structure is materialized in our authentication frame-

work at two places: 1) The data owner locally maintains a partial
INCBM-TREE as its local state for the signing purpose, 2) The
cloud maintains a full copy of the INCBM-TREE for the query ver-
ification. In the following, we will follow the authentication data
flow to describe the functioning of the materialized INCBM-TREE,
that is, the owner-side digest construction and the cloud-side proof
construction.

4.3.1 Digest Construction at Owner

The data owner digests a data update stream by maintaining a
data batch in memory. Based on the buffered data batch, KOMT is
constructed at two levels of time granularity, that is, every r min-
utes (for level-1 KOMT) and whenever the available memory space
is consumed (for level-2 KOMT). At either time point, the owner
would sort the buffered key-value data based on key and on the
ordered list builds an MHT. The produced root hash for level-1
KOMT is reported to the cloud, while that for level 2 KOMT is
added to INCBM-TREE as part of a new leaf node.

For INCBM-TREE construction, upon adding each new KOMT
root, the owner maintains the Bloom filter of the current data batch.
The maintenance of INCBM-TREE is incremental as illustrated in
Algorithm 1; the newly created leaf node in INCBM-TREE would
trigger a series of merging actions – If it finds that there are two
nodes at the same level, those two nodes will be merged into one
node and the new node will be promoted one level up. The process
would construct a growing INCBM-TREE; it stops growing when it
produces a single node and the error rate of Bloom filter of this node
exceeds an error bound denoted by Eb. After a root of the INCBM-
TREE is generated, it is chained with previously signed INCBM-
TREE roots (i.e. chained in order of time). The signed INCBM-
TREE root is then uploaded to the cloud. Note that a key-value
record is digested and signed twice, one by level-1 KOMT (for
real-time freshness authentication) and the other by the INCBM-
TREE (for efficient freshness authentication to historical big data).

An example: We consider b = 2, which means KOMT is built
every 2 records. At time point 2, a new KOMT is built based on
data batch 1 of the first two records. The KOMT’s root node is
signed and uploaded to the cloud. The root node is also included in
a new leaf node of the INCBM-TREE, that is, node 4. Then at time
point 4, a similar KOMT is built on the next two records. After



it builds a new KOMT and uploads its root node, a new leaf of
INCBM-TREE is created and then merged with node 4 to node 2.
Similarly, at time point 6 and 8, two new KOMT’s are built based
on the new data batches and two new leaves are inserted into the
INCBM-TREE. Particularly, at time point 6 it generates a new leaf
node 6, and at time point 8 it generates another leaf which triggers
the merging of node 6 and node 2 to node 1. At this point of time,
only node 1 is maintained in the local state of the owner.

In general, during the construction of the INCBM-TREE, only
the “frontier” part of the tree is maintained locally. Figure 3
illustrates a snapshot of the local state maintained by the data
owner. The owner’s local state consists of the full data copy of
current batch for constructing two-level KOMT’s, the frontier part
of INCBM-TREE and a serials of previous signed roots of INCBM-
TREE’s.
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Figure 3: Incremental INCBM-TREE construction on key-value
stream: the red shapes are digests that are signed and uploaded
to the cloud.

Algorithm 1 IncBuild(Key-value batch s)

1: currentNode←keyOrderedMerkleDigest(s)
2: l ← 0
3: node← removeTreeNode(l)
4: loopnode6=NULL
5: currentNode← merge(currentNode, node)
6: l ← l + 1
7: node← removeTreeNode(l)
8: end loop
9: insertTreeNode(currentNode, l)

10: if E >= Eb then
11: uploadINCBM-TREEToCloud()
12: end if

4.3.2 Proof Construction and Verification

To see how a proof is constructed and verified, we need to first
take a look at the data and digest maintained by the cloud. At any
point of time, the cloud maintains data of three kinds: 1) data with-
out any digest; such data must be uploaded to the cloud within the
last r minutes, given our real-time reporting mechanism, 2) data
with a digest being level-1 KOMT, and 3) data with two digests,
being level-1 KOMT and INCBM-TREE. While data 1) can not
be authenticated due to lack of digest and signatures, data 2) can

be authenticated by the traditional MHT’s authentication path [17].
We assume the size of data 2) is small enough to fit into memory
and freshness authentication can be efficiently performed. In the
following, we hence focus on describing the mechanism for verify-
ing freshness regarding data 3).

For data 3), the INCBM-TREE is used to construct proofs to
verify a result of Get query. More specifically, the authenticated
Bloom filters can be used to efficiently test the (non)-membership
of a particular data key, as required for authenticating the data
freshness. Following the example in Figure 2, to prove the fresh-
ness of key 98 at time point 8, it suffices to return only two nodes,
that is, node 5 and node 3. Because Bloom filter BF3 can test the
non-membership of key 98 in time interval [5, 8] (i.e. node 3), and
digest h3 can be used to verify authenticity of BF3.

In reality, a Bloom filter can have error in its (non)-membership
test. This implies that when a key k is not in a set, a Bloom
filter may falsely claim the membership that k is in the set. In
this case, our strategy is to go down INCBM-TREE by one level.
For instance, when BF3 can not verify the non-membership of
key k, we use the two children’s Bloom filters, BF6 and BF7,
which collectively verify the non-membership. By using multi-
ple lower-level Bloom filters, the chance of correctly verifying
the non-membership becomes higher. In an extreme case where
all the internal nodes fail to confirm the non-membership, it re-
sorts to the KOMT beneath the INCBM-TREE to test the non-
membership or membership. Traditionally, the KOMT can verify
the non-membership by returning an authentication path that cov-
ers the queried key[17, 16]. By this means, it can always guarantee
the error-free verification of data freshness.

4.3.3 Cost Estimation

We first define the error rate of non-membership test, E(l),
which is the probability that a non-membership test can fail using
a BF at tree level l. We will deduce the mathematical formula of
E(l) later.

Recall that our digest construct enforces that E(l = ∗) < Eb.
Based on this fact we can estimate the upper bounds of travers-
ing the INCBM-TREE. Specifically, in the traversal, descend-
ing one level down only happens when a parent node fails to
test non-membership, which occurs with probability E(l). Since
E(l) < Eb, we can have the fact that descending N levels down
occurs with a probability smaller than EN

b .

THEOREM 4.2. In an INCBM-TREE where the error rates of
any Bloom filters at different levels are bounded by Eb, the extra
cost X is expected to be the following.

X =
1− Eb

1− 2Eb

+ (2Eb)
l
(

Eb log b− 2Eb ·
1−Eb

1− 2Eb

)

(4)

Here, cost X is defined to be the number of tree nodes for error-free
verification.

PROOF. Suppose the expected cost of a tree node at level l (l =
0 for leaf nodes) is Xl. Considering the traversal process of non-
membership test, there are two cases: 1) The tree node’s Bloom
filter can correctly answer the non-membership query, and 2) The
tree node can not. For the first case, it occurs with probability 1 −
Eb, since a Bloom filter’s error rate is Eb. When the query cost is
1 for a single node, its contribution to the overall expected cost is
(1 − Eb) · 1. For the second case, it occurs with a Bloom filter’s
error rate Eb. And the query evaluation needs to descend into the
tree node’s direct children at level l−1. The cost should be equal to
the sum of expected costs at all the children nodes. Suppose each
tree node has 2 children, the contribution of the second case to the



overall expected cost is Eb ·2Xl−1. Overall, we have the following
and drive a closed-form for the expected cost.

Xl = 2Eb ·Xl−1 + (1− Eb)

= (2Eb)
2 ·Xl−2 + (1−Eb)(1 + 2Eb)

...

= (2Eb)
l ·X0 + (1− Eb)[1 + 2Eb + (2Eb)

2 + · · ·+ (2Eb)
l−1]

=
1− Eb

1− 2Eb

+ (2Eb)
l
(

X0 −
1−Eb

1− 2Eb

)

=
1− Eb

1− 2Eb

+ (2Eb)
l
(

Eb log b− 2Eb ·
1− Eb

1− 2Eb

)

The last step is due to that X0 = Eb log b+ (1− Eb).

The implication of this theorem is that if we can bound the error
rate of all BFs in the INCBM-TREE, we can also bound the cost of
non-membership test largely based on the value of Eb. In practice,
we set Eb < 0.5, then we can have Xl ≈

1−Eb

1−2Eb
for a reasonably

large l.

4.4 Effective System Configuration
In this part, we analyze our authentication framework and give

suggestions on configurations to make the framework effective.
We start by deducing the formula of non-membership error rate

E(l). For a BF at level l in the INCBM-TREE, the node contains
no more than b · 2l key-value records. The BF’s error rate (for

membership test) is E′ = (1− e−
b·2l

m ) (here we use a single hash
function)[23]. For key-value data, we consider a key domain of
cardinality 2Bk ; that is, Bk is the necessary number of bits for
storing a key. Thus, the error rate for non-membership test is the
ratio of the likelihood that the error case occurs (i.e. E′ · b2l/(1−
E′)) to the likelihood that a non-membership test happens (i.e. E′ ·
b2l/(1−E′) + 2Bk − b2l).

E(l) =
E′ · b2l/(1− E′)

E′ · b2l/(1− E′) + 2Bk − b2l
(5)

≈ (e
b
m

2
l

− 1) · b · 2l−Bk

= (e
q

1−q
l
B

2
l

− 1) ·
S

B
q · 2l−Bk <

1

2

Here, we used approximation that 2Bk ≫ 1 (e.g. Bk = 8000 for
a one-KB key). In the last step, we used system parameter q which
is the ratio of memory allocated to host KOMT (with the rest of
memory to host INCBM-TREE); thus, we can apply b = Sq/B
and m · l = S(1− q) in the equation.

From the equation, we can see that 1) E(l) is a monotonic in-
creasing function to variable l; thus the root node would have the
largest error rate among all tree nodes and it suffices to control the
root in order to bound the error rates of all nodes in INCBM-TREE.
2) E is very sensitive to increasing the value of l. Such E value is a
major factor that limits the INCBM-TREE from growing large and
deep.

Setting the depth for INCBM-TREE (i.e. l) is an art. While a
deep INCBM-TREE is good for increasing the chance to have a hit
on the INCBM-TREE during the proof construction, it may hurt the
verification efficiency and contribute to a large proof size when it
misses. A rule of thumb is to set l to be a medium value; in our
experiment setting, l = 7 works well in performance.

4.5 System Implementation
We implemented a proof-of-concept prototype for our authenti-

cation framework. We choose HBase [2] to be the substrate sys-
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Figure 4: Prototype on HBase and experimental setup

tem, because 1) HBase is a representative key-value store, which is
widely used for many cloud storage services, 2) HBase is optimized
toward the write performance; it is designed by a log-structured
merge tree [24], which lends itself to persisting the high-rate data
stream,3) HBase attains strong consistency, a feature that is re-
quired for the freshness authentication by our framework.

The basic data flow in the HBase system is following. The data
source installs an HBase client, and through the Put API submits
the key-value data to the cloud. The data is then stored in a (base)
table in the HBase server cluster. A data user installs the HBase
client and through an HBase Get API requests to retrieve the out-
sourced data in the cloud.

To hook our authentication data flow, we made several system
modifications and configurations. First, we attached the signer
component to the Put path at the owner side; this is done by in-
strumenting the HBase client library; we emit every key-value data
in the Put path to the signer component, which then builds the di-
gest as was previously described. The digest is submitted to the
cloud (more specifically to the “digest table” in the cloud as de-
scribed below) by the HBase Put call. Note that we only submit
the signed root node to the cloud, and leave everything else (e.g.
the digest structure in the INCBM-TREE) local; such digests can
be recomputed from the outsourced raw data in the cloud. Second,
the HBase server in the cloud maintains two tables, one for the base
data and the other for the meta-data including the digests and sig-
natures. The digest table is sharded based on the generation time.
Third, for proof construction, a baseline implementation is to co-
ordinate the proof construction by data users; after receiving a Get
result the user could submit a separate Get request to the digest ta-
ble. For performance concern and saving the extra communications
to the cloud, we implemented an alternate design that automatically
triggers the proof construction upon the base table receiving a Get
request. This is implemented by using HBase’s CoProcessor inter-
face [3] which allows a programmer to attach external actions to
HBase’s internal events (e.g. receiving a Get call). The proof is
constructed by consulting the digest table which stores the full his-
tory of authenticated digest structures. After being constructed, the
proof is encoded in the Get result to the user. Fourth, after receiv-
ing the Get result, the data user parses it and extracts the encoded
proof, which is then sent to the verifier component to check the au-
thenticity of the query result based on the owner’s public key. The
verifier then notifies the end user of the final authentication result.
We illustrate our system implementation in Figure 4.

The internal of the authentication framework is imple-
mented based on the cryptographic library in Java (i.e.
javax.crypto.*). In particular, we used RSA for digital sig-
nature.

5. EVALUATION
We first describe our simulation result to study the performance



of the INCBM-TREE, and then report the experimental result based
real system setup.

5.1 Simulation Study
We first conducted simulation-based performance study to jus-

tify the hierarchical design of the INCBM-TREE.

5.1.1 Proof Construction Cost

The extra cost for proof construction/verification plays a key role
in INCBM-TREE’s overall efficiency. We first studied the verifica-
tion cost based on Equation 4. Particularly, we varied the error rate
of Bloom filters in INCBM-TREE (by changing their sizes). Un-
der each setting, we repeated the experiments for 100 times and
plotted the average proof size in Figure 5. With small error rates
(e.g., < 10%), the proof size was very small, e.g., slightly above 1.
With large error rates (e.g., ≥ 10%), the proof size exponentially
increased as shown in Figure 5b. The result was consistent with
our cost analysis in the sense that any Bloom filter should not have
error rate too large (e.g. 10%).
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Figure 5: Effect of the error rate of a Bloom filter on the constructed
proof size (Y axis in a log scale)

5.1.2 Non-membership Test Cost

We then compared INCBM-TREE with two alternate designs,
KOMT-Only which only maintains KOMT, and KOMT-None
which only maintains INCBM-TREE without KOMT. For simula-
tion, we considered all approaches being memory-resident. Instead
of the proof size, we used a metric Z in this experiment which
measures the per-record cost during a non-membership test. This
metric is more suitable for comparison since it is independent to
the data and query distribution. For INCBM-TREE, we used the
following formula to calculate Z in our simulator. Here, b1 denotes
the batch size used in the INCBM-TREE approach.

Z1 = X/(b1 · 2
l) (6)

=
1

b1 · 2l
[
1− Eb

1− 2Eb

+ (2Eb)
l(Eb log b1 − 2Eb

1− Eb

1− 2Eb

)]

For KOMT-Only, metric Z is,

Z2 =
log b2
b2

=
B

S
· log

S

B
(7)

Here, we used two facts: 1) A non-membership test in an MHT
of b2 leaf nodes requires an authentication path from a leaf to the
root, which costs log b2 operations, 2) The KOMT-Only design
uses all memory space to store the data batch of KOMT, yielding
b2 = S

B
.

For the KOMT-None approach, it can be thought as a special
case of INCBM-TREE when the KOMT is built on individual data
records. By plugging b3 = 1 in Equation 6, we have the following.

Z3 =
1

2l
1− Eb

1− 2Eb

[1− (2Eb)
l+1] (8)

In our simulation, we used the memory size 1 GB = 109×8 bits,
the size of key-value pairs ranging from 1 KB, 10 KB, 102 KB to
103 KB. We set the INCBM-TREE depth l = 7 for both INCBM-
TREE and KOMT-None approach; such value is the largest one that
obeys our constraints as in Equation 5. For the INCBM-TREE, we
consider the different memory ratios, q = 0.1 and q = 0.2. We
report the value of metric Z in the unit of Milli-ops (i.e. 10−3 op-
erations) per record. We show our simulation result in Figure 6a.
In the result, it is easy to see that approaches using BF, includ-
ing INCBM-TREE and KOMT-None, incur fewer costs for non-
membership tests than KOMT-Only. When the key-value records
grow large, the cost of KOMT increases quickly. This result con-
firms the approximate-linear relationship between metric Z2 and
record size B as in Equation 7 (note that S ≫ B). For INCBM-
TREE, its cost stays small because of the compression effect of BF
used in INCBM-TREE.
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Figure 6: INCBM-TREE performance study

5.1.3 Digest Size

In order to evaluate the bandwidth cost of outsourcing, we mea-
sured the size of constructed digests. A digest size matters a lot to a
cloud where a digest has to be fully stored there for proof construc-
tion. We measured the digest size for INCBM-TREE while varying
the number of data records. We also included the size of digital
signatures as comparison points as shown in Figure 6b. A digest
size, measured by the number of hash values, increased linearly to
the data size, measured by the number of records in the stream. A
digest was significantly larger than a signature, which supported
our design choice where we did not transmit a digest to a cloud.

5.2 Real Experiment Platform Setup
Based on our prototype system, we used YCSB to drive read-

/write workloads, as shown in Figure 4. YCSB6 is an industrial
strength benchmarking tool to simulate various key-value work-
loads in the cloud. In experiments, we launched two YCSB in-
stances, one to generate write-only workload to the owner, and the
other to generate read-only workload to the users.

We deployed our experiment system in Emulab [30]. The data
owner and users were set up on two separate machines while the
HBase server cluster run on 10 machines for the cloud storage. In

6https://github.com/brianfrankcooper/YCSB/wiki
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Figure 7: Stream write performance

the HBase cluster, we installed HBase on top of HDFS. We used
one machine for the master node (i.e. HBase HMaster and HDFS
namenode); the rest 9 machines were used as the slaves. We used
default software configurations for both HBase and HDFS. All ma-
chines were homogeneous with 3 GHz CPU and 2 GB RAM.

5.3 Write Performance
Based on the real platform, we first evaluated the write perfor-

mance of INCBM-TREE. We describe our specific experiment
setup and then report the evaluation result.

5.3.1 Experiment Setup

We measured the performance of ingesting a data stream. In our
setup, 300 million key-value pairs were produced by YCSB; we
used a write-only configuration to generate the workloads under a
Zipf distribution. The data were driven into the owner-side signer;
in this process, we measured the sustained throughput and latency.
We saturated the system by setting the targeted throughput to be
higher than estimated sustainable throughput.

For comparison, we considered the KOMT-Only design, as it is
used by prior work [17, 25]. Particularly, we considered two real-
izations of KOMT-Only: One was memory resident, and the other
was on disk. The memory-only KOMT occupied the whole mem-
ory space; that is, the batch size is exactly equal to the memory
space. By contrast, the on-disk KOMT may spill data to and re-
trieve data from disk, and we set its batch size to be three times of
the memory space. For INCBM-TREE, it always resided in mem-
ory and we tested with memory ratio q = 0.1 and q = 0.2. Here,
one might argue that it is unfair to compare the memory-resident
INCBM-TREE with on-disk KOMT. It is a fair setting as we will
see that both approaches achieve similar performance in verifica-
tion – The fact that the on-disk KOMT needs more memory foot-
print and needs to spill data to disk would show the superiority
of the INCBM-TREE design. Likewise, we consider both the in-
memory KOMT and in-memory INCBM-TREE; by this way, their
write performances are similar (i.e. without disk IO upon signing)
and we can then fairly compare them in terms of the verification
costs.

5.3.2 Time-series Results

The time-series result along the data ingesting process was re-
ported in Figure 7a. We did not include the initial data loading
stage to exclude unstable system factors, e.g., cold cache. While
the throughput of INCBM-TREE remained stable and high, the
throughput of KOMT fluctuated along the time-line. At the valley

points, KOMT was performing heavy disk I/Os to flush overflow-
ing data and to load data from disk to memory for signing. Due to
the reason, the average throughput of KOMT was lower than that
of INCBM-TREE.

5.3.3 Average Throughput

We repeated the above primitive experiments multiple times un-
der different settings and reported their average. We first varied
batch sizes under a fixed memory size 0.5GB so that tested batch
sizes were always bigger than memory sizes. Figure 7b reports the
throughput. INCBM-TREE achieved an order of magnitude higher
average throughput than the on-disk KOMT. As the batch size in-
creased, the throughput of KOMT decreased because more disk ac-
cesses were required for signing. The throughput of INCBM-TREE

remained almost the same across various batch sizes because of
the incremental digest construction. INCBM-TREE achieved much
higher throughput than KOMT due to the pure memory operations
without disk I/O. We then varied the memory size under the fixed
batch size of 4GB. As described in Figure 7c, the throughput of
KOMT increased with larger memory size mainly because of fewer
disk I/Os. The throughput of INCBM-TREE remained stable with
different memory sizes.

5.4 Query Performance

5.4.1 Experiment Setup

We further conducted experiments to measure the query verifi-
cation cost. Before the experiment, we set up the cloud system
in advance; we deployed the HBase cluster and populated it us-
ing a pre-materialized key-value dataset (which was generated ear-
lier using YCSB). The cloud maintained full copies of different
authentication structures (e.g. KOMT and INCBM-TREE), which
followed the setting described previously. To conduct the experi-
ments, we drove a read-only YCSB workload (more specifically,
the workload-C in YCSB) into the system through data users (as in
Figure 4). Recall that the cloud constructs the proof for the query
result, and the user verifies the result based on the proof. Here,
since we were not interested in the performance of the cloud part
(which is typically not the system bottleneck in an outsourcing sce-
nario), we were mainly concerned with the client performance, e.g.
the user-side verification cost.

5.4.2 Verification Performance

In our query model (i.e. Get (k, t)), different keys k’s are up-
dated with different time intervals – While some keys are very fre-
quently updated, other keys are not. Such update frequency plays a



key role in determining the verification cost, and we used it as the
parameter in our experiment. As for the metric, we measured the
proof size and actual verification time. The proof size is captured in
the unit of batch numbers. We report our experiment result in Fig-
ure 8a for verification time and Figure 8b for the proof size. It is
clear to see that both metrics increase linearly with the update time
interval, which is expected. Because the older the last update is (as
is usual for records updated in larger intervals) the longer history
it has to dig into for the non-membership test. For different ap-
proaches, INCBM-TREE outperformed the rest, because it uses BF
to index the non-membership information across KOMT batches
and improves the test efficiency. In particular, on-disk KOMT
achieves similar proof size with INCBM-TREE. However, this ef-
ficiency for on-disk KOMT comes at the expenses of much higher
write overhead and lower write throughput as revealed in Figure 7b.
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Figure 8: Verification performance

6. RELATED WORK

6.1 Data Outsourcing and Security Issues
In the age of cloud computing, data outsourcing has become a

popular practice to save the operational overhead. As most cloud
services are provided in the public domain and by a third-party op-
erating company, security issues become an inevitable concern in
practice. Hacigumus et al. introduced general security issues in an
outsourced database scenario [14]. Most security concerns can be
attributed to data confidentiality and/or authenticity. While there is
a large body of research work for information confidentiality in the
public cloud (e.g. querying encrypted data [26]), the concern of our
work is on the data authenticity aspect.

Work for authenticated data outsourcing can be classified from
the system perspective. There are various outsourced data systems,
ranging from pure computations (e.g. MapReduce [27, 8]), to pure
storage, and to a hybrid (e.g. a database management system).
In particular, the outsourced dynamic databases [16, 25] consider
outsourcing data that is subject to updates from the data owners
and serves SQL queries to the data users. The outsourced data
streams [17, 10, 28] consider a continuous data stream as input
and serves stream-specific queries, such as aggregations, continu-
ous queries, etc. Comparing to the databases, data stream system
is less concerned about storing data and enabling access to histori-
cal big data; instead, it is more interested in processing and serving
relatively small data in memory (e.g. recent data within a time win-
dow). In the system community, outsourced file systems and key-
value stores are considered. While file systems deal with sequential
data reads/writes in addition to the random ones, key-value stores
are more primitive, typically dealing the very basic Put/Get API.
The key-value stores are scalable and highly available, which lends

themselves to providing cloud services; there is a trend to super-
impose various high-level functions (e.g. databases [5]) on top of
key-value stores. Authentication is also studied in the context of
P2P networks [15]. In their systems, multiple peers are located
in different domains, which makes them mutually untrusted. This
model is different from a key-value store, where all nodes are lo-
cated in a single domain, namely the cloud domain.

In different systems, authenticity has different meanings. For a
single data unit (e.g. a data blob), authenticity or data integrity re-
quires that the content can not be changed by the cloud without the
notice of end users. For a faulty cloud storage, PDP or provable
data possession [6] is authenticity on the data-possession informa-
tion. When a range query is considered, completeness [17, 16] is
an important property that assures that no valid data in the queried
range is missed in the result. Our work considers authentication of
version freshness in outsourced key-value stores; such freshness is
specific to the multi-version Put/Get API exposed by many key-
value stores.

6.2 Freshness Authentication
To authenticate data freshness, existing digest structures mainly

rely on two approaches; updating an MHT [29, 13] or offline audit-
ing authenticated operation histories (by hash chains) [26, 12].

In the updating-MHT approach, the owner stores a local state for
the remote MHT in the cloud. The local state could be the root
hash of the MHT [29, 13] or the full copy [16, 20, 21]. Given data
updates, the owner needs to update and sign the local state before
sending the authenticated updates to the cloud. In this approach,
authenticating the updates is inefficient as it either needs to main-
tain huge on-disk local data as in the full-copy variant or needs the
owner to read back authenticated information from the cloud for
updates as in the root-hash variant.

The other approach for freshness authentication is to audit oper-
ation histories from both sides of the users and cloud; at the end
of each epoch, the trusted owner collects the operation histories
from the cloud (which is assumed to be willing to collaborate) and
data users, and then by comparing the histories, freshness can be
authenticated or a violation is detected. By using hash chain and
user-supplied randomness, the history information from the cloud
can be authenticated so that it can effectively prevent the cloud from
forging the history. The audit-based freshness authentication as-
sumes logging responsibility on the user side and can only detect
the violation in an offline and delayed manner (i.e. at the end of
each epoch).

6.2.1 Systems

CloudProof [26] addresses the authentication of Put/Get in an
untrusted key-value store service (e.g. Amazon S3). In the system,
the trusted owner is offline in the sense that it is not present in any
active Put/Get path from the data users. This design relieves the
owner from being 24/7 online. Data freshness requires a Get to
return the latest available data written by Put. CloudProof audits
the authenticated history to provide the freshness guarantee.

SPORC [12] supports multi-user collaborative applications on a
P2P alike system with a thin server. The sole responsibility of the
server is to coordinate and order the operations on the object shared
by multiple users. In the system, users or logged-in clients trust
each other but they do not trust the server. SPORC authenticates
fork consistency (or variants) on multi-version data in a multi-user
context. The proposed technique for that is to authenticate the com-
mitted write history of a user using hash chain and to verify the new
writes by directly contacting the original client. In a similar setting,
Depot [19] verifies the freshness of data obtained from the cloud by
periodically communicating the trusted peer clients.



In the database community, various data management systems
consider dynamic dataset updated by a stream of data writes.
To guarantee data freshness under this dynamic setting, existing
work [25, 16] relies on the traditional mechanisms for document
certificate validation [22], such as publishing revoked signatures
and signing with expiration time (and resign upon expiration).

To authenticate freshness in real-time, prior work [31] assumes
a trusted computing base in the cloud server. Iris [29] consid-
ers the outsourcing of an enterprise file system to the cloud; the
reads and writes are issued from the users of the same enterprise
domain and the trusted enterprise is present in every read/write
path. In the presence of updates to file block, Iris addresses the
freshness problem – it is the latest version of the file block in the
cloud that should be returned. Iris updates the MHT for fresh-
ness; it is guaranteed by maintaining the latest version numbers
of each file block in a Merkle tree and locally maintaining its root
hash. Persistent authenticated dictionaries or PADs [11, 4] are a
performance-optimized data structure to authenticate multi-version
data with key-completeness in the presence of historical access. As
PADs do not particularly address the freshness authentication prob-
lem, they are complementary with INCBM-TREE.

7. CONCLUSION
In this paper, we highlighted and articulated the problem of pro-

viding data freshness assurance for outsourced multi-version key-
value stores. We proposed INCBM-TREE, a novel authentication
structure which offers a set of desirable properties in intensive
stream authentication: 1) lightweight for both data owners and end
users, 2) optimized for intensive data update streams, and 3) imme-
diate authentication of data freshness in the presence of real-time
and historical data accesses. Through extensive benchmark eval-
uation, we demonstrated that INCBM-TREE provided throughput
improvement (in an order of magnitude) for data stream authen-
tication than existing work. The superior performance makes our
approach applicable particularly to data owners and clients with
weak computational capabilities, which is typical for outsourcing
scenarios.
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