
Challenges and Implications of Verifiable Builds for
Security-Critical Open-Source Software

Xavier de Carné de Carnavalet and Mohammad Mannan
Concordia Institute for Information Systems Engineering

Concordia University, Montreal, Canada
{x_decarn, mmannan}@ciise.concordia.ca

ABSTRACT

The majority of computer users download software from the
Internet and run it directly on their machine. They ex-
pect applications to work as advertised, and implicitly trust
them not to perform any malicious activities. For security-
sensitive applications though, users need the assurance that
what they downloaded is what has been officially released
by the developers, and that it comes directly from audited
sources to avoid surreptitious backdoors. However, the com-
pilation process from source code to binary files, and more
generally, the toolchain used in software packaging, has not
been designed with verifiability in mind. Rather, the out-
put of compilers is often dependent on parameters that can
be strongly tied to the building environment, and may not
be easily repeatable anywhere else. In this paper, we first
manually replicate a close match to the official binaries of
sixteen most recent versions of TrueCrypt for Windows up to
v7.1a, a widely known open-source encryption tool, and ex-
plain the remaining differences that can solely be attributed
to non-determinism in the build process. This experiment
provides the missing guarantee on the official binaries, and
makes audits on TrueCrypt’s source code more meaning-
ful. Also, it gives insights about what constitutes sources of
non-determinism in a compilation process, which may help
create future verifiable build processes. We also summarize
challenges faced by Bitcoin, Tor, Debian and other Linux
distributions in designing automated methods, such as de-
terministic and reproducible builds, for the verification of
their official packages. Finally, we discuss a few suggestions
for achieving deterministic builds.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verifi-
cation; K.6.5 [Management of Computing and Infor-
mation Systems]: Security and Protection

This article is an extended version of a paper to appear in ACSAC2014 [9].

Keywords

Deterministic build, Reproducible build, TrueCrypt, Tor,
Bitcoin, Debian

1. INTRODUCTION
When building a software package, the compilation pro-

cess generally results in different binary outputs from one
compilation instance to another, especially in different en-
vironments. This leads to various problems from dedupli-
cation to trust issues. In this paper, we are mostly con-
cerned about the security implications of such a build pro-
cess, more specifically for security-critical software systems,
e.g., TrueCrypt, Tor, Bitcoin Core [3], and Debian. The
idea of reproducing strictly identical builds, i.e., being able
to independently reconstruct the same binaries as advertised
by the open-source developers using the same source files,
has been suggested only a few years ago; the oldest refer-
ence we can find is a discussion from 2007 on the Debian
mailing list [48]. Several blog articles and tickets in bug
tracking systems refer to this idea as machine-independent
builds [7], deterministic builds [6, 37], bit-by-bit identical
builds [30], idempotent builds [27], verifiable builds [45, 11],
bit-perfect [12], or byte-by-byte reproducible builds [4, 5].
Some ad-hoc solutions have been discussed in these refer-
ences, however we think this is an important problem and
we were unable to find related literature.

Making a build process deterministic is evidently non-
trivial, as compilers and other tools in the toolchain have
not been designed with this goal in mind. One of the most
common sources of difference comes from embedded times-
tamps that reflect the time of compilation. Two compilation
instances run at one second apart on the same environment
may generate slightly different outputs. More difficult ex-
amples that we have found include variations linked to the
type of processor used for compilation. File checksums and
cryptographic hashes differ as a result of such changes. As
we tend to refer to such hashes when comparing files or ver-
ifying their integrity, it then becomes irrelevant to compare
hashes of different builds of the same source.

On the other hand, several existing security mechanisms
rely on a randomized build process for providing probabilis-
tic security through software diversity. Such methods can
prevent against an attacker who may be able to identify a
vulnerability in a particular copy, but cannot automatically
exploit it in another one. Possibly the best example of secu-
rity through diversity is address space layout randomization
(e.g., PaX ASLR [43]), which has been implemented in most
widely-used operating systems. Software diversity has a rich

history; see e.g., Forrest et al. [15], and Franz [16] (also the
recent survey on diversity [28]). By definition, software di-
versity mechanisms are mostly adverse towards determinis-
tic builds. Other sources of diversity in binary code may in-
clude compiler optimization techniques, especially the ones
independent of source code, e.g., profile-guided optimization
(PGO [33]), recently adopted by Mozilla Firefox [35].
The importance of deterministic builds has gained gen-

eral awareness after classified documents from the U.S. Na-
tional Security Agency (NSA) have been leaked by Edward
Snowden starting in June 2013. The magnitude and depth
of the intelligence programs explained in these documents
suggest, among other things, the ability of the NSA to per-
form surreptitious man-in-the-middle attacks to infect tar-
geted systems, or more generally make those systems down-
load malicious software (cf. NSA TURBINE [17] and the
Dual EC DRBG case [31]). It then becomes easy to insert
malicious behavior such as backdoors in binary files that
are downloaded by a majority of users, particularly on the
Windows platform. Man-in-the-middle attacks can be pre-
vented by the use of TLS-encrypted communications. How-
ever, such protection does not prevent a malicious or co-
erced software author from distributing malicious binaries
that do not match the available source code. Moreover, an
author can digitally sign her software package, e.g., via an
embedded X.509 certificate on Windows executables; how-
ever, this may constitute a single point of failure (cf. Flame
malware [21]). The ability to verify both the source code
and the corresponding executable against a consensus could
prevent such attacks on downloaded software.
Security-sensitive applications such as Bitcoin Core and

Tor have started using a deterministic build approach, to
enable decentralized trust through multiple independent sig-
natures from users who compiled the application and sub-
mitted signed hashes of the output. Both Bitcoin Core and
Tor are based on Gitian [18], a Ruby and bash wrapper
for Ubuntu’s python-vm-builder that was created in 2009 to
ensure the build security and integrity of Bitcoin. In 2013,
the Tor Browser Bundle [37] adapted Gitian for its purpose,
which involves the cross-compilation of the bundle for Mac
OS X and Windows from a Linux environment. However,
several aspects for a deterministic build remain unaddressed.
As a case study, we focus on TrueCrypt [46], an open-

source tool capable of on-the-fly encryption.1 It creates
encrypted containers at different levels (file, partition and
entire disk), provides a full disk encryption (FDE) feature
under Windows with pre-boot authentication, and even of-
fers plausible deniability of hidden partitions. TrueCrypt is
available as compiled binaries for Windows, Linux and Mac
OS X, along with its source code. However, as we men-
tioned, simply compiling the source code is not enough to
replicate a match with the given binaries. Hence, reviews
and audits of its source code usually discard this difficult
verification step, and may qualify TrueCrypt as secure, re-
gardless of whether the audited source corresponds to the
targeted compiled application that is distributed and used

1Even though recently the TrueCrypt developers announced
the discontinuation of their work, other groups are join-
ing effort to keep such an essential tool alive; see,
e.g., http://truecrypt.ch. The TrueCrypt audit project
(http://istruecryptauditedyet.com) as initiated by Ken-
neth White and Matthew Green, also remains unaffected by
the recent developments.

by the majority of users. Our analysis brings this missing
connection and makes the conclusions of those audits more
meaningful. Similar to other security software, such as Tor,
TrueCrypt also appears to be a perfect target for government
surveillance (see [17]). A legitimate question then arises:
Are the binaries provided on the website different than the
available source code and do they include hidden features
such as a backdoor? In this paper, we provide the answer
to this question and make the following contributions.

1. We recompiled sixteen versions of TrueCrypt from v5.0 to
v7.1a and analyzed the differences between our builds and
the official ones. These versions date back from February
2008 up to the latest fully-functional version released in
February 2012.

2. We detail the major challenges we faced to replicate a
close match, and successfully explain the remaining dif-
ferences, if any. We then conclude that all of TrueCrypt’s
signed binaries directly come from their respective sources
and no backdoor has been inserted in the binaries.

3. From our experiments, we identify several key sources of
non-determinism to be taken into account to realize de-
terministic builds, and that can help in the process of
verifying other applications that do not provide a deter-
ministic build.

4. Finally, we summarize the lessons learned from other on-
going projects that aim at achieving deterministic or re-
producible builds, and their limitations.

2. DEFINITION, THREATS AND

CHALLENGES

2.1 Definition
The general idea behind a deterministic build is to record

the environment when building the official release of a project,
then replay the behavior of this environment in later builds
to achieve the same results. This process is mostly coined as
deterministic, as it removes sources of non-determinism that
are out of control in a regular building process. A broader
term has been coined by Debian as reproducible build [10],
which emphasizes more on replicating the official build, re-
gardless of the process involved. To reconcile the terminolo-
gies encountered, we suggest the following definition:

A build is verifiable if any two instances of the build pro-
cess produce identical results. This can be achieved through a
deterministic process, in which case both builds are byte-by-
byte identical (hence the process is machine-independent);
or by matching the builds at a higher semantic level.

2.2 Assumptions
We assume that the compiler is trusted; cf. Thompson [44]

(see also [51] for a proposal addressing the untrusted com-
piler problem). We also trust the operating system (OS),
as it would make no sense to trust a regular program (e.g.,
a compiler in this case) running on an untrusted OS. The
hardware platform including the CPU of the build system is
also trusted (but see e.g., [26]).

We also make the following assumption regarding the mul-
tiple independently signed hashes of recompiled binaries. If
the verification process succeeds by consensus (i.e., the ma-
jority of the signed hashes match the hash computed by the
user), we assume that malicious signatures cannot represent
a majority in the list of signatures. This assumption does

http://truecrypt.ch
http://istruecryptauditedyet.com

not hold in situations where a powerful attacker can com-
promise a significant number of signatures (i.e., beyond the
majority threshold) with ones that correspond to malicious
binaries. Otherwise, other verification protocols can be con-
sidered. An example of a different signature scheme is the
(t, n) threshold-multisignature scheme [29], in which t of the
n shareholders are required to participate to make a valid
signature. These two parameters, including who is selected
to be considered as a shareholder, should be carefully chosen.
Also, see Perspectives [50] for an example of a distributed
trust scheme to prevent man-in-the-middle attacks against
self-signed SSL certificates.

2.3 Threats considered
Our primary consideration is that users do not recompile

software packages from the source. Based on it, we consider
the following threats and explain how a deterministic build
prevents against them.

Targeted attacks on binaries. We assume that an at-
tacker can launch a man-in-the-middle attack and alter the
binaries received by a targeted user (e.g., a coercive gov-
ernment against a Tor user). This alteration may be pos-
sible if the integrity of the delivery channel or an author’s
signing key is compromised. Such a scenario may apply to
TrueCrypt, since it could only be downloaded through an
insecure channel without a TLS-encrypted connection. A
deterministic build provides a match between the source of
an application and its compiled version distributed to users.
The match operates at the file level on the output side, en-
abling hash comparison of output files and verification of
independent signatures; such verification enables decentral-
ized trust. This way, a user can simply compare the hashes of
her copy of the application against the independently signed
hashes, and identify whether she has been subject to a tar-
geted attack.

Untrusted authors. We assume that an untrusted open-
source developer (coerced or malicious) in charge of compil-
ing the official build, provides backdoored binaries for distri-
bution through the official channel (e.g., website or update
server), but leaves the available source untouched. If the
previous threat is addressed, authors can no longer provide
binaries that do not match the source, since the official sig-
natures would differ from any independent ones generated
by recompiling the application from its source. Addressing
targeted attacks on binaries hence provides the side effect of
protecting against untrusted authors.

Targeted attacks on the source. We assume that an at-
tacker can alter the source obtained by a targeted user. Such
user could be an interested party, or even a developer of the
application in question, who wishes to mislead a source re-
viewer (as in the case of a security audit). Once targeted
attacks on binaries is addressed, a user wishing to recompile
the application from the source benefits from an additional
feature: she can also verify that the source code she obtained
corresponds to the official binaries that have been indepen-
dently signed. Indeed, if the recompiled binaries hashes do
not match the ones that are independently signed, such user
can identify that she has obtained a different source. The
granularity of the detection of mismatching inputs may vary
(i.e., a single file or a group of files), since mismatching bi-
naries can be compiled from several input files.

Targeted attacks on both the source and binary files.

In a particular case of targeted attack, we assume an at-
tacker can alter both the source and binaries for a specific
user through a man-in-the-middle attack (cf. first threat),
or through the official delivery channel (cf. second threat).
Such a user could then be tricked into thinking that she has
verified the official build by recompiling the source herself
and matching her build with the official downloaded bina-
ries. Even though a TLS-encrypted channel provides better
security against a man-in-the-middle attack, it does not fully
prevent against this threat (e.g., if altered files are proposed
through the official channel for a particular user). Multiple
independent signatures, enabled by deterministic builds, re-
duce the probability of such attacks from happening, since
the difficulty to compromise several keys would also increase.

A deterministic build thus bridges the gap between sources
and binaries in both directions, i.e., it allows any user to
match binaries to reference sources and to match sources to
reference binaries. Also, it does so without involving average
users into any technical details of the compilation process.

2.4 Verifying non-deterministic build

Context. Supposing that all future open-source software
follow a deterministic build process, one may still be con-
cerned about past software packages that provide compiled
binaries but were not compiled with verifiability in mind.
In this case, the problem is to match the sources with the
available binaries that are (ideally) signed by the developer,
or provided through an integrity-protected channel to con-
sider them as official. TrueCrypt falls in this category, which
relates to the untrusted authors threat.

Feasibility. A naive approach to achieve the verification of
past software is by manually inspecting each versions of a
selected application and replicating a close match, then ex-
plaining any remaining differences. A custom build process
could be created for a specific software instance to make it
deterministically buildable. It would probably be version-
specific and show limitations, since supporting several ver-
sions and handling many potential environments generalizes
such a process creation to designing a universal determin-
istic builder. However, manual review of past software is
painstaking, as illustrated by our case study in Section 3,
and adapting a deterministic build that exactly matches the
official binaries may be sometimes impossible.

Automated verification of past software can also be very
challenging. In case the required resources (e.g., the com-
piler information, project configuration or building steps)
are unavailable or not properly identified, one would need to
leverage compiler fingerprinting techniques (cf. FLIRT [22])
to identify the optimization level and other options passed
to the compiler, along with the correct dependencies. In
addition, software-specific differences (e.g., TrueCrypt in-
staller’s custom checksum, see Section 3.3.3) may prevent
generalization of an automated method of verification for
such non-deterministic builds.

Note that verifying future deterministic builds and past
software packages do not share the same requirements. For
packages whose output is not deterministic, the equivalence
with the official build needs to be proven for every build,
while waiting for newer versions that will hopefully leverage
a deterministic build process. This situation also highlights
the fact that a build does not need to lead to an output that
is byte-by-byte identical with the official build to be verifi-

able. Superficially variable areas (e.g., timestamps) can be
ignored by a high-level comparison, as opposed to a simple
file hash comparison. As we observed in our analysis of True-
Crypt in Section 3, the remaining differences we faced after
setting up a proper environment were found to be legitimate
and explainable, as opposed to malicious differences.

3. CASE STUDY: TRUECRYPT
TrueCrypt is an open-source project that does not pro-

vide any explicit way to verify its build. In particular, the
software is available as source code and allegedly correspond-
ing compiled binaries for Windows, Linux and Mac OS X.
Hence, anyone wishing to compile the sources will get bi-
naries different than the official ones, as pointed by a con-
troversial blog post on PrivacyLover.com [39]. This has led
some speculations regarding the possibility of having back-
doors in the official binaries that cannot be found easily
since they would not be visible from the source. This con-
cern has also been raised in a security analysis of TrueCrypt
by the Ubuntu Privacy Remix Team [47], in which the au-
thors conclude that they cannot link the result of their code
analysis to the official binaries because it would require “a
very expensive reverse engineering”.
In this section, we present the challenges we faced to com-

pare all the official releases of TrueCrypt for Windows since
February 5, 2008, including versions 5.0, 5.0a, 5.1, 5.1a (and
its second release), 6.0, 6.0a, 6.1, 6.1a, 6.2, 6.2a, 6.3, 6.3a,
7.0, 7.0a, 7.1 and 7.1a (February 7, 2012) with the alleged
corresponding sources. An analysis of version 7.1a was also
documented by the first author in an online report [8];2 we
reuse parts of that report in this paper. We present the
challenges in the order as we faced, to highlight the difficul-
ties posed by the sources of non-determinism and the rea-
soning we followed to get down to the root cause of them.
This study serves two purposes: it proves the correspon-
dence between the sources and the binaries by interpreting
the potential security implications of the remaining differ-
ences; and it identifies the sources of non-determinism in the
build process that can later help design deterministic builds.

3.1 Our test environment
To replicate a clean environment with the control over

which compiler and tools are installed, we leverage the snap-
shot feature of VMware Workstation. It enables the creation
of virtual machines snapshots that we can later fork to a dif-
ferent path. This feature is useful when installing multiple
applications in a series, as we can take a snapshot after the
installation of each of them, and later backtrack to a partic-
ular snapshot to continue installing different versions of the
remaining tools in the toolchain. We configured three virtual
machines: one running Windows 7 Professional 64-bit edi-
tion and the two others running Windows XP Professional
32-bit edition; in total, we created 45 snapshots, which took
about 175GB of disk space. For our experiments, we mostly
use a PC with an Intel Core i5-2400 processor; we also per-
formed some tests on another machine with an AMD FX-
8350 processor to confirm the origin of yet another source of
non-determinism involving the CPU manufacturer.

2The article was discussed in a Slashdot post; see:
http://it.slashdot.org/story/13/10/24/169257/how-
i-compiled-truecrypt-for-windows-and-matched-the-
official-binaries.

3.2 Preparing the environment

3.2.1 Prerequisites

In the latest version of TrueCrypt’s source package, the
readme file specifies the following list of software, tools, SDK
and additional files as requirements (as quoted from the file):
(a) Microsoft Visual C++ 2008 SP1 (Professional Edition
or compatible); (b) Microsoft Visual C++ 1.52 (available
from MSDN Subscriber Downloads); (c) Microsoft Windows
SDK for Windows 7 (configured for Visual C++); (d) Mi-
crosoft Windows Driver Kit 7.1.0 (build 7600.16385.1); (e)
RSA Security Inc. PKCS #11 Cryptographic Token Inter-
face (Cryptoki) 2.20 header files; (f) NASM assembler 2.08
or compatible; and (g) gzip compressor.

For the older versions of TrueCrypt we studied, older
versions of similar tools are required. Going back to ver-
sion 5.0, we need to gather Microsoft Windows Driver Kit
(WDK) for Windows Vista (build 6000) and version 7.0.0
(build 7600.16385.0), Microsoft WDK for Windows Server
2008 SP0/SP1 (build 6001.18001/2), Microsoft Visual C++
2005 SP1 Professional Edition, NASM assembler 0.99 and
2.06, along with Yasm assembler (no version specified).

The first problem in creating the build environment is that
it requires compilers and resources that can be difficult to
find or are non-free; notably, Visual C++ 1.52 that was re-
leased 20 years ago (in 1994) and is only available to MSDN
subscribers (which membership costs at least US$1, 200 at
the time of the writing), or for Microsoft Certified Trainers
(MCT). In our case, we first had to search for copies online
before being provided with the original file by an anony-
mous contributor with an MSDN subscription, in reaction
to our online report. Indeed, the academic access to MSDN
(MSDNAA) of our university was not privileged enough to
access such old software. For Microsoft Visual C++ 2008
(Visual Studio), one also needs to have an MSDN subscrip-
tion since it is now an old version that is no longer publicly
available as a trial version on Microsoft’s website (although
a direct link to the ISO file on Microsoft’s servers can be
found by crawling the web). This software was accessible
via our MSDNAA access.

Second, Microsoft WDK 7.0.0 and below are no longer
available at Microsoft at the time of the writing (May 2014)
because of newer versions that superseded the previous ones,
but was available at the time of the first analysis (October
2013). This also highlights a general problem for verifying
even relatively new software, as current dependencies may
become permanently unavailable at any time. Additionally,
there exist three versions of the Windows 7 SDK: version
7.0 for .NET Framework 3.5 SP1, v7.0A included in Visual
Studio 2010 only, and v7.1 for .NET Framework 4.0. Also,
we do not know a priori to any test whether a different ver-
sion than the one in the authors’ environment can lead to
changes in the compiled output. Fortunately, is it still pos-
sible to find direct links to download old SDKs at Microsoft.
For old WDKs though, only MSDN subscribers can obtain
legal copies, which pushed us to search for other channels
due to limitations of our academic access to MSDN. We wish
to thank anonymous contributors for providing us with the
missing pieces that we could not find. We verified the hashes
of the files we received against the official hashes published
on the MSDN website.

Finally, the RSA PKCS #11 Cryptographic Token Inter-
face (Cryptoki) 2.20 header files and NASM assembler 2.08

http://it.slashdot.org/story/13/10/24/169257/how-i-compiled-truecrypt-for-windows-and-matched-the-official-binaries
http://it.slashdot.org/story/13/10/24/169257/how-i-compiled-truecrypt-for-windows-and-matched-the-official-binaries
http://it.slashdot.org/story/13/10/24/169257/how-i-compiled-truecrypt-for-windows-and-matched-the-official-binaries

Table 1: File names and sizes from our first compilation
attempt (VS2008 SP1 without updates) vs. the original ones

File name
Sizes in bytes

Our build Official build
TrueCrypt.exe 1,507,840 1,516,496
TrueCrypt Format.exe 1,602,048 1,610,704
truecrypt.sys 224,128 231,760
truecrypt-x64.sys 223,744 231,376
TrueCrypt Setup.exe 1,056,768 N/A
TrueCrypt Setup 7.1a.exe 3,432,471 3,466,248

are freely available online. The gzip compressor is also avail-
able for Windows thanks to the GnuWin project [19]. The
version number used by the developers is not mentioned.
However the latest GnuWin’s gzip version (1.3.12-1) dates
back to 2007, so we assumed that this version or a compat-
ible one was used by the original developers. A different
compressor or version of that compressor can lead to a dif-
ferent compression algorithm or file format and result in a
different output. The GnuWin’s version of gzip (1.3.12-1)
fortunately worked for our purpose. We later found in the
source code that gzip.org’s release was suggested by the
developers.
Although not mentioned in the TrueCrypt’s project readme

file but pointed out in [41], the dd tool [23] is also required
during the build process. Some dd ports for Windows do not
behave correctly during the compilation process (e.g., differ-
ent arguments are expected and no output is generated). We
first used an incompatible version (from chrysocome.net)
that achieved incomplete builds. We later found a working
version in the CoreUtils package for Windows [19].

3.2.2 Initial challenges

Once the environment is correctly installed, we can open
the Visual Studio solution file TrueCrypt.sln and build it in
“release” configuration.

Flat comparison. Our first naive attempt takes place in a
virtual machine running Windows 7 Professional 64-bit edi-
tion with the prerequisites installed. Table 1 shows the sizes
of our compiled binaries and the official ones from v7.1a.
File sizes do not match, leading to different hashes. If

the build process was made deterministic, we would have a
match at this point. First of all, one obvious reason for the
file size difference is the presence of digital signatures (or
lack thereof) that we explain below. However, there are also
a number of other differences that we explore in this section.
The official binaries are all signed with an embedded X.509

certificate that belongs to the“TrueCrypt Foundation”, which
increases the file size. This is an issue for the purpose of re-
producing an exact match, since it is impossible to generate
a signature for the binaries on the developers’ behalf. Hence,
it is not possible to reproduce an exact match of any of the
binaries if we are not in possession of the official build’s files.
Indeed, the original signatures can be extracted from the of-
ficial files and reused in our build as is. These signatures
would be valid if the rest of the files also matched. Also,
note that the installer (TrueCrypt Setup.exe) is incomplete
after compilation. We must run it with a special flag (-p)
to package the other binaries together and output a com-
plete installer named TrueCrypt Setup 7.1a.exe. In Table 1,
we packaged our own binaries for comparison. To replicate
an exact match, the binaries should be signed prior to be-

(a) (b) (c) (d) (e) (f)

Figure 1: Visual differences on the binary files between our
build and the official one for TrueCrypt 7.1a using a smart
comparison. (a), (c), (e) and (f) represent binaries compiled
without any updates for VS2008 SP1 in our build while oth-
ers are compiled with the proper ones. Files in (e) and
(f) are not influenced by such updates. (a) and (b) rep-
resent TrueCrypt.exe; (c) and (d) TrueCrypt Format.exe;
(e) truecrypt.sys; (f) truecrypt-x64.sys. Red areas represent
approximate differences with corse granularity (the thinnest
red line represents up to 2.8% differences).

ing packaged. We therefore ignore the installer until we can
reproduce the other binaries.

Visual Studio updates. The digital signature represents
a small fraction of the binary files (7,631 bytes in each file in
v7.1a), and is placed at the end of the files, which makes it
easy to locate. However, we found that a byte-by-byte com-
parison of each file still produces significant changes, beyond
the signature. We define a smart binary comparison as being
able to isolate blocks of differences that are not composed
of the same amount of data and compensate for the offset
in the remaining of the files. Hence, such comparison gener-
ally yields a score that represents more accurately the real
content difference. With respect to the official file sizes and
using such a comparison technique,3 we find 60,049 (4.0%) of
mismatching bytes in TrueCrypt.exe, 34,746 bytes (2.2%) in
TrueCrypt Format.exe, 7,673 bytes (3.3%) in truecrypt.sys,
and 7,878 bytes (3.4%) in truecrypt-x64.sys.

We further investigated additional patches available for
Visual Studio 2008 SP1 that do not change the version num-
ber of the software but lead to major changes in the output.
In other words, we should restore an environment that con-
tains the same updates for the compiler as what the au-
thors had installed when they compiled the official release.
As there is no mention about which patches were installed
in their environment, we needed to manually go by trial
and error. To reduce the differences between our build and
the official binaries, we figured that we needed to install all
the updates that were available when a particular version of
TrueCrypt was released. The core updates are KB971092,
KB973675, and KB972222 for versions 6.1 to 7.0a, with the
addition of KB25382414 for 7.1 and 7.1a. With these only
updates installed, we minimize the differences. Figure 1
shows a visual representation of the differences between our
build and the official files in the case where no updates are
installed, or the proper updates are installed. This indicates
that the developers had their system up-to-date, however
such observation may not stand in general.

For versions 5.0 to 5.1a that were compiled with Visual
Studio 2005 SP1, a single core update (KB937061) is avail-
able, which was released five months before the release of
TrueCrypt v5.0. We hence installed it before carrying our
experiments, unlike our first tries with more recent versions
of TrueCrypt. For versions 6.0 and 6.0a, no update was
available for Visual Studio 2008 at the time of their release.

Thus, for the purpose of verifying official builds, it is

3We used Beyond Compare v3 (scootersoftware.com).
4See Microsoft knowledge base articles for more details.

gzip.org
chrysocome.net
scootersoftware.com

important to use the same exact version of the compilers
and tools installed on the developers’ build machine, since a
slight difference can significantly change the output binaries.

3.2.3 Build path

The files truecrypt.sys and truecrypt-x64.sys are the 32-
bit and 64-bit Windows drivers, respectively, which take care
of all features related to the OS, such as providing virtual
disks and supporting full disk or system partition encryp-
tion. The number of differences between our build and the
official one remains significant. While investigating them,
we found that these files contain various debug information,
including the full project path. These debug parameters are
references to a Program DataBase (PDB) debug info file and
are inserted by the linker to match the corresponding debug
file [34]. The short debug section in the binaries contains
the path of the PDB debug file, located under the project
directory. The project folder in our test environment was
located on the user’s desktop while the developers had it
apparently in c:\truecrypt-7.1a. The difference in the path
length leads to a shift of the remaining data in this debug
section, plus an offset in some addresses that point to lo-
cations in the file. By compiling the software again after
moving the project directory to the same location as in the
official build, these differences were gone. Note that, in the
other files, there is no debug information and hence no link
to the build path. Hence, the build path can sometimes in-
fluence the output and should be taken into account while
setting up the environment. Throughout the 16 versions
we analyzed, the project path usually contains the version
number and is located in the root of the C drive; however
some project paths are found without a reference to the ver-
sion number and/or are located in an E or T drive. As we
found, the project paths are c:\truecrypt- 7.1 for version 7.1,
c:\truecrypt-7.0a for 7.0a, c:\truecrypt for 6.3a, t:\truecrypt
for 6.3, c:\truecrypt-6.2a for 6.2a and similar down to 5.1a,
e:\testworkspace\truecrypt\main for 5.1, 5.0a and 5.0.

3.3 Sources of non-determinism
To understand the differences between our compiled bina-

ries and the original ones, we perfom a byte-by-byte com-
parison. Below we analyze each file individually. We mainly
focus on the latest version of TrueCrypt (v7.1a) with all
addresses and offsets cited referring to this version, unless
otherwise specified.

3.3.1 TrueCrypt.exe and TrueCrypt Format.exe

Visually from Figures 1 (b) and (d), there are three main
regions that host differences in TrueCrypt.exe.

First region. The first region is located in the file header,
and contains three differing elements. The first one is at file
offset 0x000000F8 that corresponds to the time/datestamp
in the COFF/PE file header. The second is located at
file offset 0x00000148 that corresponds to the checksum in
the PE optional header. Finally, the third one at offset
0x00000188 that corresponds to the certificate table in the
optional data directories header. According to Microsoft
documentation [32], time/date-stamp corresponds to the time
and date the file was created. Since we compiled TrueCrypt
at a different time than the developers, this difference is le-
gitimate. Then, the checkum corresponds to the image file
checksum based on a Microsoft-specific algorithm [49]. This
checksum is different because our compiled executable has

slight differences that are covered by this checksum, result-
ing in different values, for which we verified the correctness.
Hence, this difference is also legitimate. Finally, the certifi-
cate table contains a certificate data field, which is a pointer
to a certificate in the file; along with field about the cer-
tificate size. This table provides information regarding the
X.509 signature over the file that is included in the official
binaries. Because we do not have certified binaries, the Cer-
tificate Table is all zeros, whereas the original file points to
some certificate data at offset 0x00170600 in the file (see the
third region).

Second region. The second region of differences is located
at about two thirds of the file. It corresponds to a read-
able time and date written in English and what seems to
be also a timestamp encoded as a 32-bit integer. Convert-
ing this alleged timestamp to a readable date and time, we
find that it matches the written date, confirming it is simply
a timestamp. Interestingly, we can deduce the timezone of
the compiling machine, since the time written is interpreted
with respect to the machine settings while the timestamp is
a POSIX time representing the number of elapsed seconds
relative to a reference UTC time. In this case, the timestamp
of the official binary converts to 2012-02-07 09:08:50 UTC
while the written date and time reads “Tue Feb 07 10:08:49
2012”. This informs that the time zone of the machine which
built the executable was set to UTC+1 (CET).

In the 11 versions from 5.0 to 6.3, more differences arise
in this section. Further investigations reveal that they are
located in the resource section of the executable, and corre-
spond to an Interface Definition Language (IDL) file com-
piled by the Microsoft IDL compiler. The OLE-COMObject
Viewer in Windows SDK can decompile this resource. By
comparing our decompiled IDL resource to the decompiled
official one, only the timestamp and written date remain
different, meaning both resources are functionally identical.
Despite our efforts to recreate many possible build environ-
ments, we were unable to reproduce an IDL resource that
only includes differences in the timestamps in a way that is
visible from the compiled format directly, as it is the case in
later versions of TrueCrypt.

For version 6.3, using the SDK for .NET Framework 3.5
SP1 (v7.0) that was available at the time of release of this
version of TrueCrypt, yields a different Rich signature (see [38])
in the DOS stub part of the PE header of TrueCrypt’s exe-
cutables. The difference resides in the comp.id row number
148 that corresponds to a subversion 30729 in our case, while
the original file shows a subversion 21022. This indicates
that a component in the toolchain differs. Once we switched
to the latest version (v7.1), this problem was solved and only
the difference in the IDL resource remained. However, this
later version of the SDK was released 7 months after the re-
lease of TrueCrypt 6.3, and thus could not have been used by
the developers. One possible explanation is that the authors
had Visual Studio 2010 installed on their system, that comes
with the intermediate version 7.0A of the SDK, and config-
ured Visual Studio 2008 to use it. However, Visual Studio
2010 was also released 6 months after this version of True-
Crypt. The only realistic possibility is that the authors were
using Visual Studio 2010 beta 1 or 2 on their machine, which
was released 5 months and 2 days, respectively, before True-
Crypt 6.3. They would have had to configure Visual Studio
2008 accordingly. We were unfortunately unable to find this
beta version for further tests. This problem demonstrates

that the sources of non-reproducibility can be difficult to
identify and thus difficult to troubleshoot.

Third region. Finally, at the end of the file, the third re-
gion of differences starts at 0x00170600 and shows us that
the original file contains more information. Recall from the
first region that this offset is directly pointed to by the
certificate table and hence is related to the digital signa-
ture. We can safely ignore the presence of the certificate
in the official binaries, since a signature and certificate are
normally harmless (cf. Microsoft’s documentation: “[t]hese
certificates are not loaded into memory as part of the im-
age.” [32]) Thus, if this section contains malicious code, it
has to be loaded by the program first, which would be seen
in the source code (its review is out of our scope, though).

It is to be noted that apart from these three unimportant
mismatches (timestamps, checksum, presence of certificate),
the rest of the files are identical. This indicates that our
TrueCrypt.exe and the official one are identical. Also, in
TrueCrypt Format.exe, we find the same patterns of differ-
ence as TrueCrypt.exe. As we explained the unimportance
of these differences in the case of TrueCrypt.exe, we can con-
clude that our TrueCrypt Format.exe and the official one are
also coming from the same source.

3.3.2 Truecrypt.sys and truecrypt-x64.sys

Apart from the build path issue that we solved when cre-
ating the build environment, other differences remain.
In the 32-bit driver, a difference at file offset 0x00000270

corresponds to the time/date-stamp in the PE headers. File
offsets 0x0001EA44 and 0x00034184 show the same time-
stamp difference. More specifically, the one at 0x0001EA44
matches the timestamp location in the debug directory struc-
ture [32], which contains the address of the debug section. In
turns, this debug section is located at file offset 0x0002CBA8
in the 32-bit driver and offset 0x0002F490 in the 64-bit
driver, where another difference is found (see the next para-
graph). Similarly, the timestamp at offset 0x00034184 matches
the location of the timestamp in the export directory table.
File offset 0x000002C0 is the optional PE checksum header,
which also differs for the same reason as in the previous files:
the file has slight differences that lead to a different check-
sum. File offset 0x00000300 represents the certificate table
difference, which as we explained is expected. The end of
the original file contains the certificate.
In the PDB debug section, pointed by the debug direc-

tory previously mentioned, we still find one difference of 16
bytes starting at 0x0002CBAC. The format of this section is
undocumented, however it is explained in [20] as containing
a signature (the string “RSDS”), followed by a GUID (Glob-
ally Unique IDentifier) that is regenerated in each build and
is used by the debugger to link a binary file to its PDB de-
bug file. Our 16-byte difference matches the location of the
GUID. Next to it is an“age”field followed by the path of the
debug file, which led to a difference we previously resolved
by using the same project path as in the official build. As
the project was compiled in release configuration (not in de-
bug configuration), such information should not be present
at all in the output files. Their presence remains unclear.
In versions 6.3 and 6.3a, the readme file suggests the use

of NASM “version 2.06 or compatible”. However, if we use
version 2.06 during the build process, NASM will crash when
assembling the 64-bit driver. While investigating this prob-

lem, we found a ticket on the NASM bug tracking system [42]
mentioning this specific issue. The issue has been resolved
in 2.08-rc1, which was released one week before TrueCrypt
v6.3’s realease. One may further correlate this bug ticket
with the internal development of TrueCrypt.

The 64-bit version of the driver, truecrypt-x64.sys, shows
the same patterns. However, in version 6.2 and 6.2a, we
observe an additional difference spanning on 5 consecutive
bytes at file offset 0x0001CFCB. Contrary to other differ-
ences that we identified so far, this one does not affect meta-
data but rather is located in the .text section of the binary
file, which contains the logic of the driver. Our build reads
0F 1F 44 00 00 while the official build reads 66 66 90 66

90. The disassembled binary files show a more comprehen-
sive comparison shown below.

66 66 90 data32 xchg ax,ax

66 90 xchg ax,ax

0F 1F 44 00 00 nop DWORD PTR [rax+rax*1+0x0]

Functionally, both sequences are effectively realizing No Op-
eration (NOP). These NOPs only serve alignment for the re-
maining code. We can find a partial explanation for this dif-
ference in Intel’s documentation [24], which lists sequences
of various lengths that realize a NOP (in Table 4-9 entitled
“Recommended Multi-Byte Sequence of NOP Instruction”).
Our NOP corresponds to a 5-byte NOP in this table. How-
ever, we cannot find the official build’s NOP sequence in this
table. The explanation actually lies in the type of processor
used in the build environment. While Intel’s documenta-
tion recommends 0F 1F 44 00 00 for a 5-byte NOP, AMD’s
documentation [1] recommends 66 66 90 66 90. We can in-
fer that the compiler determines the processor it is running
on and adapts its output accordingly. This hypothesis is
confirmed after we compiled this version of TrueCrypt on
a machine with an AMD processor. The 5-byte NOP was
present as in the official build. We can further deduce that
the developers were using an AMD processor for the release
of versions 6.2 and 6.2a.

3.3.3 TrueCrypt installer

Now that the remaining files have been analyzed and the
differences between our build and the official one have been
explained, we can package the original files with our com-
piled installer. After packaging the original files with our
compiled installer, we obtain an installer of 3,458,614 bytes,
which is close to the original installer’s size (3,466,248 bytes).
Again, the usual time/date-stamp, checksum and certificate
table differ, and the original installer has a certificate at the
end of its file. A new difference occurs at 0x0034C632 on 4
bytes which looks like a checksum. By investigating True-
Crypt’s source code, we can find that it is indeed a checksum.
During the packaging of the files, the installer computes an
integrity checksum over its complete version. At this point,
the installer is not yet signed, which means it does not em-
bed a certificate and its certificate table is all zeros. How-
ever, after the installer is signed, it itself needs to be able
to recompute the checksum over its unsigned version. To
achieve this, the installer computes the checksum by replac-
ing bytes between file offsets 0x00000130 and 0x000001FF
(inclusive) with zeros, so as to zero out the Certificate Table.
This range however contains more information than just the
certificate table, specifically half of the optional PE header
and the whole data directories, including the Export, Im-
port, Resource, Exception, Base Relation, and Import Ad-

dress tables. In practice, erasing this byte range effectively
deletes these fields in the header, and weakens the coverage
of the integrity check. The installer also truncates the file
after the magic word “TCINSCRC”, which is located right
before the checksum in question, effectively deleting the dig-
ital signature. The CRC32 computed over this modified file
corresponds to the alleged checksum we are investigating.
Version 5.1a was released twice; the second edition was

released the same day as version 6.0. This second edition
repackages the original files with a new installer derived from
the installer of version 6.0. The main apparent goal was to
update the license shown during the installation. Compar-
ing this new installer with the installer from v6.0 however
shows significant differences. Once disassembled, many ad-
dresses differ, some part of the code is changed (mostly for
alignment), and eight resources are completely different. As
the exact source of this new installer was never made avail-
able, we are left with the option of reverse-engineering the
installer or trying to recreate its source, based on the knowl-
edge that it is an intermediate version between 5.1a and 6.0.
After several experiments, we concluded that this installer
comes from v6.0 with changes made to VERSION STRING
and VERSION NUM constants to simulate version 5.1a.
Once compiled, the installer packages the original files from
v5.1a with the new License.txt file. Incidentally, when using
this new installer on a system-encrypted environment, the
bootloader installed by the installer is in fact the one from
v6.0 renamed as v5.1a (which caused the differences in the
resource section as several versions of the bootloader exist
and they are gzipped in that section). This brings another
source of non-determinism, which is any (allegedly unimpor-
tant) code modification that the authors made to compile a
build without releasing or documenting them.

3.4 Summary
In this analysis, we showed that the compiled versions 5.0

to 7.1a of TrueCrypt are directly compiled from the available
source code. From a security perspective, this shows True-
Crypt is not backdoored by the developers in a way that is
not visible from the sources, i.e., the provided executables
for Windows are not added with any feature not visible from
the sources; addressing the untrusted authors threat.
From a software engineering perspective, our study helps

identify sources of non-determinism in a simple Visual Stu-
dio project over the years, from which many findings can be
generalized. We now summarize our experience throughout
the 16 versions of TrueCrypt. The most important factor is
the version of the compiler and of the additional resources
required to build the project. We showed that a slight vari-
ation in the version number (or minor update) can signif-
icantly change the output. Then, we revealed a particular
feature in the Microsoft Visual Studio compiler that opti-
mizes the alignment of NOPs according to the recommen-
dations of the manufacturer of the processor on which the
compiler is running, making the build processor-dependent.
We showed that the project path is sometimes stored in the
output and results in cascading variations due to a shifting
effect. Moreover, the instructions provided by the authors
of the software may not be accurate and lead to incomplete
builds as we observed with a bug in the version of NASM
advertised in the readme file. These instructions may not
be precise enough to avoid ambiguities in version numbers
as we experienced with Visual Studio or Windows SDK; or,

they may be incomplete altogether. In our case, the dd util-
ity was missing. Incomplete code may also be an issue, as
we saw with the second version of v5.1a’s installer.

Furthermore, embedded timestamps proved to be a very
common source of variations, leading to checksum differ-
ences. We also showed that the timestamps and checksums
may not be included only once in a pre-defined location (as
in the PE headers), but also in the resource section of the
binary and they may follow application-specific algorithms
(as in the case of TrueCrypt’s installer). Debug information
embeds unique identifiers that are randomly generated dur-
ing every build. Finally, as embedded digital signatures are
impossible to regenerate, they should either be copied as is
from the official build after investigation of their content, or
reside in a separate file to enable file-based comparison. We
emphasize on the fact that recompiling a project twice on the
same environment does not necessarily exhibit all sources of
non-determinism. One need to try on different environments
with various configurations (e.g., heterogeneous CPUs and
other hardware) to see all the differences, if any. Surpris-
ingly, in our analysis, we did not encounter any differences
caused with a different operating system (we compiled some
versions on both Windows XP and 7).

4. TOWARDS DETERMINISTIC BUILDS
In this section, we discuss efforts from other projects in-

volving deterministic builds, and summarize their findings
and lessons learned.

4.1 Gitian for Bitcoin
The most advanced work to date on deterministic builds

is probably the one initiated by Bitcoin, named Gitian [18],
and later adapted by the Tor project for the Tor Browser
Bundle. Gitian provides a virtual environment in which var-
ious sources of non-determinism can be fixed. It is essen-
tially based on the python-vmbuilder package that builds a
Ubuntu virtual machine, and wraps it with several scripts.
The scripts interact with the virtual machine to install the
required packages, and derive an input script (called the in-
put descriptor) that will build the given sources. Gitian
sets a defined hostname, username, uname (system infor-
mation), build path, toolchain version and time. The in-
put descriptor contains the version of the expected Ubuntu
VM, the architectures to build on, the list of packages to
install, a reference time that will be used to fake the time
during the compilation to get rid of timestamp differences,
the remote repositories to fetch, and a list of additional files
to transfer into the VM. Finally, a custom script performs
the compilation and takes care of the remaining sources of
non-determinism. When the build is finished, the output
additionally contains a list (the output descriptor) of the
versions and hashes of all the dependencies involved during
the compilation. Additional scripts allow for the submission
of the resulting hashes signed, or verify these hashes against
existing signatures.

Although many sources of non-determinism are taken care
of by creating a clean environment that only contains the
project to build and the downloaded dependencies, Gitian
is difficult to generalize for other open-source software, and
presents several limitations. In particular, it requires to be
run on a Ubuntu OS to create a Ubuntu VM. The VM is run
by qemu-kvm by default, a fork of the qemu virtualizer, that
uses a kernel module (kvm) allowing kernel virtual machines.

Such VMs rely on the hardware virtualization capabilities of
the CPU (i.e., Intel VT-x and AMD-V). However, if one does
not run Ubuntu on the physical machine, the outer Ubuntu
OS needs to be run in a VM already, creating the need for
a hypervisor with nested VM support for the compilation
process. As nested hardware virtualization is not yet sup-
ported by processors, one must swap qemu-kvm for LXC
containers, which can reduce the performance and increase
the time required to compile a software package. More im-
portantly, the compilation process must take place entirely
in a Linux environment, requiring cross-compilation to tar-
get other platforms. Thus, Gitian cannot be used to compile
TrueCrypt for Windows, as this application requires partic-
ularly non-replaceable compilers that run only on Windows.

4.2 Gitian for Tor
The Tor Browser Bundle (TBB) [37] compilation process

builds upon Gitian, and provides a more automated process.
TBB provides a browsing environment based on a modified
version of Mozilla Firefox that automatically sends traffic
through Tor. Various scripts, along with Gitian input de-
scriptors, take care of the retrieval and authentication of the
sources prior to compilation. Dependencies are downloaded
through Tor itself, assuming Tor is already installed on the
system (but not the Browser Bundle). This provides an ad-
ditional layer of protection against a targeted attack on the
source by providing anonymity to the downloading user (cf.
threat #3). Dependencies are expected to match hashes that
are embedded in the scripts. Then, dependency libraries are
compiled and packaged in ZIP files, after which the modified
Firefox is compiled and additional extensions are added to
it for the final packages. These steps are divided into three
distinct Gitian input descriptors.
Inside the compiling environment, various scripts cope

with sources of non-determinism that are not considered by
Gitian. For example, they allow the creation of deterministic
ZIP and TAR archives that would normally include undesir-
able file timestamps. As we found, many of these scripts are
quick fixes to make things work, but are not a perfect nor
complete solution as of September 2014. In these scripts, one
can notice many“FIXME”or comments such as“Crappy de-
terministic zip wrapper”. TBB also must compile Firefox for
all platforms (Windows, Linux and Mac OS) from a Ubuntu
environment, involving challenging cross-compilation as pre-
viously mentioned. Finally, Gitian still sometimes produces
non-deterministic output for unknown reasons [37].

4.3 Debian packages
Debian focuses on deterministic package build, as pre-

sented by Bobbio at DebConf’13 [4] and FOSDEM’14 [5].
Their approach is still experimental and is based on a spe-
cial branch of the package management tools (dpkg). As of
January 26, 2014, 67% of 6887 source packages were found
reproducible. Their approach is however different than the
one taken by Bitcoin and TBB. Also, instead of simply com-
piling an application, the focus is on Debian packages, which
are the result of possibly more complex building steps includ-
ing several tools. Instead of relying on resource-consuming
VMs to perform the build, Debian adopts another philoso-
phy: the problem of non-deterministic sources is treated at
the root. For example, we noticed in our case study that
one common source of non-determinism is the presence of
embedded timestamps. Fortunately, Linux binaries (ELF

format) do not contain embedded timestamps, contrary to
Windows binaries (PE format). However in software pack-
ages, other tools in the toolchain may record timestamps.
This is the case for gzip, ar, tar, zip, jar, and javadoc.
The approach taken by Debian is then to patch these tools
to add the option to get rid of timestamps in the tools them-
selves. Also, to prevent the project path to be included in
binaries compiled by gcc, a special option can be passed
to gcc, through the CFLAGS variable in the Makefile, that
records a predefined build path in the binaries instead of
the real one. However, this technique presents some incom-
patibilities, e.g., in build systems that reuse CFLAGS for
other purposes that lead to non-deterministic output since
CFLAGS contains the real path.

Bobbio [5] lists other sources of non-determinism that we
did not encounter. He mentions about the file order of the
readdir() function that is sensitive to the locale of the en-
vironment (whether it is set to UTF-8 or other languages).
Another source difficult to identify depends “on an accident
of filesystem layout at build time” [10]. A different file order
listing can lead to different archives being created.

4.4 Other Linux distributions
Other Linux distributions have also started their own pro-

cess towards reproducible/verifiable builds. Fedora proposes
a few scripts to recompile source packages (SRPM) and com-
pare them against the available builds [14]. The scripts
support recursive verification that builds dependencies first.
The comparison operates at a higher-level than just com-
paring the package hashes. Instead, packages are decom-
posed, and individual files are compared, according to an al-
gorithm that takes care of the semantic ((check)) of the file
structure. For example, ELF binaries are compared through
their disassembled instructions. Thus, Fedora’s approach
is an example of builds that can be verified, however are
not made by a deterministic process. OpenSUSE provides
build-compare, a script to compare compiled software pack-
ages [36]. The compilation process is however not handled,
and the comparison process also takes place at a higher-level
than the simple file hash comparison. The first revision of
these scripts dates back from January 2009. NixOS also at-
tempts to achieve deterministic builds [12]. Finally, Repro-
ducible Build Manager [13] is a tool that aims at reproducing
software packages of multiple Linux distributions at once. It
is based on compilation in a controlled environment.

4.5 Summary of current efforts
Each of these different open-source projects takes a differ-

ent path to tackle the problem of verifiability. While Bitcoin
developers first created Gitian for their own purpose, which
does not generalize well, the adaptation by Tor may be a
step in the right direction. Debian, as an operating system,
can afford changing its own tools for the right purpose. Such
liberty may however not exist in heterogeneous environment
sharing both open- and closed-source components. Fedora
only focused on comparing two builds, with the underlying
assumption that only predictable differences will be present.
However, their approach remains naive as they do not pro-
vide a way to recompile a project for verification. As we
observed in our study, it may not be always possible to au-
tomate the verification of non-deterministic builds. We note
nonetheless that a framework for reconstructing the original
environment may help the verification of current and past

software. We did not find any work in this direction.

5. RELATED WORK
Related projects about deterministic and verifiable builds

have been discussed in Section 4. We present below other
attempts to analyze TrueCrypt, which is the core part of our
case study.
The Ubuntu Privacy Remix Team primarily assessed True-

Crypt 7.0a for Linux in 2011, based on previously unpub-
lished review of past versions 4.2a, 6.1a and 6.3a [47]. They
created a tool, tcanalyzer,5 which helps the study of True-
Crypt containers’ headers. This tool was used to verify the
correctness of both the official build and their own build.
They report that they could not find mistakes or backdoors
in the encryption or the header format. They further re-
viewed the cryptographic algorithms in TrueCrypt. They
argue about the possibility of hiding a container’s crypto-
graphic keys inside the salt value in the TrueCrypt headers
in Linux or Windows; or, inside an unused section of the
headers in Windows. They advise to recompile the source
rather than using the official binaries to prevent such at-
tacks. It is worth noting that in the Linux version, the
unused space of the headers is filled with encrypted zeros,
which can be verified; however, it contains encrypted ran-
dom data in the Windows version, which is impossible to
distinguish from a backdoor version of the keys. Our analy-
sis proves, at least for the Windows version, that the bina-
ries do not differ from the source, and hence do not include
such backdoors. The team then presented the discovery of
a weakness in the keyfile algorithm, by which it is possible
to manipulate any file so that it has no effect when added
as a keyfile to encrypt a container.
Sogeti, a French information technology consulting com-

pany, reviewed TrueCrypt 6.0a for Windows, Linux and Mac
OS X, as part of a first-level security certification for in-
formation technologies (CSPN) for the French government
in 2008 [40]. CSPN is a security certification formalized
by the Central Information Systems Security Division (DC-
SSI), a government entity under the authority of the Gen-
eral Secretary for French National Defence. This test is to
be performed in 30 man-days, and is meant to provide a ref-
erence opinion about the security of an application (True-
Crypt here). Sogeti’s analysis of TrueCrypt reported that
the cryptographic algorithms were implemented correctly,
and provided a positive opinion about the application in gen-
eral, even mentioning that“the product [TrueCrypt] inspires
confidence”. However, several vulnerabilities were found, re-
garding a BIOS memory leakage of the password size in case
of a system-encrypted partition, memory leakage of the pass-
word after the creation of a volume, memory leakage of key-
files path, memory leakage of the XTS secondary key of a
volume after a backup of its header, and a denial-of-service
attack against the TrueCrypt driver. Several best practices
are also suggested to avoid the identified issues.
In 2013, Amossys proceeded with the same test against

TrueCrypt 7.1a for Windows only [2], building up on the pre-
vious analysis. They also conclude that the implementation
of the main functionalities is correct. They however point
out few vulnerabilities that remained unfixed since the pre-
vious CSPN test, including the BIOS memory leakage, mem-
ory leakage of the last created volume’s password, and mem-

5https://www.privacy-cd.org/en/using-upr/download

ory leakage of keyfiles path after a volume is dismounted.
The Open Crypto Audit Project6 mandated iSEC Re-

search Labs for a security assessment of selected security-
sensitive parts of TrueCrypt 7.1a for Windows in 2014 [25].
iSEC identified 11 vulnerabilities, including two integer over-
flow vulnerabilities, possible leakage of sensitive information
from the pagefile, various internal information leakage, and
lack of security checks in the bootloader. They also propose
remediations. However, no serious flaws were found. Adding
our results about the past 16 versions helps to build trust
around TrueCrypt.

6. CONCLUSION
As few users compile security-critical open-source software

themselves from the source, there should be a way to provide
the guarantee that the official build is indeed compiled from
the published source. This guarantee would prevent mali-
cious/coerced authors from inserting backdoors in the com-
piled version only, and would also defend against targeted
attacks such as man-in-the-middle. It can be offered thanks
to a verifiable build that provides a way to reproduce the
official build. Verifiable build can be achieved either by a se-
mantic comparison between the official and recompiled files,
an approach taken by Fedora and openSUSE; or through
a deterministic build process, which can be repeated and
would always provide the same output, hence exactly match-
ing the official build. However, sources of non-determinism
can be difficult to isolate and reproduce. A perfectly de-
terministic build can only be achieved if all variables can
be controlled. In our case study, we encountered a source
of non-determinism based on the brand of the CPU of the
building machine, which only showed up after we dug into
several versions of the same application, and found no docu-
mentation about it. This problem leads to the following con-
clusion: it is not possible to ensure deterministic builds over
time if the build process relies on closed-source software for
which an exact documentation is unavailable. Also, through
our analysis of 16 versions of TrueCrypt for Windows, we
can conclude that verifying old software packages that in-
herently do not provide a guaranteed deterministic build,
can turn into a forensic case in which one needs to gather all
the appropriate tools that may have impacted the authors’
build, and explain what may have happened for things to be
the way they are. In the end, we concluded that the binary
files of TrueCrypt for Windows from version 5.0 to and 7.1a
match the available source code. Our hope is that the chal-
lenges as uncovered through our TrueCrypt case study, and
other concurrent projects, would eventually help guide de-
signing future deterministic/verifiable build processes, which
are critical for trusting security-critical software.

7. ACKNOWLEDGMENTS
We are grateful to anonymous ACSAC2014 reviewers for
their suggestions. We also wish to thank the anonymous
contributors for providing copies of old Microsoft develop-
ment kits and pointing few additional details in our analysis.
The second author is supported in part by an NSERC Dis-
covery Grant and an FRQNT nouveau chercheur grant.

6http://opencryptoaudit.org/

https://www.privacy-cd.org/en/using-upr/download
http://opencryptoaudit.org/

8. REFERENCES

[1] AMD. Software optimization guide for AMD64
processors. Technical report, Sept. 2005.

[2] Amossys. Rapport de certification
DCSSI-CSPN-2013/09, Oct. 2013. http://www.ssi.
gouv.fr/IMG/cspn/anssi-cspn_2013-09fr.pdf.

[3] Bitcoin project. Bitcoin Core, 2014. https://
bitcoin.org/en/download.

[4] J. Bobbio. Reproducible builds for Debian. In
DebConf’13, Vaumarcus, Switzerland, Aug. 2013.

[5] J. Bobbio. Byte-for-byte identical reproducible builds?
In FOSDEM’14, Brussels, Belgium, Feb. 2014.

[6] Conifer Systems. Build determinism. Blog article
(Oct. 17, 2008). http://www.conifersystems.com/
2008/10/17/build-determinism/.

[7] Conifer Systems. Machine-independent builds. Blog
article (Sept. 15, 2008). http://www.conifersystems.
com/2008/09/15/machine-independent-builds/.

[8] X. de Carné de Carnavalet. How I compiled
TrueCrypt 7.1a for Win32 and matched the official
binaries. Blog article (Oct. 21, 2013). https://
madiba.encs.concordia.ca/~x_decarn/truecrypt-

binaries-analysis/.

[9] X. de Carné de Carnavalet and M. Mannan.
Challenges and implications of verifiable builds for
security-critical open-source software. In ACSAC’14,
New Orleans, LA, USA, Dec. 2014.

[10] Debian Wiki. ReproducibleBuilds. Wiki article visited
on May 21, 2014. https://wiki.debian.org/
ReproducibleBuilds.

[11] Debian Wiki. SameKernel. Wiki article visited on May
21, 2014. https://wiki.debian.org/SameKernel.

[12] E. Egorochkin. Deterministic (bit-perfect) builds, June
2013. nix-dev mailing list. http://lists.science.uu.
nl/pipermail/nix-dev/2013-June/011357.html.

[13] B. Eich. Trust but verify. Blog article (Jan. 11, 2014).
https://brendaneich.com/2014/01/trust-but-

verify/.

[14] Fedora Project. Reproducible builds for Fedora.
https://github.com/kholia/ReproducibleBuilds.

[15] S. Forrest, A. Somayaji, and D. H. Ackley. Building
diverse computer systems. In HotOS’97, Cape Cod,
MA, USA, May 1997.

[16] M. Franz. E unibus pluram: Massive-scale software
diversity as a defense mechanism. In NSPW’10,
Concord, MA, USA, Sept. 2010.

[17] R. Gallagher and G. Greenwald. How the NSA plans
to infect ‘millions’ of computers with malware. News
article (Mar. 12, 2014). https://firstlook.org/
theintercept/article/2014/03/12/nsa-plans-

infect-millions-computers-malware/.

[18] Gitian.org. Gitian: a secure software distribution
method, Oct. 2009.

[19] GnuWin project. CoreUtils and gzip for Windows.
http://sourceforge.net/projects/gnuwin32/.

[20] J. Gordon. The RSDS pdb format, 2010. http://www.
godevtool.com/Other/pdb.htm.

[21] A. Gostev. ’Gadget’ in the middle: Flame malware
spreading vector identified. Blog article (June 4,
2012). https://securelist.com/blog/incidents/
33081/gadget-in-the-middle-flame-malware-

spreading-vector-identified-22/.

[22] Hex-Rays.com. Fast library identification and
recognition technology, Feb. 2012. https://www.hex-
rays.com/products/ida/tech/flirt/index.shtml.

[23] IEEE and The Open Group. dd. The Open Group
Base Specifications Issue 7. http://pubs.opengroup.
org/onlinepubs/9699919799/utilities/dd.html.

[24] Intel. Intel 64 and IA-32 architectures software
developer’s manual. Technical report, Feb. 2014.

[25] iSEC. Open Crypto Audit Project - TrueCrypt -
Security assessment, Apr. 2014.

[26] S. T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang,
and Y. Zhou. Designing and implementing malicious
hardware. In USENIX LEET’08, San Francisco, CA,
USA, Aug. 2008.

[27] H. Kirsch. The theory of build systems, Sept. 2013.
http://www.pifpafpuf.de/BuildTheory.html.

[28] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz.
SoK: Automated software diversity. In IEEE
Symposium on Security and Privacy, San Jose, CA,
USA, May 2014.

[29] C.-M. Li, T. Hwang, and N.-Y. Lee.
Threshold-multisignature schemes where suspected
forgery implies traceability of adversarial shareholders.
In EUROCRYPT’94, Perugia, Italy, May 1994.

[30] E. Lippert. Past performance is no guarantee of future
results. Blog article (May 31, 2012). http://
ericlippert.com/2012/05/31/past-performance-

is-no-guarantee-of-future-results/.

[31] J. Menn. Exclusive: NSA infiltrated RSA security
more deeply than thought - study. Reuters news
article (Mar. 31, 2014). http://www.reuters.com/
article/2014/03/31/us-usa-security-nsa-rsa-

idUSBREA2U0TY20140331.

[32] Microsoft. Microsoft Portable Executable and
Common Object File Format specification v8.3.
Technical report, Feb. 2013.

[33] Microsoft. Profile-guided optimizations, 2013. http://
msdn.microsoft.com/en-us/library/vstudio/

e7k32f4k.aspx.

[34] Microsoft. Specify symbol (.pdb) and source files in
the Visual Studio Debugger, 2013. http://msdn.
microsoft.com/en-us/library/ms241613.aspx.

[35] Mozilla Developer Network. Building with
profile-guided optimization, Aug. 2013. https://
developer.mozilla.org/en/docs/Building_with_

Profile-Guided_Optimization.

[36] openSUSE Build Service. Build result compare script.
https://build.opensuse.org/package/show/

openSUSE:Factory/build-compare.

[37] M. Perry. Deterministic builds part one: Cyberwar
and global compromise. Tor Project blog article (Aug.
20, 2013). https://blog.torproject.org/blog/
deterministic-builds-part-one-cyberwar-and-

global-compromise.

[38] D. Pistelli. Microsoft’s Rich signature
(undocumented). Blog article (Nov. 11, 2010).
http://www.ntcore.com/files/richsign.htm.

[39] PrivacyLover.com. Analysis: Is there a backdoor in
Truecrypt? Is Truecrypt a CIA honeypot? Blog article
(Aug. 14, 2010). http://www.privacylover.com/.

http://www.ssi.gouv.fr/IMG/cspn/anssi-cspn_2013-09fr.pdf
http://www.ssi.gouv.fr/IMG/cspn/anssi-cspn_2013-09fr.pdf
https://bitcoin.org/en/download
https://bitcoin.org/en/download
http://www.conifersystems.com/2008/10/17/build-determinism/
http://www.conifersystems.com/2008/10/17/build-determinism/
http://www.conifersystems.com/2008/09/15/machine-independent-builds/
http://www.conifersystems.com/2008/09/15/machine-independent-builds/
https://madiba.encs.concordia.ca/~x_decarn/truecrypt-binaries-analysis/
https://madiba.encs.concordia.ca/~x_decarn/truecrypt-binaries-analysis/
https://madiba.encs.concordia.ca/~x_decarn/truecrypt-binaries-analysis/
https://wiki.debian.org/ReproducibleBuilds
https://wiki.debian.org/ReproducibleBuilds
https://wiki.debian.org/SameKernel
http://lists.science.uu.nl/pipermail/nix-dev/2013-June/011357.html
http://lists.science.uu.nl/pipermail/nix-dev/2013-June/011357.html
https://brendaneich.com/2014/01/trust-but-verify/
https://brendaneich.com/2014/01/trust-but-verify/
https://github.com/kholia/ReproducibleBuilds
https://firstlook.org/theintercept/article/2014/03/12/nsa-plans-infect-millions-computers-malware/
https://firstlook.org/theintercept/article/2014/03/12/nsa-plans-infect-millions-computers-malware/
https://firstlook.org/theintercept/article/2014/03/12/nsa-plans-infect-millions-computers-malware/
http://sourceforge.net/projects/gnuwin32/
http://www.godevtool.com/Other/pdb.htm
http://www.godevtool.com/Other/pdb.htm
https://securelist.com/blog/incidents/33081/gadget-in-the-middle-flame-malware-spreading-vector-identified-22/
https://securelist.com/blog/incidents/33081/gadget-in-the-middle-flame-malware-spreading-vector-identified-22/
https://securelist.com/blog/incidents/33081/gadget-in-the-middle-flame-malware-spreading-vector-identified-22/
https://www.hex-rays.com/products/ida/tech/flirt/index.shtml
https://www.hex-rays.com/products/ida/tech/flirt/index.shtml
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/dd.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/dd.html
http://www.pifpafpuf.de/BuildTheory.html
http://ericlippert.com/2012/05/31/past-performance-is-no-guarantee-of-future-results/
http://ericlippert.com/2012/05/31/past-performance-is-no-guarantee-of-future-results/
http://ericlippert.com/2012/05/31/past-performance-is-no-guarantee-of-future-results/
http://www.reuters.com/article/2014/03/31/us-usa-security-nsa-rsa-idUSBREA2U0TY20140331
http://www.reuters.com/article/2014/03/31/us-usa-security-nsa-rsa-idUSBREA2U0TY20140331
http://www.reuters.com/article/2014/03/31/us-usa-security-nsa-rsa-idUSBREA2U0TY20140331
http://msdn.microsoft.com/en-us/library/vstudio/e7k32f4k.aspx
http://msdn.microsoft.com/en-us/library/vstudio/e7k32f4k.aspx
http://msdn.microsoft.com/en-us/library/vstudio/e7k32f4k.aspx
http://msdn.microsoft.com/en-us/library/ms241613.aspx
http://msdn.microsoft.com/en-us/library/ms241613.aspx
https://developer.mozilla.org/en/docs/Building_with_Profile-Guided_Optimization
https://developer.mozilla.org/en/docs/Building_with_Profile-Guided_Optimization
https://developer.mozilla.org/en/docs/Building_with_Profile-Guided_Optimization
https://build.opensuse.org/package/show/openSUSE:Factory/build-compare
https://build.opensuse.org/package/show/openSUSE:Factory/build-compare
https://blog.torproject.org/blog/deterministic-builds-part-one-cyberwar-and-global-compromise
https://blog.torproject.org/blog/deterministic-builds-part-one-cyberwar-and-global-compromise
https://blog.torproject.org/blog/deterministic-builds-part-one-cyberwar-and-global-compromise
http://www.ntcore.com/files/richsign.htm
http://www.privacylover.com/

[40] SOGETI Infrastructure Services. Rapport de
certification DCSSI-CSPN-2008/03, Dec. 2008.
http://www.ssi.gouv.fr/IMG/cspn/dcssi-cspn_

2008-03fr.pdf.

[41] StackOverflow.com. How do I build TrueCrypt on
Windows?, Nov. 2012. http://stackoverflow.com/
questions/13379644/how-do-i-build-truecrypt-

on-windows/13414137#13414137.

[42] The Netwide Assembler bug tracking system. NASM
crashes when building x64 .obj file. Bug ticket (Oct. 6,
2009). http://sourceforge.net/p/nasm/bugs/469/.

[43] The PaX Team. Address space layout randomization,
Mar. 2003. http://pax.grsecurity.net/docs/aslr.
txt.

[44] K. Thompson. Reflections on trusting trust. Commun.
ACM, 27(8):761–763, Aug. 1984.

[45] Tor Project bug track system. Improve software
assurance. Bug ticket (May 31, 2012). https://trac.
torproject.org/projects/tor/ticket/6008.

[46] TrueCrypt Foundation. TrueCrypt.

[47] Ubuntu Privacy Remix Team. Security analysis of
TrueCrypt 7.0a with an attack on the keyfile
algorithm. Technical report, Aug. 2011. https://www.
privacy-cd.org/downloads/truecrypt_7.0a-

analysis-en.pdf.

[48] M. Uecker. Building packages three times in a row.
Debian mailing list. https://lists.debian.org/
debian-devel/2007/09/msg00746.html.

[49] J. Walton. An analysis of the Windows PE checksum
algorithm, Mar. 2008. http://www.codeproject.com/
Articles/19326/An-Analysis-of-the-Windows-PE-

Checksum-Algorithm.

[50] D. Wendlandt, D. G. Andersen, and A. Perrig.
Perspectives: Improving SSH-style host authentication
with multi-path probing. In USENIX Annual
Technical Conference, Boston, MA, USA, 2008.

[51] D. A. Wheeler. Fully Countering Trusting Trust
through Diverse Double-Compiling. PhD thesis,
George Mason University, Oct. 2009.

http://www.ssi.gouv.fr/IMG/cspn/dcssi-cspn_2008-03fr.pdf
http://www.ssi.gouv.fr/IMG/cspn/dcssi-cspn_2008-03fr.pdf
http://stackoverflow.com/questions/13379644/how-do-i-build-truecrypt-on-windows/13414137#13414137
http://stackoverflow.com/questions/13379644/how-do-i-build-truecrypt-on-windows/13414137#13414137
http://stackoverflow.com/questions/13379644/how-do-i-build-truecrypt-on-windows/13414137#13414137
http://sourceforge.net/p/nasm/bugs/469/
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt
https://trac.torproject.org/projects/tor/ticket/6008
https://trac.torproject.org/projects/tor/ticket/6008
https://www.privacy-cd.org/downloads/truecrypt_7.0a-analysis-en.pdf
https://www.privacy-cd.org/downloads/truecrypt_7.0a-analysis-en.pdf
https://www.privacy-cd.org/downloads/truecrypt_7.0a-analysis-en.pdf
https://lists.debian.org/debian-devel/2007/09/msg00746.html
https://lists.debian.org/debian-devel/2007/09/msg00746.html
http://www.codeproject.com/Articles/19326/An-Analysis-of-the-Windows-PE-Checksum-Algorithm
http://www.codeproject.com/Articles/19326/An-Analysis-of-the-Windows-PE-Checksum-Algorithm
http://www.codeproject.com/Articles/19326/An-Analysis-of-the-Windows-PE-Checksum-Algorithm

	Introduction
	Definition, threats and challenges
	Definition
	Assumptions
	Threats considered
	Verifying non-deterministic build

	Case study: TrueCrypt
	Our test environment
	Preparing the environment
	Prerequisites
	Initial challenges
	Build path

	Sources of non-determinism
	TrueCrypt.exe and TrueCrypt Format.exe
	Truecrypt.sys and truecrypt-x64.sys
	TrueCrypt installer

	Summary

	Towards deterministic builds
	Gitian for Bitcoin
	Gitian for Tor
	Debian packages
	Other Linux distributions
	Summary of current efforts

	Related work
	Conclusion
	Acknowledgments
	References

