
Synchronizing Web Documents with Style 
Rodrigo Laiola Guimarães1, Dick C. A. Bulterman2, Pablo Cesar3 and Jack Jansen3 

1 IBM Research 
Rua Tutóia 1157 

04007900 São Paulo, Brazil 
+55 11 2132 2283 

2 FX Palo Alto Laboratory 
3174 Porter Drive 

CA 94304 Palo Alto, USA 
+1 650 842 4800 

3 CWI: Centrum Wiskunde & Informatica  
Science Park 123 

1098 XG Amsterdam, The Netherlands 
+31 20 592 9333 

rlaiola@br.ibm.com, dick.bulterman@fxpal.com, p.s.cesar@cwi.nl, jack.jansen@cwi.nl
 

ABSTRACT 
In this paper we report on our efforts to define a set of document 
extensions to Cascading Style Sheets (CSS) that allow for 
structured timing and synchronization of elements within a Web 
page. Our work considers the scenario in which the temporal 
structure can be decoupled from the content of the Web page in a 
similar way that CSS does with the layout, colors and fonts. Based 
on the SMIL (Synchronized Multimedia Integration Language) 
temporal model we propose CSS document extensions and discuss 
the design and implementation of a proof of concept that realizes 
our contributions. As HTML5 seems to move away from 
technologies like Flash and XML (eXtensible Markup Language), 
we believe our approach provides a flexible declarative solution to 
specify rich media experiences that is more aligned with current 
Web practices. 

Categories and Subject Descriptors 
D.3.2 [Language Classifications]: Specialized application 
languages; I.7.2 [Document and Text Processing]: Document 
Preparation – Format and notation, Hypertext/hypermedia, 
Languages and Systems, Multi/mixed media, Standards. 

General Terms 
Design, Experimentation, Standardization, Languages. 

Keywords 
Structured timing and synchronization, Time Style Sheets, 
HTML5, CSS3, JavaScript, SMIL, W3C. 

1. INTRODUCTION 
This year marks the 25th anniversary (or thereabouts) of the World 
Wide Web (also known as WWW, W3 or simply Web). What 
started as a method for scientists to structure, interlink and share 
research has changed profoundly the way we communicate and 
share information. From the technological perspective, today’s 
Web also looks very different from what it was on its birth. While 
in the beginning Web documents contained only static 
information and limited formatting, supporting technologies like 
CSS and JavaScript – and later AJAX (Asynchronous JavaScript 
and XML) – contributed immensely to a new era of dynamism 
within Web pages. 

As the Web establishes itself as a crucial content delivery and 
consumption platform, the temporal aspect now plays an 
important role in the discussions within the HTML Working 
Group. Among many new features, HTML5 (HyperText Markup 
Language version 5) offers built-in support for audio and video 
content. In spite of these advances, the HTML language still 
provides limited support to create rich media experiences like 
video mashups [6][13]. On the one hand, structured timing and 
synchronization has for long been part of the multimedia research 
agenda within the WebMedia community [1][8][11][12]. On the 
other hand, much of those contributions are still to be seen on the 
Web. We believe that one of the reasons for that is that most 
previous efforts focused on XML-based solutions, which define a 
whole new set of tags that impact how Web documents should be 
authored. In this context, the question we ask ourselves is: 

How can we integrate structured timing and synchronization on 
Web documents other than based on the XML language profile? 

In this paper we look at structured timing and synchronization 
within Web documents from a new perspective. Our primary 
contribution is a set of document extensions that allow timing and 
synchronization of HTML elements to be specified with CSS – a 
style sheet language conceived primarily for describing the look 
and formatting of a document. Our CSS document extensions, 
named Time Style Sheets, are based on the SMIL [2] temporal 
model. As HTML5 directly aims at addressing issues of 
reliability, security and performance of technologies like Flash1, 
we believe this paper presents a number of insights to be 
considered as the Web evolves. 

In particular, the requirements that motivated our work include: 

i. Support readability, maintainability and reusability: 
although timing and synchronization of elements within a 
Web document can be achieved with scripting, we aim for 
declarative solutions that favor accessibility and 
interoperability; and 

ii. Separate temporal semantics from document structure: 
instead of adding new tags to the HTML language, we 
believe that a less intrusive manner to time and synchronize 
elements within a Web page is necessary. To this extent, the 
CSS functional module is naturally decoupled from the 
document structure. 

The remaining of this paper is organized as follows. Section 2 
overviews related work. Section 3 introduces a set of CSS 
document extensions to define structured timing and 
synchronization in Web documents. These functionalities are 

                                                                    
1 Some technologies mentioned in this paper, if unknown, could 

very easily be identified via a simple online search; therefore 
they will not be Web-referenced. 

 



targeted to structural elements as well as to continuous media like 
HTML5 audio and video. Then, in Section 4 we discuss the 
implementation of a proof of concept that realizes our 
contributions. Finally, Section 5 is dedicated to concluding 
remarks and points to future directions. 

2. RELATED WORK 
In the context of this work, it is worth discussing mechanisms that 
allow timing and synchronization to be integrated into documents. 
In the remaining of this section we review some declarative 
multimedia languages and other representative alternatives 
targeted specifically to the Web domain (see Figure 1). 

2.1 Declarative Multimedia Languages 
NCL (Nested Context Language) is an XML-based language used 
to specify interactive multimedia presentations within the 
Brazilian Terrestrial Digital TV System (SBTVD-T) and ITU-T 
[14]. NCL has a strict separation between the document content 
and structure, and it provides non-invasive control of presentation 
timing, linking and layout (see Figure 1a). In NCL authors can 
declaratively describe the temporal behavior of a multimedia 
presentation using connectors and links. Although the application 
of such feature has been considered in the Web domain before [9], 
the use of links to specify the temporal synchronization of 
elements seems a step far ahead that current Web is yet not ready 
to embrace (nearly all Web links are used as user interaction 
points for page navigation). 

SMIL is the main multimedia container format supported by 
W3C, the World Wide Web Consortium. Like NCL, SMIL is an 
XML-based integration format, and as such, it does not directly 
define media objects (with the exception of timed text content). 
Instead, SMIL acts as a container format in which spatial, 
temporal, linking and interactive primitives can be used to 
position, schedule and control a wide assortment of multimedia 
presentations. In spite of the efforts to make SMIL the multimedia 
language for the Web2, it has not been widely deployed in this 
context (although it is one means of animating SVG – Scalable 
Vector Graphics [7]). 

In this work we argue that a fat-free alternative to XML-based 
approaches is necessary, as demonstrated by the efforts to support 
the temporal aspect within CSS3 Animation and Transition 
working drafts. 

2.2 Timing and Synchronization on the Web 
HTML is the markup language to create Web pages. One of the 
innovative features of HTML5 is the introduction of the <audio> 
and <video> elements as first-class citizens of the HTML 
                                                                    
2 http://www.w3.org/TR/NOTE-HTMLplusTIME 

language. These elements implicitly define a temporal dimension 
for the referenced media object. HTML5 though provides a very 
restricted scope of temporal synchronization that only applies to 
the video and its captions (via the <track> element). Embedded 
scripting (such as JavaScript) is the primary means of controlling 
time and affecting the behavior of HTML documents. 

HTML5 also introduces the <canvas> element, which allows for 
dynamic, scriptable rendering of 2D shapes and bitmap images. 
HTML5 <canvas> can be used with JavaScript to create high-
demanding applications like games, in which pixel level 
manipulation and performance are essential. Our work differs not 
only in the programming paradigm (JavaScript is procedural), but 
also due to the fact that we target timing and synchronization of 
HTML elements instead of low-level pixels in a bitmap image. 

CSS level 3 (or simply CSS3) brings the temporal aspect in the 
Transition and Animation modules. CSS Transitions3 provide an 
easy way to do simple animation, but they give little control to the 
author on how the animation progresses (CSS property values are 
interpolated between start and end states of the animation). 
Similarly, CSS Animations4 change the presentational value of 
CSS properties over time. The main difference is that CSS 
Animations allows the author to specify CSS property changes as 
a set of @keyframes rules. Many aspects of the animation can be 
controlled, including whether or not to delay its start time, how 
many times the animation iterates, and whether or not the 
animation should be running or paused. In this paper we take the 
CSS temporal aspect one step further by considering that the 
presentation of any group of elements (and not only animations) 
can be synchronized and controlled. 

While JavaScript and Flash (this last to a more restricted extent) 
can be used to handle timing, synchronization and interaction (see 
Figure 1b), a number of efforts advocate for more accessibility 
and reusability. With this in mind, Popcorn.js5, an HTML5 media 
framework written in JavaScript, enables the creation of rich time-
based interactive experiences on the Web. Using a plugin factory 
mechanism, Popcorn.js allows the presentation of a video, audio 
or other media to control and be controlled by arbitrary elements 
within a Web page. Although plugins can be easily reused, 
authors need to be familiarized with JavaScript, since all 
configurations are done in that language. 

Most closely to our work, Timesheets.js6 proposes a declarative 
approach to synchronize Web documents. Timesheets.js relies on 
                                                                    
3 http://www.w3.org/TR/css3-transitions/ 
4 http://dev.w3.org/fxtf/web-animations/ 
5 http://popcornjs.org/ 
6 http://wam.inriaalpes.fr/timesheets/ 

 

Figure 1. Technology comparison. 



a JavaScript implementation of a SMIL Timesheets scheduler that 
runs in the Web browser. Cazenave et al. [4] suggest that a small 
set of new tags and attributes from Timesheets.js would facilitate 
the integration of structured timing and synchronization in the 
HTML and SVG languages (see Figure 1c). Our work is related, 
but instead we focus on providing document extensions to the 
CSS language (see Figure 1d). 

3. OUR APPROACH 
In this paper we propose a means to support structured timing and 
synchronization of HTML elements by extending the CSS 
language with a set of SMIL functionalities. Instead of supporting 
the whole SMIL profile – which defines a vast number of 
modules, some of which used in very specific situations – we aim 
at some core features defined in the Basic SMIL timing model. 

By design, we decided to keep the document structure in HTML, 
event handling in JavaScript and the presentation layout in CSS, 
while Time Style Sheets (TSS), a CSS language extension, defines 
the presentation temporal semantics. This way there is a clear 
functional separation between the information organization, the 
behavior manipulation, the presentation layout, and now the 
timing and synchronization behavior within a Web page 
(requirement i). As part of the CSS language, TSS definitions are 
declarative (requirement ii) and follow the same rules of cascade, 
specificity and inheritance. In the remaining of this section we 
provide a detailed overview of the facilities provided by Time 
Style Sheets to encode temporal presentations on the Web. 

3.1 Timing Properties 
As aforementioned, our approach builds on a subset of the Basic 
SMIL timing model. This module defines when elements in a 
presentation get scheduled and, once scheduled, how long they 
will be active. One of the challenges of the integration of the 
SMIL functionality in a non-XML language is to determine how 
SMIL’s time containers and attributes can be modeled in the 
target language. Our design choice was to define a set of timing 
properties and values within the CSS language as summarized in 
Table 1 and Table 2. These properties can also be read and 
modified via JavaScript. This provides a clean mechanism to add 
limited functionality to the existing CSS specification without 
major integration overhead. 

A simple example of integrating the CSS property-based timing 
extension functionality is given in the following HTML fragment: 

01. 
02. 
03. 
04. 
05. 
06. 
07. 
08. 
09. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 

<div id=”slideshow”>  
<img src=”img1.png” /> 
<img src=”img2.png” /> 
<img src=”img3.png” style=”timing-delay:1s” /> 

</div> 
 
<style> 

#slideshow { 
timing-container: seq; 
timing-interaction-count: infinite; 

} 
 
#slideshow img { 

timing-delay: 0s; 
timing-duration: 2s; 
border: 1px solid green; 

} 
</style> 

Here, the <div> element named slideshow is defined to behave as 
a SMIL sequential container that will be played infinite times 
(lines 09-10). The children elements, in this case the <img> 

elements, also have timing properties to control their temporal 
behavior. As illustrated in Figure 2, the presentation of an image 
will start immediately one after another, and each will last for 2 
seconds (lines 14-15). The exception is the last image, which will 
start with a 1-second delay as specified in line 04 (inline styles 
have precedence over embedded CSS definitions). Note that 
timing properties can also be easily combined with existing CSS 
properties (line 16). 

Besides the specification of an element’s temporal behavior, TSS 
also allows for playback control through timing properties. 
Internally, an element initiates on the paused state, and it changes 
to running whenever is its turn to play (see Figure 3). If the 
timing-play-state property is defined as running, the 
transition in the state machine will only occur at the appropriate 
moment (e.g. if we had specified it for image #3, this would still 
play after the presentation of image #2). Alternatively, it is 
possible control the state machine of an element via JavaScript. 
TSS is also compliant with the autoplay attribute of the 
<audio> and <video> elements. If this attribute is specified, it 
has a higher precedence than a TSS definition, and the timing-
play-state property assumes the running value. Otherwise, the 
behavior is the same as for the other elements. The state 
transitions are associated with 5 main events: onplay, onbegin, 
onpause, onend and ontimeupdate. Timing events are discussed in 
the next subsection. 

Finally, instead of using the SMIL name convention, in TSS we 
chose to name timing properties after similar concepts that are 
already in use within the CSS3 Animation and Transition 
specifications (e.g. timing-delay corresponds to the begin 
attribute in SMIL, timing-duration to dur and timing-
iteration-count to the repeatCount attribute). 

3.2 Timing Events 
HTML DOM events allow JavaScript to register different event 
handlers on elements in an HTML document. These events are 
normally used in combination with functions, which will only be 

 
Figure 2. Slideshow example: each image waits for the 

previous child of the sequence to finish, and then it plays. 

 
Figure 3. State machine and associated events. 



executed when the event occurs. The Timing Events proposed in 
the Time Style Sheets specification (see Table 3) extend current 
DOM events and follow the W3C DOM Level 2 standard model. 
The Timing Events associated to the Time Style Sheets 
framework can be normally used within HTML elements as 
shown below. 

HTML Syntax: 

<element onbegin=”SomeJavaScriptCode”> 

JavaScript Syntax: 

object.onbegin=function(){SomeJavaScriptCode}; 

Alternatively, it is also possible to register/unregister event 
listeners on event target objects using the JavaScript methods 
addEventListener and removeEventLister (IE8: 
attachEvent and detachEvent), respectively. 

3.3 Timing Pseudo-Classes 
In Time Style Sheets, we can use CSS pseudo-classes to define 
specific presentation styles for different playback phases. In 
general, CSS pseudo-classes are keywords added to selectors to 
specify special states or relations to an element. They take the 
form of selector:pseudo_class {property: value;}, 
simply with a colon in between the selector and the name of the 
pseudo-class. For example, :hover can be used to apply a style 
when the user hovers over the element specified by the selector. 

In our framework, 2 pseudo-classes have been defined to style an 
element when its playback cycle effectively starts (after timing-
delay is computed) or ends, as follows. 

01. 
02. 
03. 
04. 
05. 
06. 
07. 

selector:active { /* after computing delay */ 
property: value; 

}  
 
selector:not-active { /* applied onend   */ 

property: value; 
} 

As a matter of completeness, the example presented in Subsection 
3.1 will only bring on the expected behavior (one image being 

Table 1. Timing properties. 

Property Description Syntax 

timing-container 

Specifies how the presentation of the 
children elements will be scheduled. 
Available containers are par-allel and 
seq-uential  

CSS Syntax: 
timing-container: (par)|seq|initial; 
JavaScript Syntax: 
object.style.timingContainer = “seq”; 

timing-delay 
Defines when an element will start.  Its 
value is defined in seconds (s) or 
milliseconds (ms) 

CSS Syntax: 
timing-delay: time (0s)|initial; 

JavaScript Syntax: 
object.style.timingDelay = “2s”; 

timing-duration 
Specifies how many seconds or 
milliseconds an element takes to complete 
one cycle 

CSS Syntax: 
timing-duration: time (implicit|infinite)|initial; 

JavaScript Syntax: 
object.style.timingDuration = “1s”; 

timing-iteration-count Defines how many times an element should 
be played 

CSS Syntax: 
timing-iteration-count: number (1)|infinite|initial; 

JavaScript Syntax: 
object.style.timingIterationCount = “infinite”; 

timing-play-state 

Specifies whether an element is running or 
paused.  This property can be used in 
JavaScript to pause or resume an element’s 
playback in the middle of a cycle 

CSS Syntax: 
timing-play-state: (running)|paused|initial; 

JavaScript Syntax: 
object.style.timingPlayState = “paused”; 

 

Note: the default value is specified within parenthesis. 

Table 2. Property values. 

Value Description 

initial Sets a given property to its default value 

infinite 

Only applicable for the timing-iteration-count 
and timing-duration properties. Specifies that the 
element should be played infinite times or one cycle will 
never end, respectively 

number A number that defines how many times a given property 
should be considered. Default value is 1 

time 

Defines the number of seconds or milliseconds. The 
default value is 0 for timing-delay. For the 
timing-duration property, it is infinite for static 
media (e.g. image) and implicit to continuous media 

paused Specifies that the element is paused 

running Default value. Specifies that the element is running 

 

Table 3. Timing events. 

Event Description 

onbegin The event occurs when the playback cycle of an 
element starts 

onend The event occurs when the playback cycle of an 
element ends 

onplay The event occurs when the playing state of an element 
changes to running 

onpause The event occurs when the playing state of an element 
changes to paused 

ontimeupdate The event occurs when the playback time changes 

 



displayed and disappearing after the other, sequentially) if we 
define the timing pseudo-classes as presented below. Figure 4 
illustrates these phases and states overlap. One could argue the 
display property equals none should be implicit for the not-
active pseudo-class, but we opted to leave the specification of 
this behavior to the author. In SMIL a similar functionality can be 
achieved using the timeAction attribute. Although this attribute 
can produce interesting presentations, we believe it may also lead 
to confusion (e.g. its value can refer to a CSS class, style or a 
specific property). Pseudo-classes provide a more elegant and 
normalized solution that is aligned with current Web practices. 

01. 
02. 
03. 
04. 
05. 
06. 
07. 

#slideshow img:active { 
/* not necessary in this example */ 

}  
 
#slideshow img:not-active { 

display: none; 
} 

 

3.4 Support to Rich Media Content 
We have seen that Time Style Sheets defines a set of CSS 
properties, events and pseudo-classes that allow for structured 
timing and synchronization of HTML elements within a Web 
page. In this section we discuss a complementary set of properties 
targeted to media elements, in particular continuous media. These 
definitions can be useful when creating rich media experiences 

like video mashups [6][13]. In Table 4 we summarize these 
additional timing properties. In order to exemplify the use of such 
properties we present 2 examples. 

First, we introduce a playlist example composed of an audio track 
(lines 02-06) and a collection of video elements identified as 
video_seq (lines 07-26). These 2 components will be played in 
parallel and the playlist will last for 2min (lines 31-32). On the 
other hand, the video_seq’s inner videos will play sequentially 
one after another (as specified in lines 36 and 45-47). Note that 
instead of playing the entire video file, the timing-clip-
begin and timing-clip-end properties are used to define 
video clips of interest (lines 08, 13 and 21). Alternatively, the use 
of Media Fragments7 could be considered to specify the temporal 
dimension of a media clip using URIs (Uniform Resource 
Identifier). It is also worth mentioning that only the audio element 
will reproduce sound (line 02), while the audio of the video clips 
will be played silently – but will still be played (line 40). 

01. 
02. 
03. 
04. 
05. 
06. 
07. 
08. 
 
09. 
10. 
11. 
12. 
13. 
 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
 
22. 
23. 
24. 
25. 
26. 
27. 
28. 
29. 
30. 
31. 
32. 
33. 
34. 
35. 
36. 
37. 
38. 
39. 
40. 
41. 
42. 
43. 
44. 
45. 
46. 
47. 
48. 

<div id=”playlist”> 
<audio style=”timing-volume:1.0”> 
<source src=”track.ogg” type=”audio/ogg”/> 
<source src=”track.mp3” type=”audio/mpeg”/> 
Your browser does not support HTML5 audio. 

</audio> 
<div id=”video_seq”> 
<video style=”timing-clip-begin:0s; 

timing-clip-end:5s;”> 
<source src=”v01.ogg” type=”video/ogg” /> 
<source src=”v01.mp4” type=”video/mp4” /> 
Your browser does not support HTML5 video. 

</video> 
<video style=”timing-clip-begin:30s; 

timing-clip-end:34s;”> 
<source src=”v02.ogg” type=”video/ogg” /> 
<source src=”v02.mp4” type=”video/mp4” /> 
Your browser does not support HTML5 video. 

</video> 
 
... 
 
<video style=”timing-clip-begin:13s; 

timing-clip-end:19s;”> 
<source src=”vN.ogg” type=”video/ogg” /> 
<source src=”vN.mp4” type=”video/mp4” /> 
Your browser does not support HTML5 video. 

</video> 
</div> 

</div> 
 
<style> 

#playlist { 
timing-container: par; 
timing-duration: 120s; /* it lasts 2 min */ 

} 
 
#video_seq { 

timing-container: seq; 
} 
 
#video_seq > video { 

timing-volume: 0; /* videos kept on mute */ 
width: 480px; 
height: 320px; 

} 
 
#video_seq > video:not-active { 

display: none; 
} 

</style> 

                                                                    
7 http://www.w3.org/TR/media-frags/ 

 
Figure 4. An example of the different phases and states used 

to describe the presentation of elements. 

Table 4. Timing properties related to media. 

Property Description 

timing-clip-begin 

Specifies the time at which a continuous 
media stream begins playing, relative to the 
start of the media file. The value of this 
property must be specified in seconds (s) or 
milliseconds (ms) 

timing-clip-end 

Specifies the time at which a continuous 
media stream stops playing, relative to the 
start of the media file.  The value of this 
property must be specified in seconds (s) or 
milliseconds (ms) 

timing-volume 

Defines the relative output of an audio 
object. It takes a value from 0.0 to 1.0. The 
default value is 1.0, which corresponds to 
100%. A lower value makes the audio play 
more silently 

timing-sync-master 

Identifies which element (by its unique id) 
should be used as the master synchronization 
clock. By default an element follows its 
internal clock 

 



Next, we illustrate a rich media example that could be used in an 
education environment [3][10][15]. In this second use case, a 
video element identified as video_quiz (lines 01-05) is used as the 
conductor of an interactive experience. We then prompt the user 
with a quiz (lines 06-12) at certain point of the video playback. 
For that, we first need to specify the video as the master 
synchronization timing of the quiz (line 16), and then set the 
moment at which the quiz must be presented (20s after the start of 
the video, as shown on line 17). The timing-sync-master 
property indicates that instead of being controlled internally, the 
clock of the video element will send time updates to control the 
presentation of the quiz. 

01. 
02. 
03. 
04. 
05. 
06. 
07. 
 
08. 
09. 
10. 
11. 
 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 
26. 
27. 
28. 
29. 
30. 
 
31. 
32. 
33. 
34. 
35. 
36. 
 
37. 
38. 
39. 

<video id=”video_quiz”> 
<source src=”movie.ogg” type=”video/ogg” /> 
<source src=”movie.mp4” type=”video/mp4” /> 
Your browser does not support HTML5 video. 

</video> 
<form id=”quiz”> 

<h3>Which nation has won the most World  
Cups?</h3> 

<input type=”radio” value=”germany”>... 
<input type=”radio” value=”italy”>... 
<input type=”radio” value=”brazil”>... 
<input type=”submit” value=”Submit”  

onclick=”checkQuiz();”> 
</form> 
 
<style> 

#quiz { 
timing-sync-master: #video_quiz; 
timing-delay: 20s; 

} 
 
#quiz:not-active { 

display: none; 
} 

</style> 
 
<script> 

var quiz = document.getElementById(“quiz“); 
quiz.addEventListener(“onplay“, function(ev){ 

ev.stopPropagation(); 
 
document.getElementById(“video_quiz“). 

style.timingPlayState = “paused”; 
}); 
 
function checkQuiz() { 

... 
/* if answer is correct, resume video */ 
document.getElementById(“video_quiz“). 

style.timingPlayState = “running”; 
... 

} 
</script> 

We still make use of extra scripting to customize the presentation 
behavior. Once the quiz appears to the user, the video playback is 
paused (lines 26-31). When the user answers the quiz and press 

the submit button (defined on line 11), the answer is checked and, 
if correct, the video playback is then resumed (lines 33-38). 

3.5 Extensibility 
As shown in this section, Time Style Sheets allows authors to time 
and synchronize elements within a Web page. However, the 
framework can still be extended to support new functionalities. As 
we saw in Subsection 3.4, a complementary set of properties is 
necessary to media elements, in particular continuous media. 

Another consideration to make is that we decided to support only 
explicit time values, instead of more complex syncbase or 
eventbase timing. As a reminder to an interested reader, among 
other things SMIL allows specifying the activation, duration and 
termination of an element based on other elements’ timing (e.g. 
start image #2 2s after image #1 has begun) or interactive events 
(e.g. start image #2 after clicking on image #1), respectively. 
Although one might think we lose in terms of expressiveness, we 
believe our approach favors readability. By using predictable 
timing we also can easily support the change of time style on the 
fly. It is important to mention that with unpredictable playback 
times (e.g. a live video stream) a different approach would be 
necessary. In the current design we opted to yield up some of 
these concepts to keep things simple. We believe this is a topic 
that can be explored in future work. 

4. IMPLEMENTATION 
A TSS compliant agent is composed of a parser that interprets a 
TSS definition and a renderer that implements the semantics 
specified in such document (see Figure 5). As current Web 
browsers do not support the specification of custom CSS 
properties and pseudo-classes, we developed a TSS parser and 
renderer engine in JavaScript. To make use of our TSS proof of 
concept implementation, an author just has to import the 
JavaScript files in the head of the HTML document. Once the 
page is completely loaded by the browser, the TSS parser 
examines the associated styles and triggers a custom 
ontssparserready event. At this moment, a TSS renderer that 
listens to such event takes over and schedules the document 
presentation accordingly. Note that different renderers can 
implement different semantics. For instance, one could provide a 
visual representation of the scheduling for authoring purposes 
instead of focusing on the document playback. 

In our implementation, the playback of elements is controlled 
using Event Capturing (top-down), while the notification of 
timing events uses Event Bubbling (see Figure 6). Both event 
propagation approaches are part of the W3C standard. For the 
first, this means that one can play or pause any element, without 
impacting the presentation of other elements within a Web page. 
This is true unless the other elements are descendants of the 
element into question (e.g. if a slideshow is paused, the 
presentation of the inner image running at that moment will also 

 
Figure 5. Implementation diagram. 

 

 
Figure 6. Event propagation methods. 

  
 



be paused). For timing events (e.g. onbegin, onend etc.) we use a 
complementary approach. In the Event Bubbling (bottom-up) 
model, an event is first captured and handled by the inner most 
elements, and then propagated to outer ascendants. This way, the 
slideshow’s temporal container (in our case, sequential) gets 
notified of their children end event and can start the next image. 

The other characteristic feature of our renderer’s implementation 
is that time is not inherited. This means parent nodes do not 
provide timing information to their children – unless the 
timing-sync-master property has been defined explicitly for 
doing so. Each timed element has an independent player that is 
updated by a global clock. The global clock is a source of 
monotonically increasing time values unaffected by adjustments 
to the system clock. The time values produced by the global clock 
represent wall-clock milliseconds from an unspecified historical 
moment. Because the zero time of the global clock is not 
specified, the absolute values of the time values produced by the 
global clock are not significant, only their rate of change. The 
global clock is not exposed in the programming interface and nor 
is it expected to be exposed by markup. In the future we may 
consider the use of hierarchical arrangements of time relationships 
between timed elements. 
Typically, a player is tied to the global clock such that its absolute 
time is calculated as a fixed offset from the time of the global 
clock. This offset is established by designating some moment as 
the player’s zero time and recording the time value of the global 
clock at that moment. At subsequent moments, the time value of 
the player’s timeline is calculated as the difference between the 
current time value of the global clock and the value recorded at 
the zero time. A player realizes some timed behavior (e.g. 
sequential container, parallel container or media) and binds itself 
to the source node (see Figure 7). A player also allows run-time 
control and it is in charge of exposing the JavaScript API 
(Application Programming Interface) discussed in Section 3. 

5. FINAL REMARKS 
Much has changed in the World Wide Web in these 2 decades of 
WebMedia conference, and it seems that at last the temporal 
aspect started receiving the attention it deserves in the HTML 
language (and related technologies). In this work we presented a 
set of document extensions to support structured timing and 
synchronization within Web pages. Time Style Sheets was 
designed to be fully declarative rather than procedural. This way, 
we also favor reusability, maintainability and readability, making 
it more accessible to a wider audience (requirement i). As Time 

Style Sheets is built on top of CSS, a style sheet language, we also 
keep a clear functional separation between the HTML structure 
and the temporal semantics (requirement ii). 

One could argue that some of the facilities proposed in this work 
could be achieved within HTML5 by adding complex additional 
scripting, or perhaps by assimilating technologies like SMIL or 
NCL in totality. Although this may be true, we believe that the 
great challenge is to combine the best lessons learned in the past 
with current Web design principles, balancing flexibility and 
expressiveness to not reinvent the wheel. In these lines, this work 
shows that the SMIL temporal model transcends a specific host 
language (in this case XML-based) and it is a powerful abstraction 
to be considered when handling the temporal aspect within a Web 
page. These results directly answer our research question. 

In the near future, we plan to make public our TSS 
implementation. As for rich media experiences like video 
mashups, there are implications on the design of the TSS agent (or 
player), mainly in regard to intelligent prefetching mechanisms 
[5] within the Web browser. We plan to explore this topic in 
future work. Finally, we expect that some of our contributions can 
bring new insights and help in the evolution of CSS within W3C. 

6. ACKNOWLEDGMENTS 
This work has been partially funded by the Brazilian Ministry of 
Science and Technology under contract no. FINEP 03.11.0371.00. 

7. REFERENCES 
[1] Azevedo, R.G.A., Lima, B.S., Soares Neto, C.S. and 

Teixeira, M.M. 2009. An approach for textual authoring of 
hypermedia documents based on the use of programmatic 
visualization and hypertextual navigation. In Proceedings of 
the XV Brazilian Symposium on Multimedia and the Web 
(WebMedia ‘09). ACM, New York, NY, USA, Article 18, 8 
pages. DOI=10.1145/1858477.1858495 
http://doi.acm.org/10.1145/1858477.1858495 

[2] Bulterman, D.C.A and Rutledge, L.W. SMIL3.0 - Interactive 
Multimedia for Web, Mobile Devices and DAISY Talking 
Books. Springer-Verlag, 2009. ISBN: 978-3-540-78546-0 

[3] Cambruzzi, W.L., Rigo, S.J. and Barbosa, J.L.V. 2012. A 
proposal for managing multiple trails in educational 
environments. In Proceedings of the 18th Brazilian 
symposium on Multimedia and the web (WebMedia ‘12). 
ACM, New York, NY, USA, 25-28. 
DOI=10.1145/2382636.2382645 
http://doi.acm.org/10.1145/2382636.2382645 

[4] Cazenave, F., Quint, V. and Roisin, C. 2011. Timesheets.js: 
when SMIL meets HTML5 and CSS3. In Proceedings of the 
11th ACM symposium on Document engineering (DocEng 
‘11). ACM, New York, NY, USA, 43-52. 
DOI=10.1145/2034691.2034700 
http://doi.acm.org/10.1145/2034691.2034700 

[5] Gao, B., Jansen, J., Cesar, P. and Bulterman, D.C.A. 2010. 
Beyond the playlist: seamless playback of structured video 
clips. IEEE Trans. on Consum. Electron. 56, 3 (August 
2010), 1495-1501. DOI=10.1109/TCE.2010.5606288 
http://dx.doi.org/10.1109/TCE.2010.5606288 

[6] Jansen, J., Cesar, P. Guimarães, R.L. and Bulterman, D.C.A. 
2012. Just-in-time personalized video presentations. In 
Proceedings of the 2012 ACM symposium on Document 
engineering (DocEng ‘12). ACM, New York, NY, USA, 59-

 
Figure 7. The renderer’s implementation at a glance. 



68. DOI=10.1145/2361354.2361368 
http://doi.acm.org/10.1145/2361354.2361368 

[7] King, P., Schmitz, P. and Thompson, S. 2004. Behavioral 
reactivity and real time programming in XML: functional 
programming meets SMIL animation. In Proceedings of the 
2004 ACM symposium on Document engineering (DocEng 
‘04). ACM, New York, NY, USA, 57-66. 
DOI=10.1145/1030397.1030411 
http://doi.acm.org/10.1145/1030397.1030411 

[8] Marques Neto, M.C. and Santos, C.A.S. 2009. StoryToCode: 
a model based on components for specifying interactive 
digital TV convergent applications. In Proceedings of the XV 
Brazilian Symposium on Multimedia and the Web 
(WebMedia ‘09). ACM, New York, NY, USA, Article 8, 8 
pages. DOI=10.1145/1858477.1858485 
http://doi.acm.org/10.1145/1858477.1858485 

[9] Melo, E.L., Viel, C.C., Teixeira, C.A.C., Rondon, A.C., 
Silva, D.P., Rodrigues, D.G. and Silva, E.C. 2012. WebNCL: 
a web-based presentation machine for multimedia 
documents. In Proceedings of the 18th Brazilian symposium 
on Multimedia and the web (WebMedia ‘12). ACM, New 
York, NY, USA, 403-410. DOI=10.1145/2382636.2382719 
http://doi.acm.org/10.1145/2382636.2382719 

[10] Piton-Gonçalves, J. and Aluísio, S.M. 2012. An architecture 
for multidimensional computer adaptive test with educational 
purposes. In Proceedings of the 18th Brazilian symposium on 
Multimedia and the web (WebMedia ‘12). ACM, New York, 
NY, USA, 17-24. DOI=10.1145/2382636.2382644 
http://doi.acm.org/10.1145/2382636.2382644 

[11] Santanchè, A., Mota, M., Costa, D., Oliveira, N. and 
Dalforno, C.O. 2009. Componere: component-based in web 
authoring. In Proceedings of the XV Brazilian Symposium on 

Multimedia and the Web (WebMedia ‘09). ACM, New York, 
NY, USA, Article 12, 8 pages. 
DOI=10.1145/1858477.1858489 
http://doi.acm.org/10.1145/1858477.1858489 

[12] Santos, J.A.F., Braga, C. and Muchaluat-Saade, D.C. 2013. 
Automating the analysis of NCL documents with a model-
driven approach. In Proceedings of the 19th Brazilian 
symposium on Multimedia and the web (WebMedia ‘13). 
ACM, New York, NY, USA, 193-200. 
DOI=10.1145/2526188.2526214 
http://doi.acm.org/10.1145/2526188.2526214 

[13] Shrestha, P., de With, P.H.N., Weda, H., Barbieri, M. and 
Aarts, E.H.L. 2010. Automatic mashup generation from 
multiple-camera concert recordings. In Proceedings of the 
international conference on Multimedia (MM ‘10). ACM, 
New York, NY, USA, 541-550. 
DOI=10.1145/1873951.1874023 
http://doi.acm.org/10.1145/1873951.1874023 

[14] Soares, L.F.G., Moreno, M.F., Soares Neto, C.S. and 
Moreno, M.F. 2010. Ginga-NCL: declarative middleware for 
multimedia IPTV services. IEEE Comm. Mag. 48, 6 (June 
2010), 74-81. DOI=10.1109/MCOM.2010.5473867 
http://dx.doi.org/10.1109/MCOM.2010.5473867 

[15] Viel, C.C., Melo, E.L., Pimentel, M.G. and Teixeira, C.A.C. 
2013. Multimedia multi-device educational presentations 
preserved as interactive multi-video objects. In Proceedings 
of the 19th Brazilian symposium on Multimedia and the web 
(WebMedia ‘13). ACM, New York, NY, USA, 51-58. 
DOI=10.1145/2526188.2526211 
http://doi.acm.org/10.1145/2526188.2526211 

 

 


