
Declarative Modelling for Bayesian Inference by Shallow
Embedding

[Work in Progress]

Henrik Nilsson
School of Computer Science

University of Nottingham
Nottingham, UK

nhn@cs.nott.ac.uk

Thomas A. Nielsen
OpenBrain Ltd

London, UK
tomn@openbrain.org

ABSTRACT

A common problem across science and engineering is that as-
pects of models have to be estimated from observed data. An
instance of this familiar to control engineers is system iden-
tification. Bayesian inference is a principled way to estimate
parameters: exploiting Bayes’ theorem, an equational prob-
abilistic model is “inverted”, yielding a probability distri-
bution for the unknown parameters given the observations.
This paper presents Ebba, a declarative language for proba-
bilistic modelling where models can be used both “forwards”
for probabilistic computation and“backwards”for parameter
estimation. The novel aspect of Ebba is its implementation:
a shallow, arrows-based, embedding. This provides a clear
semantical account and ensures that only models that sup-
port estimation can be expressed. As arrow-like notions have
proved useful in modelling dynamical systems, this might
also suggest an approach to an integrated language for mod-
elling dynamical systems and parameter estimation.

Categories and Subject Descriptors

D.1.1 [Programming Techniques]: Applicative (functional)
programming; F.1.2 [Computation by Abstract Devices]:
Probabilistic computation; I.6.2 [Simulation and Model-

ing]: Modeling languages

General Terms

Languages, Theory

Keywords

Modelling, Bayesian inference, shallow embedding, arrows

1. INTRODUCTION
Scientists and engineers are often faced with the situation

that aspects of their mathematical models of physical phe-
nomena and systems are uncertain as they are difficult or

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author. Copyright is held by the owner/author(s).
EOOLT 2014 Oct 10–10 2014, Berlin, Germany
ACM 978-1-4503-2953-8/14/10.
http://dx.doi.org/10.1145/2666202.2666208

impossible to observe directly. These aspects then have to
be inferred, or estimated, from what can be observed. The
uncertainties often concern parameters of the model, but
even the very model could be (largely) unknown, meaning
that the best model from a set of candidates must be found,
or even having to construct a model explaining the observa-
tions from scratch: “black-box” system identification [4].

Bayesian inference is a principled way to estimate pa-
rameters of probabilistic models given observed data [9].
Broadly, by applying Bayes theorem, the probabilistic model
is “inverted”, yielding a probability distribution for the pa-
rameters given the observations. A number of probabilistic
modelling languages that support Bayesian inference exist.
Examples include WinBUGS [5], Stan [10], and Baysig [6].
However, these languages tend to be stand-alone implemen-
tations. This paper investigates the possibility of implement-
ing this type of language through shallow embedding [2, 11],
using Haskell as the host language.

Embedded language implementations are of interest for
a number of reasons. For the language designer and im-
plementer, embedding offers a quick, low-effort approach to
implementation and experimental language design [2]. Fur-
ther, embedding in a general-purpose language automati-
cally provides meta-programming facilities through the host
language, yielding a much more powerful language at no
extra implementation cost and obviating the need for end-
users to learn an additional language for meta-programming.
Integration of components written in a different languages
within a single application is also greatly facilitated in the
case where these language implementations are embedded
in a common host language. Shallow embeddings have their
specific pros and cons compared with deep embeddings [11]:
a driving motivation here is that they offer a direct account
of the semantics of the embedded language.

The starting point for the development in this paper is
Baysig [6], a declarative, Haskell-like, functional language
developed by OpenBrain Ltd that combines the model ex-
pressiveness of BUGS-like languages with general purpose
computing. From the users’ perspective, this is achieved by
introducing a probability monad into a pure, functional lan-
guage enabling probabilistic computations. A monadic value
represents a random variable with some particular proba-
bility distribution, and the basic computation step is sam-
pling of the distribution; i.e., drawing a value from it. In
essence, this is no different from equipping an imperative
language for probabilistic computation by adding a random

number generator, except that the language remains pure
and declarative as effectful computations (here, drawing a
random value) and pure computations are carefully distin-
guished at the type level. Having added random number gen-
eration, generative, probabilistic models can be expressed in
an intuitive and straightforward manner. Baysig allows such
models to be run, generating observables according to the
probability distribution specified by the model. Additionally,
Baysig supports “inverting”models in the manner discussed
above, computing probability distributions for the parame-
ters of the model given actual observations. Basyig models
are thus, in a limited sense, non-causal.

However, for the purpose of Bayesian parameter estima-
tion, Baysig is arguably too powerful as it allows models
to be expressed for which standard estimation techniques
are not applicable. (Again, in essence, this situation is very
similar to what would be the case in an imperative lan-
guage equipped for probabilistic computation.) As will be
explained later, the problem is that a monad is a too gen-
eral notion of computation for this particular purpose, which
raises the question if some other notion of computation might
impose sufficient constraints to guarantee that standard tech-
niques are applicable.

The standard estimation techniques work on models ex-
pressed as finite networks of random variables where the
edges represent conditional dependences. In our setting, a
random variable is represented by a value in the probabil-
ity monad, and a conditional random variables by a func-
tion returning such a monadic value. Through the Kleisli
construction, the latter is an arrow [3]. This suggests that
something like arrows might be an appropriate abstraction
for building “invertible” models, as arrows explicitly relates
inputs to outputs, allowing us to keep track of the network
structure, and as arrows can be constrained to ensure that
the networks are finite.

In this paper, we introduce the language Ebba, short for
Embedded Baysig, that takes an arrow representing a condi-
tional probability distribution as the notion of computation
rather than a monad representing a probability distribution.
The two key contributions of this paper is that this approach
enables:

• shallow embedding of a language for Bayesian inference

• combining probabilistic computation with a general-
purpose language with a static guarantee that stan-
dard methods for Bayesian parameter estimation are
applicable.

(Of course, similarly to solving equations numerically, there
is no general guarantee that estimation actually will suc-
ceed.) While Ebba is still very much work in progress, and
certainly nowhere near a language like Baysig in terms of
capabilities or performance, our initial experience has been
promising. Additionally, we hope that the readers not famil-
iar with the technique of embedding for language implemen-
tation will find the paper interesting as an example what can
be achieved through this technique and why this is useful.

Finally, we note that arrows and arrows-like notions have
also proved useful for representing models of dynamical sys-
tems [7, 8]. While any connection is entirely superficial at
this point, at least this allows us to think about the se-
mantics of modelling languages for dynamical systems and
Bayesian modelling languages using a common framework,

Figure 1: Probabilistic model

which in turn might suggest a way to integrate such lan-
guages, an open research question that has received rel-
atively little attention [4]. However, Baysig does support
stochastic differential equations, and there has been some
work on stochastic differential-algebraic equations [1], which
is an encouraging start.

2. IMPLEMENTATION
Bayes’ theorem is often stated as

P(X |Y) =
P(Y |X)× P(X)

P(Y)

where

• P(X) is the prior probability

• P(Y |X) is the likelihood function

• P(X |Y) is the posterior probability

• P(Y) is the evidence.

Of central importance is that Bayes’ theorem allows con-
ditional probabilities to be turned around. This is exactly
what we need to estimate unknown parameters given obser-
vations and a generative model, i.e., the distribution of the
outcome given the parameters, as can be seen by reformu-
lating Bayes’ theorem as follows:

P(params | data) =
P(data | params)× P(params)

P(data)

Figure 1 shows a typical probabilistic model. The nodes
are random variables, and edges between nodes represent
conditional dependences. In this particular example, A, B
are unobserved parameters, while X and Y are outcomes
that can be observed directly. However, note that Y is con-
ditional on X as well as on the unobservable parameter B.
The (conditional) probability distribution for each variable
(a probability density function (pdf) in case of a continu-
ous random variable, a probability mass function (pmf) in
case of a discrete random variable) is given. In figure 1, the

Figure 2: Estimator for probabilistic model

functions representing the distributions are

P(A) : TA → R

P(B |A) : TA → TB → R

P(X |A) : TA → TX → R

P(Y |B,X) : (TB , TX)→ TY → R

where Tv is the type (domain) of random variable v.
By repeated application of Bayes’ theorem, a function pro-

portional to the sought probability distribution P(A,B |X,Y)
is obtained by the “product” of the distributions of the indi-
vidual nodes partially applied to the observed data. In our
case, given some specific observations x and y of X and Y

respectively, we get the two-argument (a and b) functions:

P(A,B |X, Y) (x, y) (a, b) ∝ P(Y |B,X) (b, x) y
× P(X |A) a x
× P(B |A) b a
× P(A) a

Figure 2 illustrates the situation. The key aspect is that the
edges carrying observed data have been reversed, thus“rout-
ing” observations to individual nodes in the graph where the
given distributions then are partially applied. Given this
function that is proportional to the desired distribution,
algorithms such as Metropolis-Hastings (a Markov Chain
Monte Carlo (MCMC) method) can be used to calculate
approximations to the actual distributions of each unknown
parameter by repeated sampling. Figure 2 thus represents
an estimation process.

As should be clear from this example, the model must be a
finite network for this type of estimation to workThis means
that the static unfolding1of a probabilistic model (program)
for which estimation is desired must be finite.

However, if the notion of computation is a monad, it is
easy to construct models that have infinite unfoldings; e.g.

foo n = do

x ← uniform 0 1
if x < 0.5 then

foo (n + 1)
else . . .

1Taking all paths through the code statically; e.g., both the
“then” and the “else” branch for a conditional.

(a) f ≫ g (b) f &&& g

Figure 3: Arrow combinators

Here, the static unfolding is an infinite tree. A monad is sim-
ply too general as it allows the rest of the computation to
depend on the results of computations thus far. As discussed
in section 1, this was resolved by making the notion of com-
putation be an arrow [3] representing a conditional proba-
bility distribution. Figure 3 shows some arrow combinators,
and without going into details, it should be intuitively clear
how such building blocks can be used to describe networks
of the type shown in figure 1.

The central abstraction is the arrow CP o a b, where CP
stands for “Conditional Probability”, a is “the given”, b “the
outcome”, and o observability. Ignoring the observability,
an object of type CP o TA TB thus represents a conditional
probability distribution P(B |A), where TA is the type of
random variable A and TB the type of variable B.

The observability describes which parts of the given are
observable from the outcome; i.e., for which there exists a
pure function mapping (part of) the outcome to (part of)
the given. Note that observability does not mean “will be
observed”. Observability is determined statically through a
type-level computation, and its role is to determine how ob-
servations are propagated in the network in “reverse mode”,
as illustrated in figure 2. However, the observability also im-
poses static constraints that helps ensuring that the stan-
dard estimation methods are applicable.

As an example, the type signature for arrow composition
in this setting is:

(≫) :: Fusable o2 b
⇒ CP o1 a b → CP o2 b c
→ CP (o1 ≫ o2) a c

Note that this actually is not a standard arrow, but a con-
strained, indexed, generalized arrow. Further, the name ≫

has been reused at the type level for the operation that com-
putes the combined observability of two composed arrows.

3. EXAMPLE: THE LIGHTHOUSE
We conclude the paper by implementing the Lighthouse

Problem, a classic data analysis problem [9]. A lighthouse is
located at some position α along a straight piece of coast-
line on a rock at a distance β out into the sea: see figure
4. The lighthouse emits flashes that are detected along the
shoreline. But due to the nature of the detectors, we only
have the positions along the shore at which flashes have been
detected, not any information about the directions in which
the light flashes were observed. The task is now to deter-
mine the position of the lighthouse given a set of positions
of detected flashes.

An analysis of the problem shows that the flash positions
ought to follow a Cauchy distribution. Interestingly, as the
mean of a Cauchy distribution does not exist, naively try-
ing to at least determine the position α along the shore by
computing the sample mean will not work.

Figure 4: The lighthouse

The following shows how the lighthouse model might be
implemented in Ebba:

lightHouse :: CP U () [Double]
lightHouse = proc () do

α← uniformParam "alpha" (−50) 50−≺ ()
β ← uniformParam "beta" 0 20−≺ ()
xs ← many 10 lightHouseFlash −≺ (α, β)
returnA−≺ xs

Our ignorance of the position of the lighthouse is expressed
by assuming uniformly distributed priors for the parame-
ters. The distribution lightHouseFlash is the aforementioned
Cauchy distribution and is implemented separately. The pa-
rameter 10 to the combinator many is only used in “forward
mode” to generate flashes from the model. In backwards, in-
ference, mode, the static number is ignored and the actual
number is determined from the number of data points.

The code above uses the so called arrow notation that is
available in Haskell. Unfortunately, as described in section 2,
the arrow in Ebba is not a standard arrow. One consequence
of this is that the arrow notation cannot be used. Thus at
present, the model has to be expressed directly in terms of
the arrow combinators:

lightHouse :: CP U () [Double]
lightHouse = (uniformParam "alpha" (−50) 50

&&& uniformParam "beta" 0 20)
≫ many 10 lightHouseFlashes

However, as this is cumbersome, the aim is to implement
support for arrow notation for the Ebba arrow.

To test, a vector of 200 detected flashes was generated at
random from the model for α = 8 and β = 2 (the ground
truth). The parameter distribution given the outcome was
then sampled 100000 times using Metropolis- Hastings (pick-
ing every 10th sample from the Markov chain to reduce cor-
relation between samples). Figure 5 shows the resulting dis-
tribution for β from one run. While the result is a bit noisy,
it is clear that the distance from the shore out to the light-
house rock has been determined fairly accurately, and that
we also get a good idea of how uncertain the result is.

4. ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their

valuable feedback.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Figure 5: Distribution for parameter β

5. REFERENCES
[1] M. Gerdin and J. Sjöberg. Nonlinear stochastic

differential-algebraic equations with application to
particle filtering. In Proceedings of the 45th IEEE
Conference on Decision & Control, San Diego, CA,
USA, Dec. 2006.

[2] P. Hudak. Modular domain specific languages and
tools. In Proceedings of Fifth International Conference
on Software Reuse, pages 134–142, June 1998.

[3] J. Hughes. Generalising monads to arrows. Science of
Computer Programming, 37:67–111, May 2000.

[4] L. Ljung. Perspectives on system identification.
Annual Reviews in Control, 34(1):1–12, Mar. 2010.

[5] D. Lunn, A. Thomas, N. Best, and D. Spiegelhalter.
WinBUGS — a Bayesian modelling framework:
concepts, structure, and extensibility. Statistics and
Computing, 10:325–337, 2000.

[6] T. A. Nielsen. Baysig Reference Manual, 2014.
http://www.bayeshive.com.

[7] H. Nilsson, A. Courtney, and J. Peterson. Functional
reactive programming, continued. In Proceedings of
the 2002 ACM SIGPLAN Haskell Workshop
(Haskell’02), pages 51–64, Pittsburgh, Pennsylvania,
USA, Oct. 2002. ACM Press.

[8] H. Nilsson, J. Peterson, and P. Hudak. Functional
hybrid modeling from an object-oriented perspective.
Simulation News Europe, 17(2):29–38, Sept. 2007.

[9] D. S. Sivia and J. Skilling. Data Analysis: A Bayesian
Tutorial. Oxford University Press, second edition
edition, 2006.

[10] Stan Development Team. Stan Modeling Language
Users Guide and Reference Manual, Version 2.3, 2014.
http://mc-stan.org/.

[11] J. Svenningsson and E. Axelsson. Combining deep and
shallow embedding for EDSL. In Trends in Functional
Programming (TFP) 2012, Revised Selected Papers,
volume 7829 of Lecture Notes in Computer Science,
pages 21–36, 2013.

