
Team-based Access Control (TMAC):
A Primitive for Applying Role-based Access Controls

in Collaborative Environments

Roshan K. Thomas
Odyssey Research Associates

Cornell Business and Technology Park
33 Thornwood Drive

Ithaca, NY 14850- 1350
(607)257-1975

rthomas@oracorp.com

ABSTRACT
In this paper, we introduce the notion of TeaM-based
Access Control (TMAC) as an approach to applying role-
based access control in collaborative environments. Our
focus is on collaborative activity that is best accomplished
through organized teams. Thus, central to the TMAC
approach is the notion of a “team” as an abstraction that
encapsulates a collection of users in specific roles with the
objective of accomplishing a specific task or goal. We were
led to the idea of TMAC when our investigations revealed
two interesting requirements for certain collaborative
environments. The first was the need for a hybrid access
control model that incorporated the advantages of broad,
role-based permissions across object types, yet required
fine-grained, identity-based control on individual users in
certain roles and to individual object instances. The second
was a need to distinguish the passive concept of permission
assignment from the active concept of context-based
permission activation. It remains to be seen whether these
requirements should lead to yet another variation of one or
more models of RBAC, or whether such requirements and
TMAC concepts should form another access control model
layered on top of RBAC. It is hoped the RBAC workshop
will help researchers advance discussions on this issue.

the notion of roles is an enterprise or organizational
concept. As such, RBAC allows us to model security from
an enterprise perspective since we can align security
modeling to the roles and responsibilities in the enterprise.
Second, RBAC is more scaleable than user-based security
specifications since security can be administered as a whole
for all users belonging to a role. This reduces the cost and
administrative overhead associated with fine-grained
security administration at the level of individual users,
objects, and permissions.

In this paper, we introduce the notion of TeaM-based
Access Control (TMAC) as an approach to applying role-
based access control in collaborative environments such as
those involving workflows [l 1, 121. Our focus is on
collaborative activity that is best accomplished through
organized teams. Thus, central to the TMAC approach is
the notion of a “team” as an abstraction that encapsulates a
collection of users in specific roles with the objective of
accomplishing a specific task or goal.

We were led to the formulation of TMAC during the course
of our investigations on a recent DARPA funded research
project [14]. The focus was on security issues for clinical
workflows associated with patient care. Our goal was to
come up with a security paradigm that recognized
collaborations in clinical workflows in order to meet three
objectives. The first was to provide a security environment
that was nonintrusive to clinical staff. The second objective
was to provide very tight, just-in-time permissions so that
only the appropriate clinical staff could get access to a
patient’s records and only when they were providing care
for the patient. The third objective was to design a security
framework that did not add any significant administrative
overhead and was therefore self-administering to a great
extent.

The clinical setting is generally characterized by users with
a diverse set of qualifications and responsibilities that can
naturally be mapped to various roles. As such, it appeared

13

http://crossmark.crossref.org/dialog/?doi=10.1145%2F266741.266748&domain=pdf&date_stamp=1997-11-06

that RBAC was a good candidate to provide access control.
However, closer examination revealed that although RBAC
was a good start, additional notions were necessary to
effectively apply RBAC in a collaborative setting. Our first
observation was the need for a hybrid access control model
that incorporated the advantages of having broad, role-
based permissions across object types, yet required fine-
grained control on individual users in certain roles and on
individual object instances. A second requirement was the
need to recognize the context associated with collaborative
tasks and the ability to apply this context to decisions
regarding permission activation. This can be better
understood by drawing a distinction between active and
passive security models. We consider a passive security

model to be one that primarily serves the function of
maintaining permission assignments, such as in RBAC
where permissions are assigned to roles. An active security

PRIMARY
TEAM

rl Discharged

assigned to a user, it is always assumed to be activated
independent of any other considerations such as context.
For example, this is typically the case with a permission on
an access control list (ACL).

The RBAC96 family of models introduced in [l] supports
the notion of role activations within sessions. This clearly
allows RBAC96 to distinguish permission activation from
permission assignment. Hence one may consider RBAC96
as an active security model. However, the notion of
sessions in RBAC96 does not go far enough in
encompassing the overall context associated with any
collaborative activity.

It is important to point out that our goal in this paper is not
to present a comprehensive or formal model of TMAC.
Doing so would be premature. Rather, our intention is to

f4 transferred back to

1 wards

PRIMARY
TEAM

Gastro
enterology
consultation

CONSULT
TEAMS

transfer
to ecu

Cardiolgy
consultation

PRIMARY
TEAM

Figure 1. An inpatient scenario

model, on the other hand, distinguishes task- and context-
based permission activations from permission assignment.’
In particular, after a permission is assigned, it may be
turned on (activated) and off (deactivated) several times in
accordance with the evolving context associated with
progressing tasks. Only when a permission is activated will
the corresponding operation succeed (i.e., only when a read
permission is activated will the user be able to read a
document). In a passive model, once a permission is

present some preliminary ideas at the workshop to gain
vital feedback that could lead to further advances. It
remains to be seen whether these requirements should lead
to yet another variation of one or more models of RBAC,
or whether such requirements and TMAC concepts should
form another access control model layered on top of
RBAC. It is hoped that the RBAC workshop will help
researchers advance discussions on this issue. If
appropriate, we will publish a more formal model of
TMAC after the conclusion of the workshop.

’ A similar distinction exists in the field of database
management where an active database management system
is one capable of recognizing and reacting to external
conditions and events through mechanisms such as event
monitors, evaluation rules, and triggers. On the other hand,
a passive database is merely an efficient data storage and
retrieval engine.

The rest of this paper is organized as follows. Section 2
discusses how RBAC interacts and meets access control
requirements in collaborative environments calling for
active security. Section 3 discusses TMAC in detail and
Section 4 concludes the paper. Section 5 contains various
references to the literature.

14

2. RBAC and Active Security for
Collaborative Environments
In this section, we motivate the need for active security
models. We begin by illustrating with a clinical workflow
an example of how RBAC interacts with the requirements
for access control in collaborative applications.

2.1 An illustrative Scenario

The workflow scenario begins with a visit to the emergency
room (ER) by a patient who is suffering from pneumonia
(see Figure 1). Upon arrival, the patient is quickly
screened by a triage nurse who determines that the patient
needs to be admitted to the general medicine ward. The
primary team that admitted the patient subsequently
requests a gastroenterology consultation because the patient
is beginning to develop gastrointestinal bleeding. The
gastroenterologist who is consulted decides to investigate
further and proceeds to do an upper GI endoscopy
procedure. While undergoing this procedure the patient has
a heart attack and is immediately transferred to the
coronary care unit where a cardiology team takes over the
care of the patient, becoming the primary team. Eventually
the patient’s heart condition is stabilized and the patient is
transferred back to the general medicine ward. After
spending a few more days in the hospital, the patient
recovers, is discharged, and is told to see his/her primary
care doctor for follow-up care.

At any given time, there exists a primary team that is a
single point of contact for the patient and takes overall
responsibility for the patient’s care. The primary team may,
of course, change during the course of care (such as when
the patient was transferred from the general ward to the
coronary care unit).

We notice the following about this scenario.
. A number of clinical staff (users) was involved in

various roles in providing care at various points in the
workflow. These included general physicians,
specialists such as cardiologists, residents and interns,
nurses, etc.

. The staff was organized into care teams and each team
was associated with a single department or unit in the
organization.

l Care teams were often dynamically formed. For
example, when the gastroenterologist joined the care
team as the result of a request for a gastroenterology
consultation. This dynamic formation can be
distinguished from the case in which a staff member is
preassigned by the scheduling department to be on a
particular team.

From an access control standpoint, we notice the following
requirements:
1.

2.

3.

4.

5.

6.

7.

The permissions a clinical staff member has to clinical
records (documents) should reflect his/her role in
providing care. For example, only the cardiologist may
prescribe a certain drug for cardiac-related illness and
only physicians, not nurses, may order lab tests.
Only members of a patient’s team should be able to get
access to the patient’s records. Thus, although a
physician, P, may have the right to order a lab test by
virtue of the qualifications and responsibilities that
determine his role, P should have the right to do so for
Patient A’s record only when P is part of A’s care
team.
Depending on the workflow, various clinical staff
needs access to patient records at different points in the
overall workflow. Therefore the primary care team in
general wards should be given access to a patient’s
records only after the ER unit has requested transfer of
the patient to one of those wards.
Requirements 1 and 2 above should hold for any staff
member who dynamically joins a team.
When a patient is transferred from one unit to another,
the members of the primary care team of the second
unit should be given access to the records of the patient
(according to their roles) and no one else.
Certain team members may delegate duties and
associated permissions to other team members. Thus a
physician may authorize a resident or nurse to order a
specific lab test or referral for a specific patient. The
resident would, in this situation, would need limited
(probably one-time) permissions to complete this
order, even though under normal circumstances, he/she
would not be able to give the order directly since their
role is not endowed with such privileges.
Once the patient is discharged, all permissions to the
patient’s medical records should be deactivated.

Let us now explore how RBAC can be used to handle the
above requirements. Requirement 1 clearly calls for RBAC
and can indeed be handled by RBAC in a straightforward
manner. However, as we will see later, the exact nature of
permissions in the RBAC model used has certain
ramifications. In other words, are permissions specified on
classes (types) of objects, or are they specified on
individual objects?2 We will come back to this question
later.

Requirement 2 cannot be met completely by RBAC. If we
examine this requirement closely, we see that it has three
parts:

2.1 The type of permissions allowed to the team
members should be determined by their role.

2 Note that RBAC96 leaves this issue of object types vs.
object instances open and flexible.

15

2.2 Permissions should be restricted to individual user
instances of roles belonging to A’s team. Thus in the
role of physician, only patient A’s physician P, and no
other physicians, should be given access to A’s record.

2.3 Permissions should be restricted to specific
instances of objects (records) that pertain to patient A.

We see that requirement 2.1 can be met by RBAC and
benefits from the advantages of RBAC-based approaches.
Most significant is the reduced security administration
costs in medium to large health care settings with hundreds
of users. Requirements 2.2 and 2.3 call for access control to
be specified at the level of individual users and object
instances; unfortunately they cannot be met simultaneously

by RBAC. Note that RBAC with roles being assigned
permissions to individual object instances can meet
requirement 2.1 in isolation. However, specifying
permissions at the level of individual objects adds to
security administration overhead, confusion, and error--
precisely the problem RBAC is trying to avoid.[2]. In
summary, requirement 2 calls for a hybrid model of access
control that incorporates aspects of RBAC as well as user
identity and object-based access control. In other words, we
want RBAC-based permission assignment on object types
at an enterprise level and yet able to activate and control
permissions on individual users and object instances at a
later time.

Requirement 3 calls for the collective runtime activation of
permissions for a set of users (in various roles) in a
coordinated fashion and in a manner that can handle
requirements such as 2.2 and 2.3. Permission activation is
possible in RBAC96 with sessions. However, a session in
RBAC96 is a concept that is bound to a single user and
allows the user to activate the permissions of a subset of
roles to which he/she belongs. To meet requirement 3, we
need an abstraction that encapsulates specific instances of
various roles. This is precisely what the notion of a team
does in TMAC, and in some ways can be seen as a logical
extension of the session concept to multiple users. We will
discuss this in more detail in the next section.

Requirement 5 calls for permission activation to progress
from one team to another for a specific patient. Thus the
progression of permission activations would have to
maintain some sort of object context that enables instances
of roles to point to the records of a specific patient. As we
discussed for requirement 2, this is not very straightforward
with RBAC.

Requirement 6 calls for the ability to delegate a permission
to a specific instance of a role. This essentially means that a
permission needs to be assigned and activated for the role
instance. Further, this permission has to be on an object
instance (i.e., the patient’s record) and not on an object

type. It is important to note that this cannot be
accomplished in RBAC by redefining a role to have the
additional delegated permission. Why? Because doing SO

would give the additional permission to all instances of the
role.

Finally, requirement 7 calls for deactivation of all
permissions that various team members may hold on a
patient’s record. This again would not be possible in typical
RBAC models because if we remove a permission from a
role in RBAC, all users (instances) in this role will lose this
permission. If such a permission is defined at the
granularity of an object type (class), then all users in this
role will lose this permission to all instances of objects in
the system of this object type. Neither of these options
would be satisfactory as either one would mean a patient’s
discharge would have a ripple effect resulting in all
physicians being unable to access relevant medical records.

In summary, the above scenario would require role-based
permission assignment for users and object types, and
team-based activation of permissions for individual users
and object instances. In the next section, we will discuss
how TMAC can be used to accomplish both of these goals.

Although the example given above involves clinical
workflows, we believe the same access control issues arise
in other environments and applications involving
collaboration among groups of users. Examples include
collaborative authoring, computer-aided design
(CAD/CAM), etc., where teams exchange document and
designs while working towards a goal.

2.2 Active vs. Passive Security
In this subsection we briefly discuss active vs. passive
security models. From an access control standpoint, we can
consider the majority of well-known models to be passive
ones. These include typical subject-object models for
access control, which are often implemented using access
control lists (ACLs) or access control matrices [7, 81, as
well as lattice-based access controls such as the Bell-
LaPadula Model [6]. These models do not distinguish
between permission assignment and activation, and further,
are not capable of representing or considering any levels of
context when processing an access operation on an object.
In these models, some basic definitions (such as a
specification of which subject can access which object) are
stored and access control requests are validated against
these definitions. However, these definitions represent
independent and primitive access control information
distanced both from application logic as well as from any
emerging context associated with ongoing tasks, work
units, and processes.

16

More recently, some work has surfaced that addresses the
need for active security models. These include task-based
authorization controls (TBAC) [3, 4, 51, which are used to
manage authorizations that encapsulate a group of related
permissions as well as a workflow authorization model
reported in [9]. These models consider the overall context
associated with tasks before activating permissions. We
expect active security concepts to be an important area of
research and believe they will influence the evolution of
RBAC.

3. Team-based Access Control
The workflow example presented earlier surfaced two key
requirements for access control in collaborative activities.

Rl. The need for role-based, scaleable permission
assignment as in RBAC.
R2. The need for fine-grained, run-time permission
activation at the level of individual users and objects.

Our basic premise is that RBAC, as we understand it today,
cannot be used to enforce these requirements
simultaneously. This is because if (Rl) above is enforced,
then we lose the flexibility required to meet (R2).
Enforcing (R2) in isolation does not require RBAC, but we
lose the scaleability and administration benefits of RBAC.

Thus the challenge is to come up with an access control
approach where (RI) and (R2) can be met concurrently. To
do this, we need the following:
. 1. An abstraction to encompass and model a set of

users, and the roles these users belong to.
. 2. Some recorded memory of the overall collaboration

context for a set of users.

In RBAC models, the only group of users recognized by

the model is the one belonging to the same role. This
limitation was what initially led us to the notion of a team
as one that models a set of users in various roles. Once we
stumbled on the idea of a team, we observed that a team in
an enterprise implicitly carries with it a collaboration
context that contains information about the overall mission
and task to be accomplished. From an access control
standpoint, the collaboration context of a team should
contain two pieces of vital information: (1) user context,
i.e., the specific users comprising a team at any given
moment (2) object context, i.e., the set of object instances
required by the team to accomplish its task. Hence, if we
know the basic structure of a team in terms of its various
roles, we can meet requirement Rl above. If we know the
collaboration context, we can meet R2.

We can now informally discuss the main ideas for a team-
based access control approach. A team consists of the
following:
. A team name, t.
. A set of team members/users, TU.
. A set of team roles, TR, that restricts the roles which

members of the team can belong to.
TR E R, where R is the total set of roles in the
information system.

. A special role called team head (h), where h c TR..
Only one user can be the team head at any given time.

. A set of object types, OT.

. A set of object instances, 0.

. A set of team permissions TP, defined across TR and
OT, i.e., TP c TR x OT

. A collaboration context that consists of the following
two components.

+ A user context (UC), where UC : TR x TU
+ An object context (OC), where OC : OT x 0

Team permissions

Team members

Object instances

Figure 2. Illustrating concepts in team-based access control

17

Figure 2 illustrates the main concepts in TMAC
graphically.

The basic idea in TMAC is to use RBAC to define a set of
permissions P across the domains of R and OT. Individual
teams of the same structure (type/class) will encompass the
same subset of roles, TR of R, and will thus inherit the
same subset TP of P. However, TMAC calls for the run
time binding of the TP for each team to the sets TU and 0
of the team. This allows run-time activation of permissions
at the level of individual user and objects.

From an operational and implementation standpoint,
TMAC should support the following primitives to enable
access control on the team as a whole:
. User-assign (user, team): assigns a user to a team.
. User-deassign (user, team): removes a user from a

team.
. Team-activate(team): This binds the team permissions

to the team members and the objects they need (TU
and 0).

. Team-deactivate (team): This deactivates the
permissions for the entire team.

In our clinical workflow scenario, these primitives can be
used to activate permissions when a patient is transferred to
a new team for care, and to deactivate permissions to the
patient’s record when the patient is discharged from the
hospital and exits a workflow instance. In many
applications, it may be necessary to activate and deactivate
permissions on a user-by-user basis. In this case, similar
primitives, User-activate and User-deactivate, need to be
supported.

In our initial discussion, we mentioned the need for a
security framework that was self-administering, to a great
extent, in order to reduce security administration overhead.
In other words, as teams are collaborating and as the
workflow progresses, permission assignment and
deassignment, as well as activation and deactivation,
should be achieved without the manual intervention of a
human security administrator. A system requiring manual
intervention to support active security controls will be
error-prone, inefficient, and will be rejected by any
enterprise.

TMAC can be made self-administering by trapping basic
calls issued by the host information system to assign and
deassign team members, as well as by trapping at run-time
when workflow instances are invoked. These can then be
synchronized with the user assignment and activation
primitives to automate security administration. To preserve
access control to individual objects across teams, the object
context can be passed from one team to another.

4. Conclusions
TMAC allows us to formulate a security model that
dovetails the team-based nature of access and work in
collaborative settings. TMAC has the advantage of being
able to offer the administrative and modeling advantages of
RBAC and yet provide fine-grained control over
permission activation to individual users and objects. By
distinguishing permission assignment from context-based,
run-time permission activation, TMAC can be considered
an active model of access control. As such, it is able to
provide just-in-time permissions and support to a higher
degree the principle of least privilege in comparison to
passive security models.

It remains to be seen whether the requirements for access
control highlighted in this paper should lead to yet another
variation of one or more models of RBAC or whether such
requirements and TMAC concepts should belong to an
access control model layered on top of RBAC. We are
hoping the workshop will shed light into this matter and
that it will also help us assess the practical significance of
the concepts in TMAC.

Acknowledgement

This research was partly funded by the Defense Research
Projects Agency Small Business Innovation Research
(SBIR) program and under contract # DAAHOI-96-C-
R093. We are grateful to Teresa Lunt and Gary Koob for
their encouragement of this work.

5. References

[1] R.S. Sandhu. Rationale for the RBAC96 Family of
Access Control Models. In Proceedings of the First
ACM Workshop on Role-based Access Control,
Gaithersburg, MD, Nov. 30 - Dec. 1, 1995, ACM .

[21 V. Gligor. Characteristics of Role-based Access
Control. In Proceedings of the First ACM Workshop
on Role-based Access Control, Gaithersburg, MD,
Nov. 30 - Dec. 1, 1995, ACM.

[31 R.K. Thomas and R.S. Sandhu. Towards a Task-based
Paradigm for Flexible and Adaptable Access Control
in Distributed Applications. In proceedings of the
Second New Security Paradigms Workshop, Little
Compton, Rhode Island, IEEE Press, 1993.

[41 R.K. Thomas and R.S. Sandhu. Conceptual
Foundations for A Model of Task-based
Authorizations. In proceedings of the IEEE Computer
Security Foundations Workshop, New Hampshire,
IEEE Press, 1994.

[51 R.K. Thomas and R.S. Sandhu. Task-based
Authorization Controls (TBAC): Models for Active
and Enterprise-oriented Authorization Management.

18

To appear in the 1997 Proceedings of the IFIP WG
11.3 Workshop on Database Security.

[61 D.E. Bell and L.J. LaPadula. Secure Computer
Systems: Unified Exposition and Multics
Interpretation. EDS-TR-75-306, Mitre Corporation,
Bedford, MA, March 1976.

[71 M.H. Harrison, W.L. Ruzzo, and J.D. Ullman.
Protection in Operating Systems. Communications of
the ACM, 19(8), pages 461-471, 1976.

[81 R.S. Sandhu. The Typed Access Control Model. In
proceedings of the IEEE Symposium on Research in
Security and Privacy, Oakland, CA, May 1992, pages
122-136.

[91 V. Atluri and W. Huang. An Authorization Model for
Workflows. In Proceedings of the Fourth European
Symposium on Research in Computer Security,
Rome, Italy, September pages 25-27, 1996.

[lo] R.S. Sandhu. Transaction Control Expressions for
Separation of Duties In proceedings of the Fourth
Computer Security Applications Conference, pages
282-286, 1988.

[l l] M. Rusinkiewicz and A. Sheth. Specification and
Execution of Transactional Workflows, In Modern
Database Systems: The Object Model,
Interoperability, and Beyond. W. Kim, Ed., Addison-
Wesley I ACM Press, 1994.

[12] D. Georgakopoulos, M. Hornick, and A. Sheth. An
Overview of Workflow Management: From Process
Modeling to Workflow Automation Infrastructure,
Distributed, and Parallel Databases. Vol. 3, pages
119-153, 1995.

[131 M. Abrams, K. Eggers, L. LaPadula, and I. Olson. A
Generalized Framework for Access Control: An
Informal Description. In proceedings of the 13’h
NIST-NCSC National Computer Security framework,
1990, pages 135-143.

[14] R. Thomas, Security in Workflow Processes:
Dynamic Security Models for Clinical Workflows,
Odyssey Research Associates Technical report, TM
97-004.

19

