
HAL Id: hal-01240242
https://hal.science/hal-01240242

Submitted on 10 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Encoding the State of Integrated Circuits: a Proactive
and Reactive Protection against Hardware Trojans

Horses
Xuan Thuy Ngo, Sylvain Guilley, Shivam Bhasin, Jean-Luc Danger, Zakaria

Najm

To cite this version:
Xuan Thuy Ngo, Sylvain Guilley, Shivam Bhasin, Jean-Luc Danger, Zakaria Najm. Encoding
the State of Integrated Circuits: a Proactive and Reactive Protection against Hardware Trojans
Horses. Workshop on Embedded Systems Security (WESS 2014), Oct 2014, New Delhi, India.
�10.1145/2668322.2668329�. �hal-01240242�

https://hal.science/hal-01240242
https://hal.archives-ouvertes.fr


Encoding the State of Integrated Circuits: a Proactive and
Reactive Protection against Hardware Trojans Horses

Xuan Thuy Ngo 1
∗

Sylvain Guilley 1,2 Shivam Bhasin 1

Jean-Luc Danger 1,2 Zakaria Najm 1

1 Institut MINES-TELECOM, TELECOM ParisTech,
CNRS LTCI, “Laboratoire Traitement et Communication de l’Information” (UMR 5141),

Department COMELEC, 46 rue Barrault,
75 634 PARIS Cedex 13, FRANCE.

2 Secure-IC S.A.S., 80 avenue des Buttes de Coësmes,
35 700 Rennes, FRANCE.

ABSTRACT
Hardware Trojan Horses (HTH) are a serious threat to semicon-
ductor industry with significant economic impact. However, most
of the research in HTH focuses on detection. We propose the con-
cept of “encoded circuit”, as a technique to protect HTH insertion.
Encoded circuit is based on the theory of codes. It encodes the in-
ternal state with a chosen code of security parameter d, such that
knowledge of less than d bits of the encoded state reveals no infor-
mation about the actual state. This parameter stems from a similar
notion introduced by Ishai, Sahai and Wagner at CRYPTO 2003
for the prevention of probing attacks. Usually d < 10 in probing
attacks, whereas HTH are able to connect to more than 10 nets. In
this paper, we discuss the theory behind “encoded circuits” and its
practical demonstration on various HDL circuits.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: SPECIAL PURPOSE
AND APPLICATION-BASED SYSTEMS—Real-time and embed-
ded systems; C.3 [Computer Systems Organization]: SPECIAL
PURPOSE AND APPLICATION-BASED SYSTEMS—Smartcards

Keywords
Private circuits, encoding, Hardware Trojan Horses (HTH), prob-
ing attacks, physical attacks, Quadratic residue (QR) codes, Linear
Complementary Dual (LCD) codes, minimal distance.

1. INTRODUCTION
Globalisation and outsourcing have been a trend in the semicon-
ductor industry to overcome increasing production cost. However,

∗This project has been funded by the French Government, under
grant FUI #14 HOMERE 959 (Hardware trOjans : Menaces et
robustEsse des ciRcuits intEgrés).

this cost-saving has also brought along the problem of Hardware
Trojan Horses (HTH). HTH is a malicious module inserted in the
original Integrated Circuit (IC) during its design or fabrication pro-
cess. It can be inserted to perform various malicious task like De-
nial of Service [1], leakage of sensible data via circuit outputs [1],
reduction of the system performance [2], etc. The problem of HTH
is very serious for critical application like finance, military, health,
etc. Moreover, HTH infected commercial ICs will impact the good
will of the company which would lead in reduction of market share.
For instance, a HTH recently reported as an alleged backdoor in
a military-grade commercial FPGA [3], which allowed tampering
with the security features of the FPGA. HTH can be considered
more harmful than its software counterpart, because once the IC
is fabricated, the HTH cannot be removed. Therefore HTH is cur-
rently a hot topic amongst researchers.

The main axis of research on HTH focuses on detection of ma-
licious hardware. A Trojan can be introduced at any design step
right from the Register Transfer Level (RTL) source code to litho-
graphic masks fabrication. The detection of HTH is based on sev-
eral techniques like hardware software co-design [4], reconfigur-
able logic [5], logic testing [6, 7] and side-channel analysis [8].

The second and the less popular axis of HTH research is prevention
techniques. Previous works on HTH prevention are mainly based
on code obfuscation techniques [6,9]. In this paper, we propose the
concept of “encoded circuits”, a circuit obfuscation method using
encoder/decoder to prevent HTH insertions. Encoded circuits are
realised by encoding all internal registers (sequential part) of the
target design with a binary code and followed by addition (XOR)
of random masks in a supplementary code. Once the sequential
part is encoded, the combinatorial part can be easily obfuscated
by exploiting the “flatten” option of the netlist synthesis tool. It
merges the logic part of encoder/decoder circuit with the combina-
tional part of the target circuit. Thus, the state is totally encoded
and the structure of original combimatorial part is totally lost when
synthesized together with the enocder and decoder circuit. After
encoding, the complexity of the design increases which obfuscates
the real functionality of the IC.

Our technique is closely based on the private circuits of Ishai, Sa-
hai and Wagner presented at CRYPTO 2003 [10]. Private circuits
were proposed to protect against probing attacks which ensures no



Target Circuit
CLK

CLKmodified

S1
S2

PayloadTrigger
EN

Figure 1: An example of HTH

information leakage with ≤ d probes, d being a security parameter.
In this paper, we also use a security parameter d, which is the dual
distance of code used to encode the IC. It ensures that HTH con-
nected to less than d registers will not be effective. By choosing a
bigger d, one can prevent IC from HTH insertion. In this paper, we
provide the rationale behind the encoded circuits. We first describe
the theoretical background of encoded circuits based on theory of
codes. Thereafter, we detail the techniques to choose and gener-
ate codes for encoding a circuit. Practical application of encoded
circuits is demonstrated on an 8-bit counter, an AES sbox as well
as a simple microprocessor. The methodology to encode a simple
microprocessor is also discussed. We show that the technique can
be applied to any circuit to prevent HTH insertion.

The rest of this paper is structured as follows. Sec. 2 gives the state-
of-the-art in HTH prevention and talks about the motivation of our
work. Sec. 3 present the rationale behind encoded circuits followed
by simple case studies in Sec. 4. Some other aspects of encoded
circuits are discussed in Sec. 5. Finally we conclude in Sec. 6,
and give some perspectives. For a better readability, technical data
appear in appendix.

2. PRELIMINARIES AND CONCEPT
A HTH can be globally seen as a composition of two part:

• Trigger: which reads the target circuit state (to trigger its
malicious function).

• Payload: which writes on the target circuit state (to realise
its malicious function).

A basic example explaining the principle of HTH is shown in Fig. 1.
The trigger of the HTH is a basic OR gate and the payload is an
AND gate. If S 1 = 0 and S 2 = 0, the HTH is activated, which
disables the circuit clock CLK to stop the target circuit. One can
observe from Fig. 1 that to compute the good trigger value, an at-
tacker must have knowledge of the circuit. In a complex circuit,
a trigger must be connected to a number of nets (or I/O pads) in
order to be controllable and efficient. If the HTH depends on very
few signals, then the HTH activation rate increases, which makes it
detectable. Therefore HTH act as a “probing station” which is built
into the circuit. In [10], Ishai et al. have dealt with a similar prob-
lem to propose private circuits It consists in encoding and masking
all gates of the sensitive circuit.

It is a known fact, that registers are much easier to observe in an
IC layout as compared to other standard gates [11], owing to their
bigger size and prominent structure. Thanks to this observation, we
propose to apply the concept of “private circuits” only on internal
registers. This protection is initially designed to resist the theft of

Original circuit

merging
Combinational

merging
Combinational

Encoded circuit

Combi

6=?

alarm

RNG

Combi

Combi Combi
k k

O
ri
gi
n
al

S
ta
te outputs

inputs

k n

n z
x

n− kn− k

E
n
co
d
ed

S
ta
te

KH

random numbers

encoder
Random Random

decoder

n

J

in
p
u
ts

Decoder
J

k ou
tp
u
ts

y

Decoder Encoder
G

Figure 2: Architecture of “Encoded Circuit”, exemplified on a
canonical Moore machine.

probed signals. Our encoding method goes beyond, insofar as it
shall resist against more connection than a mere probing attack.
Another specificity of our protection is that it impedes both the
trigger and payload parts of a supposedly inserted HTH.

The basic principle of encoded circuit is summarised in Fig. 2. It
shows the transformation of a simple digital circuit to an encoded
circuit in order to protect against HTH insertion. The HTH inser-
tion scenario considered in this paper is of an untrusted founder. An
untrusted founder (attacker) can derive the original design (with the
list of sensitive nets) by reverse engineering the IC layout (GDSII
file). Once these sensitive nets and registers are identified, inser-
tion of HTH is straightforward. Using encoded circuit, all registers
are encoded and masked. Thus even if the attacker extracts the list
of sensitive registers, their dynamic values are randomly encoded
which prevents the attacker from inserting HTH. Alternatively, an
attacker can design a HTH exploiting sensitive nets only. However,
with encoded circuits, we show that combinational nets are modi-
fied while re-synthesising and merging parts of the original circuit
with the encoder/decoder system. Thus protecting the entire circuit.

3. ENCODED CIRCUITS
In this section, we detail the rationale of encoded circuits. We first
describe the basic principle of encoded circuits. Next, we define se-
curity objective which determines the choice of codes for encoded
circuits. This is followed by some examples and demonstration for
construction of codes.

3.1 Basic Principle
The principle behind encoded circuit is very basic. Every IC is
composed of two distinct kinds of logic cells: sequential (D-flip-
flop or register) and combinational. In practice, it is known that
registers are easily recognisable, because they are much larger than
combinational gates. For instance, in the 130 nm technology of
STMicroelectronics, the size of a D-flip-flop (in short: DFF) varies
from 30 to 50 µm2 while INVERTER (IVLLX05), NOR (NR2LL)
and NAND (ND2LL) size are respectively 4.03, 6.05, 6.05 µm2.
A section of a layout is shown in Fig. 3 containing both combina-
torial and sequential logic. The yellow blocks in Fig. 3 are DFF
or sequential logic and the red blocks are combinatorial gates. We
can easily notice that DFF are larger than combinatorial logic gates.
DFF gates can be recognised directly in an IC. It can be seen Fig. 4



Figure 3: Floorplan of an IC with D-flip-flops (in yellow).

Figure 4: Layout of an ASIC with D-flip-flops [11] (in gray).

that DFF stand out clearly from combinatorial logic. Another mo-
tivation for probing the DFF output is that the signals at DFF out-
put are synchronised. Therefore, it is easier for an attacker to insert
HTH using the inputs or outputs of these registers as activation con-
ditions. This justifies why we concentrate mainly on the protection
of sequential logic. By using the encoding system, we can trans-
form the original data of all sequential logic cells to the encoded
data, hence protecting them.

One can encode a circuit, with a state x (set of all sequential re-
sources) of k bits, we need:

• a code C of length n, which is applied on x. For the sake of
simplicity, we assume that C is a linear Boolean code.

• some random numbers y of (n−k) bits, which serve as a pool
of entropy to mask the encoded state. The masks are also
encoded, by a code D, of size (n − k) and dimension n. As a
result, the encoded and masked state z is the exclusive-or of
one code word of C and D each.

If C and D are supplementary, the encoded x and y can be retrieved
from z. We denote by G and H the generator matrices of C and D.
It is thus required that the n × n square matrix

(G
H
)

be of full rank n.

The decoding logic allows to recover x from z. This operation is
also a linear function, that maps elements of Fn

2 to Fk
2 (i.e. not

injective). The decoding function generator matrix J has a sim-
ple expression if C and D are orthogonal. Indeed, in this case, H

is the parity check matrix of code C, i.e., GHT = 0, or equiva-
lently, HGT = 0, and there exists an orthogonal projection. It can
be checked that J = GT(GGT)−1. If z = xG ⊕ yH, then zGT =

xGGT ⊕ yHGT = x(GGT), which simplifies to zGT(GGT)−1 = x.

Next, we can also check the random numbers which belong to the
code D. If the state z is corrupted by some means, that would also
impact x and y. Therefore, it is relevant to recover y from z, which
can be done by a linear function of generator matrix K. If D = C⊥,
there is also an orthogonal projection: K = HT(HHT)−1.

The encoding / decoding functions are summarised in Fig. 5. Un-
less otherwise mentioned, we will assume in the sequel that C and
D are orthogonal. We denote supplementary dual codes, such as C,
“LCD” (for “Linear Complementary Dual”). This term has been
coined by Massey in [12]. Notice that D is LCD if and only if C is
also LCD. A good overview of the structure of encoded circuits is
illustrated in Fig. 2.

n bits

encoded and masked state: z = xG⊕ yH

n− k bitsk bits

useful information: x mask: y

HG

K

J

(optional)

useful information: x mask: y

Figure 5: Principle of “circuit encoding”

3.2 Security objective
We intend to apply the notion of private circuits, discussed by Ishai,
Sahai and Wagner at CRYPTO 2003 (see [10]). They introduce a
security metric d. Private circuits are designed to protect against
probing attacks; such that probing < d probes reveals no informa-
tion about the real data manipulated by the circuit. The complexity
of this construction is quadratic in d. For a circuit with k gates, the
size of the private circuit is of the order O(k · (d + 1)2).

In our construction, we focus on the encoding of the k registers. A
register is easy to protect as its transformation function is “iden-



tity”, which is linear. This is why linear codes are suitable in our
case, which will further result in lower complexity of the protected
circuit. Specifically, we also want to ensure that the knowledge of
d−1 (or less) bits of the encoded & masked state z does not disclose
any information on x. This is feasible, as stated in the following
proposition.

Proposition 3.1. The encoding of x as z = xG⊕yH, where y is a
uniformly distributed mask in Fn−k

2 does not reveal any information
on x provided up to d − 1 bits of z are known, if and only if C is of
minimal distance d.

Proof. The mask y is applied additively on the encoded state xG
as yH. The property that is required is that any tuple of size strictly
less than d be balanced. As y is assumed uniformly distributed
in Fn−k

2 , the distribution of any such tuple is unchanged (hence uni-
form) if and only if the code D is of dual distance d (or more). Now,
the dual distance of a code is the minimal distance of its dual [13].
Therefore, as C and D are dual, this is equivalent to require that C
has minimal distance d.

The encoded circuit can also detect a fault injection attack (FIA).
The fault can be introduced by a external setup or internal HTH.
The detection of faults and protection against FIA is based on the
following proposition.

Proposition 3.2. Let us consider the encoding of x as z = xG ⊕
yH, where y is a uniformly distributed mask in Fn−k

2 . Any fault on z
of Hamming weight strictly smaller than d can be detected.

Proof. The state z is modified into z⊕ε, for some random ε ∈ Fn
2.

By supplementarity of C and D, there exists a unique ordered pair
(e, f ) ∈ Fk

2 × F
n−k
2 such that ε = eG ⊕ f H. A detection strategy

consists in checking whether or not the mask has been altered, i.e.,
zK ?

= y. This verification does not jeopardise the security model
of Prop. 3.1 since x is not uncovered, only y. By linearity of the
fault injection, the equality (z ⊕ ε)K = y happens if and only if
εK = 0 ⇐⇒ f = 0, i.e., ε ∈ C. As ε = 0 is pointless (since
without observable effect), harmful (since undetected) faults only
happen if and only if ε ∈ C\{0}. In particular, a necessary condition
for the fault to be undetected is that the Hamming weight of ε be
greater than or equal to the minimal distance d of code C.

Now, given that the minimal distance d of C is a security param-
eter, it is set as high as possible. Therefore, choosing a C LCD
of greatest possible minimal distance simultaneously improves the
resistance against HTH insertion and FIA. One specificity of our
protection is that we expect to have the security parameter d quite
large, for instance d ≈ 32. Indeed, our protection aims at prevent-
ing the attacker from inserting small HTH, that are stealthy, hence
difficult to detect if inserted. However, a HTH that would connect
to 32 DFFs (or more) would be easy to detect by various means, as
discussed in the introduction, such as side-channel, visual inspec-
tion [14], etc.

We notice that a value of d around 32 is larger that the values d used
in [10], where we recall that the objective is to refrain an attacker
from probing the circuit. Usually, probing is delicate, and starting
from a few probe tips (especially very close one from each other),

it begins to be difficult to contact the wires without making short
circuits. Therefore, our focus on registers is also motivated by the
potential increase of security parameter d.

3.3 Encoding system examples
In this subsection, we show a small example of LCD code with
k = 8. We consider a code C of parameters [16, 8, 5], where 5 is
the minimal dual-distance which is the security parameter d. It has
shorter length than the shortest QR LCD code (a [17, 9, 5] code)
with a dimension greater or equal to k = 8. The matrices G, H, and
J are given in Appendix A.

Such a family of codes prevent insertion of HTH that would con-
nect to d−1 or 4 registers. For instance, it would deny the insertion
of HTH such as our initial example (Fig. 1). But we concur that
d = 5 is obviously a very small security parameter: most HTH
would connect to more DFFs, in order make the triggering condi-
tion more furtive. Thus, we would prefer d ≈ 32, for instance.

There are two classical solutions to increase the code minimal dis-
tance:

1. At fixed k, increase n. However, this is not really scalable for
small k, such as k = 8. Indeed, by the Singleton bound, a
linear code of parameters [n, k, d] satisfies n ≥ k + d − 1.

2. At fixed d, increase k (which will cause n to grow too). It is
possible to increase k by considering not only small groups of
registers, e.g. bytes, but by merging registers. For instance,
in a CPU, several registers can be masked altogether. This
allows to grow k. In the sequel, we will assume that k is
actually the number of all the registers of the circuit. So, if
k � d, the Singleton bound is more favourable.

In the next subsection, we exhibit constructs that allow reaching
large values of d. (Notice however that our solution is far from the
Singleton bound: n is closer to 2k than to k + d − 1; but there is
venue for finding LCD codes with larger rates k/n.)

3.4 Real constructions of LCD codes of large
dimension

An important selection criterion is the existence of a bound on the
minimal distance, that otherwise cannot be computed by testing all
the possible Hamming distances between pairs of different code
words since our codes can have lengths of the order of one to sev-
eral hundreds [15].

For large dimensions k, there is no precomputed table (for instance,
the tables of Grassl [16] are provided for k ≤ 256 for binary codes).
Fortunately, cyclic codes have a minoration on their minimal dis-
tance, via the BCH bound. The definition of a cyclic code is re-
called below:

Definition 3.1 (Cyclic code). A linear code C of length n over
a finite field Fq is cyclic if it is stable by any circular rotation.

In the sequel, we consider binary codes (q = 2). The condition for
being LCD is rather simple and not difficult to achieve. Moreover,
a potentially stronger lower bound on the minimum distance exists



for the sub-class of quadratic-residue (QR) codes1, which can also
be LCD.

We give here, for large k, our results based on QR codes, that is
one option that works, but certainly not the best. But as we wanted
to exhibit a proof-of-concept (PoC), this is good enough to serve
our purpose. A QR code has for length a prime number and has
a minimal distance d at least

√
n. A binary QR code has length n

congruent with ±1 modulo 8 and is LCD if the length is congruent
with 1 modulo 8 [13].

We implemented the constructions of codes in SAGE. We proceed
in two steps: First algorithm (see listing. 1) finds the minimal length
n suitable for a QR LCD code. A second algorithm (see listing. 2)
computes the four generating matrices G, H, J and K.

import math, itertools

def is_prime(n):
" " " Checks whe ther n i s pr ime or n o t " " "
if n % 2 == 0 and n > 2:
return False

return all(n % i for i in \
range(3, int(math.sqrt(n)) + 1, 2))

def get_length(k):
for dim in itertools.count( k, 1 ):
for pm1 in [−1, +1]:

n = 2∗dim + pm1
if is_prime(n) and (n%8) == 1:
print "Parameters of the "+\

"shortest QR code for dimension "+\
">= {k}: [{n},{dim},>={d}]".format(

n=n,
k=k,
dim=dim,
d=int(math.ceil(math.sqrt(n))) )

return n

Listing 1: Search for the parameters of a QR LCD code

def gen_matrices(n):
C = QuadraticResidueCode(n, GF(2))
D = C.dual_code()

G = C.gen_mat()
H = D.gen_mat()
J = G.transpose() ∗ (G ∗ G.transpose())^−1
K = H.transpose() ∗ (H ∗ H.transpose())^−1

# T e s t i n g s u p p l e m e n t a r i t y and d u a l i t y
# o f codes C & D ( v a l i d by d e s i g n )
if rank(block_matrix([[G],[H]]))!=G.ncols()\
or G ∗ H.transpose()!=0:
raise("Logic error: The code is not LCD")

return [ G, H, J, K ]

Listing 2: Generation of matrices G, H, J, K

1Not to be confused with the two-dimensional bar code, also nick-
named “QR code” (abbreviated from Quick Response Code).

H

GJ Test Circuit

random numbers

8

8

16

state

encoded

16inputs

encoded

state

Figure 6: Case study of an 8-bit counter and an 8 × 8 Sbox

It can be seen that the code obtained with listing 2 has dimension
greater than k. But in practice, this dimension is only slightly larger
than k (a few more bits, if any). Those can, for instance, be fed as
constant 0 along with the k bits that come from the state register. Or,
still better, they can be fed by random numbers, which contributes
to the overall noise of the countermeasure.

4. CASE STUDIES
The rationale behind encoded circuits was discussed in the previous
sections. In this section, we show practical application of encoded
circuits on some basic designs. As previously shown, the sequential
part of a circuit can be well encoded using a LCD code. Neverthe-
less, it is still possible to insert a HTH. An attacker that can isolate
all blocks of an encoded IC (i.e., combinational part, encoder data
G, encoder noise H and decoder data J), can bypass the prevention
by inserting a HTH which probes directly at the inputs of encoder
block (or at the output of decoder block, etc.). This is all the more
possible as the IC is synthesised (i.e., generated) hierarchically. Of
course, if the combinational logic is linear (of k × k matrix L), then
the encoded logic z 7→ zJLG completely dissolves L into a new
linear transformation of n× n matrix L′ = JLG. We demonstrate in
this section that using a flattening option for the netlist synthesis,
we manage to merge these blocks together (combinational part, en-
coder for data, encoder for noise and decoder for data). Therefore it
becomes a challenge for an attacker to reverse the real functionality
of the IC. In the rest, we firstly show that the netlist synthesis tool
merges and optimises these blocks on a simple counter circuit and a
highly non-linear circuit. The non-linear circuit is the Substitution
Box of the Advanced Encryption Standard (AES).

4.1 Case Study I: 8-bit counter
For the first case, the goal is to demonstrate that the combinational
logic part of a counter circuit will merge with logic parts of the
encoder/decoder circuit. This will result in protection of the com-
binational logic. To demonstrate the principle, we choose a simple
8-bit counter as test circuit written in VHDL.

The encoded circuit is composed of 5 different parts:

1. Test circuit: 8-bit counter.

2. Encoder data circuit: matrix G of size 8 × 16 (Eq. (1)) is
used to encode data.

3. Encoder noise circuit: matrix H of size 8 × 16 (Eq. (2)) is
used to mask the encoded data.

4. Decoder data circuit: matrix J = GT (GGT )−1 of size 16 × 8
(Eq. (3)) is used to decode data.

5. XOR gates: n two-input XORs gates used to add noise to
encoded data.



Table 1: Synthesis results for the encoded 8-bit counter

Hierarchical synthesis Flatten synthesis

Gate Instances Area Library
-------------------------------------------
AO2LL 5 50.430 CORE9GPLL
AO7LL 8 64.550 CORE9GPLL
EN3LL 2 56.482 CORE9GPLL
EO3LL 17 480.094 CORE9GPLL
HA1LL 6 108.929 CORE9GPLL
IVLLX05 21 84.722 CORE9GPLL
MUX21NLL 39 472.025 CORE9GPLL
ND2LL 8 48.413 CORE9GPLL
NR2ALL 6 48.413 CORE9GPLL
NR2LL 2 12.103 CORE9GPLL
-------------------------------------------
total 114 1426.160

Type Instances Area Area %
-----------------------------------
inverter 21 84.722 5.9
logic 93 1341.438 94.1
-----------------------------------
total 114 1426.160 100.0

Gate Instances Area Library
-------------------------------------------
AO1LL 3 30.258 CORE9GPLL
AO2LL 9 90.774 CORE9GPLL
AO3LL 5 50.430 CORE9GPLL
AO7LL 12 96.826 CORE9GPLL
EN3LL 3 84.722 CORE9GPLL
EO3LL 14 395.371 CORE9GPLL
IVLLX05 22 88.757 CORE9GPLL
MUX21NLL 37 447.818 CORE9GPLL
ND2LL 18 108.929 CORE9GPLL
NR2LL 3 18.155 CORE9GPLL
-------------------------------------------
total 126 1412.040

Type Instances Area Area %
-----------------------------------
inverter 22 88.757 6.3
logic 104 1323.283 93.7
-----------------------------------
total 126 1412.040 100.0

The choice of G, H and J are presented in App. A. In order to eval-
uate the proof-of-concept of coding circuit, we compare the en-
coded circuit with Hierarchical synthesis against Flattened syn-
thesis. The technology used for the case study is STMicroelectron-
ics CMOS 130 nm process. The synthesis is done using Cadence
Encounter RTL Compiler. The synthesis result are presented in
Tab. 1.

From the synthesis result, we can make the following observations:

• There are some standard cells which have disappeared when
we flatten the design, for example arithmetic gates (HALL,
that are Half-Adders).

• The type and the number of others standard cells as AND,
NAND, OR, MUX and INVERTER are also different be-
tween the two synthesis (114 for hierarchical synthesis and
126 for flatten synthesis).

• The area taken by hierarchical result is bigger than flatten
result (1412 µm2 vs 1426 µm2).

Therefore we can conclude that Encounter Compiler merged the
logic part of encoded circuit using the “flatten” option, making it
difficult for the attacker to reverse-engineer the design from netlist
and insert a meaningful HTH.

4.2 Case Study II: Substitution box
Next we repeat the same experiment with a highly non-linear cir-
cuit. The non-linear circuit used is the 8×8 Substitution Box (Sbox)
of the AES.

The results are presented in Tab. 3 (App. B). Like before, the flat-
tened netlist has different cell types. However, the area taken by
hierarchical synthesis result is smaller than flatten synthesis result.
This is because, in this case, the synthesizer has used bigger cells
in the flattened netlist. The problem can be easily solved by con-
straining the synthesizers. Hence our method is applicable also on
non-linear circuits.

4.3 Case Study III: Nanoprocessor
After applying the encoding method on two basic circuits, we also
applied the technique on a simple microprocessor. We choose nanopro-
cessor [17], which is a 8-bit processor without pipeline and requires
3 clock cycle to execute every instruction. It has 16 basic instruc-
tions, and operates using an external 256 bytes memory.

The unprotected nanoprocessor gives the following after synthesis:

• 37 sequential cells (flip-flops),

• 208 combinational cells.

Thus we have k ≥ 37 for the nanoprocessor netlist. After search-
ing various LCD codes suitable to our case, we found a Quadratic
Residue (QR) code [73,37,13] i.e. k = 37, n = 73 [18]. Since
k = 37 equals number of flip-flops in nanoprocessor, this is the
smallest code which can be applied. The minimal distance or the
security parameter d of this code is 13, i.e. an attacker should con-
nect to at least 13 DFF to implement an effective HTH. To achieve
a larger minimal distance or security, the dimension must be in-
creased. We found another QR code which is a LCD of dimensions



[89,45,17] and a shortened code derive from it i.e. [86,42,17] [12].
Both these codes will result in a better protection at the cost of chip
area. The process to apply the three codes is exactly the same.

4.3.1 Encoding Process
The encoding is done as following:

• We start with the flat netlist of nanoprocessor and extract the
37 flip-flops with their initial reset value. We make sure that
these flip-flops have no logic on the clock and reset path.

• For the remaining combinational part of the circuit, we add a
from_seq input and a to_seq output bus (of bitwidth k).

• Next for the given k, we find a suitable code to find n (see
function get_length in Listing 1), and dump the behavioural
code for those four matrix operations G, H, J and K (see
function get_matrices in Listing 2).

• Next we connect the extracted combinatorial part of nanopro-
cessor with the HDL of matrices G, H, J, K and RNG as
shown in Fig. 2 and keep the hierarchy.

• Thereafter k flip-flops in the uncoded state are replaced by n
flip-flops in the encoded state, keeping the equivalent state at
reset.

• At this stage, we combine the modified combinatorial and
sequential part of the circuit using a wrapper circuit.

• Finally, we synthesise, place and route the encoded circuit.

This encoded method can be easily automated and integrated into a
standard EDA flow. The result of synthesis for the encoded nanopro-
cessor is presented in Tab. 2. This table shows the total sequential
gates, combinational gates, the area and security parameter d. Re-
sults are shown for the three QR codes. We can notice that the
number of sequential gates increased from 37 to 73/86/89. It is
logical because we encoded k flip-flops into n. The combinational
logic part also increased due to the integration of G,H,K and J ma-
trices. Pre-synthesis and post-synthesis simulations are performed
to ensure that the encoded processor works correctly.

5. DISCUSSION
The encoder and the decoder blocks are product of matrices. As
an example the computation of encoder matrix product c = xG is
detailed in Alg. 1.

Algorithm 1 Vector–matrix product.

Require: x ∈ Fk
2 and G ∈ (Fn

2)k, whose rows are denoted by G[i] ∈
Fn

2 (for 1 ≤ i ≤ k)
Ensure: c = xG ∈ Fn

2
1: c← 0 (a vector of n bits [i.e., a line, as opposed to a column])
2: for i ∈ J1, kK do

3: c← c ⊕ x[i] ∧G[i] .

0 ∧G[i] = 0 ∈ Fn
2 and

1 ∧G[i] = G[i]
4: end for
5: return c

For the nanoprocessor, we use different codes with n = 73/86/89
and k = 37/42/45 for a sequential information on 37 bits. In the
latter two cases, n is much greater than k. If we choose a coding

Figure 7: Comparison between minimum sizes of the metal 1–6
wires and of the PROBERM6 cell from the CORX9GPLL standard
cell library of STMicroelectronics HCMOS9GP technology.

system where n is closer to k (i.e. n = 73), we can reduce signif-
icantly the overhead, but this is at the expense of robustness as se-
curity parameter d is much lower according to the Singleton bound
(n − k ≥ d − 1). This brings us to a area-security trade-off which
is a common issue in security engineering. Using another encod-
ing system where G, H and J matrices are sparse, we could reduce
significantly the overhead of this method. Some studies should be
conducted to reduce the encoding complexity. For instance we can
consider sparse matrices as for low-density parity check (LDPC)
codes.

5.1 Protection Against Other Physical Attacks
Encoded circuits are mainly proposed to counter the problem of
HTH insertion. Moreover, these circuits can find some other in-
teresting applications in the field of physical security. As encoded
circuits are based on private circuits, they directly address the threat
of probing attack. Probing attacks use tiny probes to monitor the
inputs/outputs of internal blocks to directly recover sensible data.
By encoding all internal sequential logic part and by masking en-
coded data with random numbers, this prevention method can also
protect IC against probing attack with less than d − 1 probes.

Some professional equipment (such as those proposed by GigaTest
Labs, Lake Shore Cryotronics, Inc., Micromanipulator, KeithLink,
J microTechnology, Inc., etc.) allow the adversary to place dozen of
probes on a chip or a wafer. However, probing attacks are not easy
to mount. The circuits are designed to be probed this way, using
for instance “prober” pads (see Fig. 7 on the right). In order to at-
tack our protection, an attacker must probe inner metal lines, which
are much smaller than “prober” pads. For instance, the width of a
metal 6 (uppermost layer) wire in a 0.13 µm technology (HCMOS9GP
from STMicroelectronics) is about one-tenth of a “prober” pad, as
sketched in Fig. 7. Also “prober” pads are not usually found in a
critical circuits. Second, the probes are placed far from each other
while the lines to probe might be located in great proximity of each
other, thereby making any probing attempt very chancy.

Encoded circuits can also be potentially used to protect against
Side Channel Attack (SCA). SCA is a passive but powerful at-
tack which observes unintentional physical leakage to extract the
secret key of cryptographic block. By using a LCD code with dual
distance d, encoded circuit can be protected against monovariate



Table 2: Synthesis results of Nanoprocessor encoded circuit method, and security parameter.
IC (Code) Sequential gates k Combinational Area (µm2) Security parameter d

Original (-) 37 199 1181 1
Encoded ([73,37,13]) 73 1001 6926 13
Encoded ([86,42,17]) 86 1410 9717 17
Encoded ([89,45,17]) 89 1754 11296 17

SCA of orders 1, 2, to d − 1. And the monovariate SCA of order d
is the lowest degree attack to be practical [19].

As stated earlier, encoded circuits can also be used to detect Fault
Injection Attacks (FIA). This can be done, thanks to the random
numbers injected to mask the encoded circuit. Precisely, when we
decode the encoded data, we can verify the random numbers used
to mask circuit using the matrix K. A simple comparator, as shown
in Fig. 2, is inserted to check whether the output random number zK
are same as y i.e. one used to mask. If they differ, an “alarm” signal
will be set to indicate that there has been a fault in the encoded reg-
isters. When this “alarm” is high, the circuit can launch a recovery
mechanism, for instance to stop its operations, hence preventing an
attacker from effectively exploiting faulted outputs. Practical ro-
bustness of encoded circuits against SCA, FIA and probing will be
rigoursly dealt in future works.

5.2 Difference from Private Circuits
The proposed encoded circuits method prevents HTH insertion at
two different levels. First, like private circuits [10], it prevents the
HTH from retrieving any sensitive data by eavesdropping < d flip-
flops. This protection impedes the insertion of HTH trigger part.
Moreover, for the HTH payload part, the proposed countermeasure
also brings another aspect of active HTH detection. If some how the
HTH is able to write a malicious value into the state, the encoded
state can be checked for errors introduced by the HTH. For a HTH
to be functional, its payload must also be encoded with the same
code as the original circuit (i.e. C and D matrix).

5.3 Comparison with Previous Works
Preventing HTH insertion by encoding internal variables of a cir-
cuit have been partially dealt in few previous works. Chakraborty
et al. [9] initially presented a prevention method which obfuscates
only the state machine of the IC. It is inspired by obfuscation meth-
ods [20, 21] initially intended to protect against IC counterfeiting.
It partition the states into: an original state space and an isolation
state space. The original state space can only be reached using a
specific input pattern (ex. secret key). If a wrong input pattern is
presented at the input, the IC locks itself in a non-reversible isola-
tion state space. Presented technique protects only the control part,
while the data-sensitive part remains attackable. Instead, encoded
circuits protect both parts (control and data). Moreover in [9], when
the IC is well configured to reach the original state, it operates nor-
mally and cannot resist others physical attacks. Using encoded cir-
cuits, we can theoretically not only protect against HTH insertion
attack but also against others physical attacks because of the use of
random numbers.

Another prevention method, ODETTE [6], is more intended to raise
the HTH activity for a better detectability than a proactive preven-
tion. Furthermore, each bit of the state is masked with one bit
of secret. With our method, we provide a more flexible solution,
where the number of “mask” bits can be chosen, thus allowing

the designer to adjust the security level. In [22], authors propose
the method named “EPIC” which encodes the combinational logic
part whereas in our encoded circuit method, the sequential logic
part is encoded. EPIC is based on “security by obscurity” hence
probing can be done after configuration to recover the key. This
EPIC method is static therefore an attacker can create a HTH which
learns the key and subsequently gets activated, hence bypassing the
EPIC method. Whereas, our “encoded circuit method” is dynamic
because the circuit is encoded with a random mask hence avoiding
key learning attacks.

6. CONCLUSION AND PERSPECTIVES
HTH insertion has become a serious issue with the globalization
of semiconductor industry. In this paper, we propose “encoded cir-
cuits” to prevent the HTHs insertion. It is based on a quantifiable
security metric d, similar to the one introduced for probing by Ishai,
Sahai and Wagner at CRYPTO 2003, but adapted to HTH insertion
prevention. Here d defines the minimum number of connections
required to insert an effective HTH.

We studied the theory of codes and its rationale in “encoded cir-
cuits”. Practical application from simple circuits like a counter to a
full microprocessor are demonstrated. In this proof of concept, the
area overhead for encoding a microprocessor was > 6×. This ob-
fuscation method can also potentially prevent against side-channel
attacks, fault injection attacks and probing attacks.

As a future work, better codes are to be found for increasing the
security (minimal distance d) or decreasing the complexity. This
implies two research directions (that can be combined). First of all,
shorter codes (with smaller length n) could be imagined. For in-
stance, such codes could result from avoiding the condition that C
and D are dual. But in this case, the security property (see Propo-
sition 3.1) would be different, and should be rederived. Also, the
computation of the matrices J and K would be different. Second,
long codes could be kept, but be chosen with sparse matrices. One
possibility are low density parity check (LDPC) codes.

7. REFERENCES
[1] Yier Jin, Nathan Kupp, and Yiorgos Makris. Experiences in

hardware trojan design and implementation. In Proceedings
of the 2009 IEEE International Workshop on
Hardware-Oriented Security and Trust, HST ’09, pages
50–57, Washington, DC, USA, 2009. IEEE Computer Soc.

[2] Francis G. Wolff, Christos A. Papachristou, Swarup Bhunia,
and Rajat Subhra Chakraborty. Towards Trojan-Free Trusted
ICs: Problem Analysis and Detection Scheme. In DATE [23],
pages 1362–1365.

[3] Sergei Skorobogatov and Christopher Woods. Breakthrough
silicon scanning discovers backdoor in military chip. In
CHES, September 9-12 2012. Leuven, Belgium.

[4] Gedare Bloom, Bhagirath Narahari, and Rahul Simha. OS
Support for Detecting Trojan Circuit Attacks. In Mohammad



Tehranipoor and Jim Plusquellic, editors, HOST, pages
100–103. IEEE Computer Society, 2009.

[5] Miron Abramovici and Paul Bradley. Integrated circuit
security: new threats and solutions. In Frederick T. Sheldon,
Greg Peterson, Axel W. Krings, Robert K. Abercrombie, and
Ali Mili, editors, CSIIRW, page 55. ACM, 2009.

[6] M. Banga and M. S. Hsiao. ODETTE : A Non-Scan
Design-for-Test Methodology for Trojan Detection in ICs. In
International Workshop on Hardware-Oriented Security and
Trust (HOST), IEEE, pages 18–23, 2011.

[7] Susmit Jha and Sumit Kumar Jha. Randomization Based
Probabilistic Approach to Detect Trojan Circuits. In
Proceedings of the 2008 11th IEEE High Assurance Systems
Engineering Symposium, HASE ’08, pages 117–124,
Washington, DC, USA, 2008. IEEE Computer Society.

[8] Dakshi Agrawal, Selcuk Baktir, Deniz Karakoyunlu, Pankaj
Rohatgi, and Berk Sunar. Trojan Detection using IC
Fingerprinting. In Proceedings of the 2007 IEEE Symposium
on Security and Privacy, SP ’07, pages 296–310,
Washington, DC, USA, 2007. IEEE Computer Society.

[9] Rajat Subhra Chakraborty and Swarup Bhunia. Security
against hardware trojan through a novel application of design
obfuscation. In ICCAD, IEEE, pages 113–116, 2009.

[10] Yuval Ishai, Amit Sahai, and David Wagner. Private Circuits:
Securing Hardware against Probing Attacks. In CRYPTO,
volume 2729 of LNCS, pages 463–481. Springer, August
17–21 2003. Santa Barbara, California, USA.

[11] Karsten Nohl, Erik Tews, and Ralf-Philipp Weinmann.
Cryptanalysis of the DECT Standard Cipher. In FSE, volume
6147 of LNCS, pages 1–18. Springer, February 7-10 2010.

[12] James L. Massey. Linear codes with complementary duals.
Discrete Mathematics, 106-107:337–342, 1992.

[13] F. Jessie MacWilliams and Neil J. A. Sloane. The Theory of
Error-Correcting Codes. Elsevier, Amsterdam, North
Holland, 1977. ISBN: 978-0-444-85193-2.

[14] Shivam Bhasin, Jean-Luc Danger, Sylvain Guilley, Thuy
Ngo, and Laurent Sauvage. Hardware Trojan Horses in
Cryptographic IP Cores. In FDTC, pages 15–29, August 20
2013. Santa Barbara, CA, USA.

[15] Alexander Vardy. The intractability of computing the
minimum distance of a code. IEEE Transactions on
Information Theory, 43(6):1757–1766, 1997.

[16] Markus Grassl. Bounds on the minimum distance of linear
codes and quantum codes. Online available at
http://www.codetables.de/, 2007.

[17] M.J. Wirthlin, B.L. Hutchings, and K.L. Gilson. The Nano
Processor: a low resource reconfigurable processor. In
FPGAs for Custom Computing Machines, 1994.
Proceedings. IEEE Workshop on, pages 23–30, Apr 1994.

[18] Claude Carlet and Sylvain Guilley. Complementary Dual
Codes for Counter-measures to Side-Channel Attacks. In
Springer, editor, ICMCTA, 4th International Castle Meeting
on Coding Theory and Applications, CIM-MS, September
15-18 2014. Palmela, Portugal. URL:
http://icmcta.web.ua.pt. (article #9). ISBN
978-3-319-17295-8.
http://www.springer.com/978-3-319-17295-8.

[19] Shivam Bhasin, Wei He, Sylvain Guilley, and Jean-Luc
Danger. Exploiting FPGA block memories for protected
cryptographic implementations. In ReCoSoC, pages 1–8.
IEEE, 2013.

[20] Yousra M. Alkabani and Farinaz Koushanfar. Active
hardware metering for intellectual property protection and
security. In Proceedings of 16th USENIX Security
Symposium on USENIX Security Symposium, SS’07, pages
20:1–20:16, Berkeley, CA, USA, 2007.

[21] Rajat Subhra Chakraborty and Swarup Bhunia. Hardware
protection and authentication through netlist level
obfuscation. In IEEE/ACM Int’l Conf. on Computer-Aided
Design, ICCAD ’08, pages 674–677, Piscataway, NJ, USA.

[22] Jarrod A. Roy, Farinaz Koushanfar, and Igor L. Markov.
EPIC: Ending Piracy of Integrated Circuits. In DATE [23],
pages 1069–1074.

[23] Design, Automation and Test in Europe, DATE 2008,
Munich, Germany, March 10-14, 2008. IEEE, 2008.

APPENDIX
A. EXAMPLE OF CODE GENERATOR MA-

TRICES
The generator matrices G and H for codes C and D are given in
Eq. (1) and (2). The matrices J and K to recover x and y from
z = xG ⊕ yH are in Eq. (3) and (4) respectively.

G =



0 1 0 0 1 0 0 1 1 0 1 0 1 0 1 1
1 0 1 0 0 1 0 1 0 1 1 1 0 1 1 1
1 1 0 1 0 0 0 0 1 0 1 1 0 1 1 1
1 1 1 0 1 0 1 0 0 1 0 1 0 1 1 1
1 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0
1 0 0 0 0 1 0 1 1 0 1 1 1 0 1 1
1 0 0 1 1 0 1 0 1 0 1 1 0 0 1 0
1 0 0 0 1 1 0 0 0 1 0 1 1 1 1 1


(1)

H =



1 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0
0 1 1 1 0 1 1 1 0 1 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0 1 0 0 0 0 0
1 0 0 0 1 1 1 1 0 0 0 1 0 0 0 0
1 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0
1 1 1 1 0 0 0 1 0 0 0 0 0 1 0 0
1 1 0 1 1 1 0 1 0 0 0 0 0 0 1 0
0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 1


(2)

J =



1 0 0 1 0 0 1 0
0 0 1 1 0 1 1 0
1 1 0 0 0 0 1 1
0 1 0 0 0 1 0 1
1 1 0 0 1 1 1 1
1 0 0 0 0 0 1 1
1 0 0 1 0 0 0 1
0 0 1 0 0 0 1 1

1 1 1 1 0 0 0 1
1 0 0 0 0 0 0 1
1 0 0 1 1 0 0 0
0 1 1 0 1 1 0 0
1 1 1 1 0 1 1 0
0 0 0 0 0 0 0 1
1 0 0 0 1 1 1 0
0 1 0 0 1 0 1 1


(3)

K =



0 1 0 0 1 1 1 0
1 1 1 0 1 0 0 1
0 0 1 1 0 0 0 1
1 0 0 1 0 0 1 1
1 0 0 0 1 1 0 0
0 1 0 0 0 1 1 0
1 0 1 0 0 0 1 1
0 1 0 1 1 0 1 0

1 1 1 0 0 0 1 1
1 0 1 1 0 1 0 0
1 1 0 1 1 0 1 0
0 1 1 0 1 1 0 1
0 0 1 1 1 1 0 1
0 1 0 1 1 0 1 1
1 0 1 0 0 1 1 0
1 0 0 1 1 1 0 1


(4)

B. SYNTHESIS RESULTS FOR CASE STUDY
II

http://www.codetables.de/
http://icmcta.web.ua.pt
http://www.springer.com/978-3-319-17295-8


Tab. 3 compares the result of hierarchical and flatten syntheses
when protecting an AES Sbox using the proposed encoder/decoder
scheme.



Table 3: Synthesis results for encoded Sbox

Hierarchical synthesis Flatten synthesis

Gate Instances Area Library
-------------------------------------------
AO10LL 5 70.602 CORE9GPLL
AO10NLL 7 98.843 CORE9GPLL
AO11LL 9 127.084 CORE9GPLL
AO14LL 1 14.120 CORE9GPLL
AO17LL 9 108.929 CORE9GPLL
AO1CLL 2 28.241 CORE9GPLL
AO1LL 8 80.688 CORE9GPLL
AO1NLL 2 28.241 CORE9GPLL
AO20ALL 2 24.206 CORE9GPLL
AO21LL 2 20.172 CORE9GPLL
AO23LL 4 56.482 CORE9GPLL
AO23NLL 2 32.275 CORE9GPLL
AO2ALL 2 24.206 CORE9GPLL
AO2LL 31 312.666 CORE9GPLL
AO35LL 1 12.103 CORE9GPLL
AO3CLL 1 14.120 CORE9GPLL
AO3LL 4 40.344 CORE9GPLL
AO3NLL 1 14.120 CORE9GPLL
AO4LL 10 121.032 CORE9GPLL
AO52LL 15 181.548 CORE9GPLL
AO52NLL 1 14.120 CORE9GPLL
AO6LL 5 50.430 CORE9GPLL
AO6NLL 9 90.774 CORE9GPLL
AO7LL 38 306.614 CORE9GPLL
AO7NLL 4 40.344 CORE9GPLL
AO8LL 1 10.086 CORE9GPLL
AO9LL 1 12.103 CORE9GPLL
EN3LL 2 56.482 CORE9GPLL
EO3LL 17 480.094 CORE9GPLL
IVLLX05 54 217.858 CORE9GPLL
MUX21NLL 36 435.715 CORE9GPLL
ND2ALL 8 80.688 CORE9GPLL
ND2LL 60 363.096 CORE9GPLL
ND3ABLL 2 20.172 CORE9GPLL
ND3LL 3 24.206 CORE9GPLL
ND4ABLL 1 14.120 CORE9GPLL
ND4LL 16 161.376 CORE9GPLL
NR2ALL 13 104.894 CORE9GPLL
NR2LL 47 284.425 CORE9GPLL
NR3ABLL 3 30.258 CORE9GPLL
NR3LL 6 48.413 CORE9GPLL
NR4ABCLL 5 60.516 CORE9GPLL
NR4ABLL 6 72.619 CORE9GPLL
NR4ALL 5 60.516 CORE9GPLL
NR4LL 24 242.064 CORE9GPLL
-------------------------------------------
total 485 4692.007

Type Instances Area Area %
-----------------------------------
inverter 54 217.858 4.6
logic 431 4474.150 95.4
-----------------------------------
total 485 4692.007 100.0

Gate Instances Area Library
-------------------------------------------
AN2LL 1 10.086 CORE9GPLL
AO2LL 5 50.430 CORE9GPLL
AO7LL 9 72.619 CORE9GPLL
EO3LL 15 423.612 CORE9GPLL
IVLLX05 29 116.998 CORE9GPLL
MUX21NLL 56 677.779 CORE9GPLL
ND2LL 48 290.477 CORE9GPLL
ND3ABLL 22 221.892 CORE9GPLL
ND3LL 2 16.138 CORE9GPLL
ND4ABCLL 1 14.120 CORE9GPLL
ND4LL 19 191.634 CORE9GPLL
NR2ALL 9 72.619 CORE9GPLL
NR2LL 271 1639.984 CORE9GPLL
NR3ALL 3 36.310 CORE9GPLL
NR3LL 17 137.170 CORE9GPLL
NR4ABCLL 14 169.445 CORE9GPLL
NR4ABLL 8 96.826 CORE9GPLL
NR4ALL 69 835.121 CORE9GPLL
NR4LL 48 484.128 CORE9GPLL
-------------------------------------------
total 646 5557.386

Type Instances Area Area %
-----------------------------------
inverter 29 116.998 2.1
logic 617 5440.388 97.9
-----------------------------------
total 646 5557.386 100.0


