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Abstract

Activity recognition using wearable motion sensors plays an important role in pervasive wellness 

and healthcare monitoring applications. The activity recognition algorithms are often designed to 

work with a known orientation of sensors on the body. In the case of accidental displacement of 

the motion sensors, it is important to identify the new sensor location and orientation. This step, 

often called calibration or recalibration, requires extra effort from the user to either perform a set 

of known movements, or enter information about the placement of the sensors manually. In this 

paper, we propose a camera-assisted calibration approach that does not require any extra effort 

from the user. The calibration is done seamlessly when the user appears in front of the camera (in 

our case, a Kinect camera) and performs an arbitrary activity of choice (e.g., walking in front of 

the camera). We provide experimental results supporting the effectiveness of our approach.
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1. INTRODUCTION

The recognition of activities of daily living (ADLs) has attracted a lot of attention in recent 

years due to its importance for healthcare and wellness monitoring applications [1, 2]. 

Wearable sensors capable of monitoring activities of daily living are gaining popularity due 

to their minimal cost, ubiquitous nature and ability to provide sensing functionality at any 

time and place. Activity recognition algorithms typically assume the configuration (e.g., 
sensor location and orientation) of the sensors is known and does not change throughout the 

deployment. However, accidental displacement of the sensors may occur due to the user’s 

movements. Moreover, there is no guarantee that the user will place the sensors at the 

expected orientation and location as required by the activity recognition algorithms. These 

factors will affect movement detection accuracy. Therefore techniques to track accidental 

misplacement and movements of the sensors are required.
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To address issues associated with misplacement of the sensor, three approaches have been 

proposed in the prior studies. The first approach focuses on selecting features that are not 

affected by the sensor displacement [3]. The main problem with this approach is that the pre-

determined feature space suitable for this approach typically limits the functionality, 

accuracy and the performance of signal processing algorithms. The second approach 

attempts to provide statistical techniques to adjust the feature space adaptively in order to 

improve the accuracy of the recognition algorithm in the presence of accidental 

misplacement [4]. The disadvantage of this approach is somewhat limited performance if a 

major displacement or orientation change occurs. The third approach is based on 

determining the exact displacement and orientation change that occurred and utilizing 

rotation and translation techniques to convert the raw sensor readings into the desired space 

and orientation [5]. With this approach, the raw sensor readings are transformed to appear as 

if the sensors were not misplaced, allowing the original activity recognition algorithms to 

continue to operate efficiently. The approach proposed in this paper belongs to the third 

category.

In this paper, we propose a novel approach to detect the orientation of the sensors leveraging 

the capability of a 3-D Kinect camera, when available, and perform the calibration step 

seamlessly without requiring extra effort from the user. We illustrate the capability of our 

proposed approach using an example: John wears his music player on his arm. The music 

player has a motion sensor. The sensor is intended to monitor his physical activity when he 

goes to the gym. When he enters the gym, a 3-D Kinect camera placed at the door captures 

his skeletal information during walking, and if his consent is provided, this is shared via the 

cloud. Our proposed technique uses the Kinect stream along with the readings acquired from 

his sensor to identify the orientation of the sensor on his arm. The core technical 

contribution of this work includes: 1) proposing a two-step search algorithm that calculates 

the sensor orientation with respect to (w.r.t.) the human body frame based on rotation 

distance. The human body frame and rotation distance are defined in Section 3.3 and 4.2 

respectively; 2) the calibration method does not require extra effort from the user; 3) In our 

algorithm, the orientation of the inertial sensor w.r.t. the Kinect frame is calculated. This is 

very important for some applications in which the frames of the inertial sensor and Kinect 

cameras need to be aligned and used together.

In the remainder of the paper, we first provide an overview of the prior art in Section 2. We 

provide preliminary information on wearable motion sensors and the Kinect along with the 

problem formulation in Section 3. In Section 4, we introduce a two-step zero-effort search 

algorithm to determine the sensor orientation w.r.t. the human body frame. In Section 5, we 

provide our experimental studies validating the proposed technique, followed by the 

conclusion.

2. BACKGROUND AND RELATED WORK

It is known that sensor displacement affects the accuracy of activity recognition algorithms. 

The impact of the sensor translation and rotation on a sample activity recognition algorithm 

called dynamic time warping is discussed in [6]. In [7], the authors explore how the rotation 
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and translation displacement affect the results of recognition algorithms and provide 

recommendations about how to deal with sensor displacement.

Several approaches have been proposed to address the issue associated with sensor 

displacement and their impact on recognition algorithms. A solution to find the displacement 

invariant features has been proposed. In [3], device orientation independent features are used 

for step detection and direction estimation for the applications of dead reckoning. Another 

approach to study the statistical distribution of the features, and adjust the features 

adaptively has been suggested. The possibility of system self-calibration through the 

adjustment of the classifier decision boundaries is proposed in [8]. Similarly in [4], the 

authors propose a method to compensate for the data distribution shift caused by sensor 

displacements using an expectation-maximization algorithm and covariance shift analysis. 

These approaches adjust the feature space in case of a minor displacement. However, they 

cannot calibrate the presence of substantial displacements. If a major displacement occurs, 

the recognition algorithm will function with poor accuracy.

Other researchers focus on identifying the exact orientation and translation change during 

the movement by asking the user to perform certain movements. For instance, some have 

analyzed the acceleration data during walking to determine the sensor placement [9] and 

orientation [10]. In [5], the authors defined a global frame by asking the user to perform 

symmetric forward/backward movements (e.g., walking). The accelerometer signals are 

projected to this global frame such that the sensor orientation is calibrated to this global 

frame. The disadvantage of this approach is that the user would be required to perform 

certain specific movements and if the global frame is altered, the algorithm will likely fail.

3. PRELIMINARIES

3.1 Kinect and Inertial Sensor

Kinect, as shown in Figure 1.a, is a low-cost RGB-Depth sensor introduced by Microsoft. 

Two libraries (Kinect SDK and Open NI/NITE) are available that provide access to the depth 

map or the skeleton tracking information. In this paper, we use Kinect SDK to get the 

absolute position data of each joint of the human body. Two joints will be used as the end 

points to construct a segment vector and the rotation of this vector represents the rotation of 

this body segment in the Kinect frame. This information is used in our approach. Figure 1.b 

shows the 9-axis motion sensor with dimensions of 1″×1.5″ that measures 3-axis 

acceleration, 3-axis angular velocity and 3-axis magnetic field. The data can be streamed to 

a PC/tablet for real time signal processing, storage or can be logged onto a MicroSD card.

3.2 Frame Definitions

There are four coordinate frames in our paper: the human body frame, the sensor local 

frame, the sensor earth frame and the Kinect frame. These frames are defined as:

1. Human body frame: the human body frame is defined in Figure 2. It is the back 

view of a human body. The axes are represented by Xb, Yb and Zb..
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2. Sensor local frame: The sensor local frame is shown in Figure 3. The face with a 

circle is the front face of the sensor. The Zs always points out of the front face 

and Xs and Ys are parallel to two sensor edges as shown in the figure.

3. Sensor earth frame: Sensor earth frame is defined as the blue dashed lines in 

Figure 3. The positive Y-axis Ye is in the opposite direction of gravity. The 

positive Z-axis Ze is parallel to the ground and is the projection of the sensor 

local frame Z-axis onto the transverse plane. The X-axis Xe is uniquely defined 

by Ye and Ze of a right handed orthogonal coordinate. Notice that the sensor may 

face in any direction, so the sensor earth frame is not unique and is determined 

by the direction of projection of the sensor local frame Z-axis onto the transverse 

plane.

4. Kinect frame: The Kinect frame coordinates are shown on the Kinect in Figure 3. 

The positive Z-axis Zk points in the direction in which the Kinect is facing. The 

positive Y-axis Yk is upward and the positive X-axis Xk points to the right of the 

Kinect (when viewed from the front). The tilt of the Kinect is 0 degrees, so Yk is 

in the opposite direction of gravity.

3.3 Problem Formulation

The problem of the sensor displacement on rigid human body segments is divided into three 

sub problems in this paper as shown in Figure 4. The cylinders represent the human body 

segments (e.g. leg or arm), which have the same reference frame as the human body frame. 

The first case is the sensor’s rotational displacement around Y-axis of human body frame, 

which is denoted as yaw rotation in this paper. The second case is the rotation of the sensor 

along the Z-axis of the human body frame which is called roll rotation. The third case is the 

sensor’s line displacement along the segment which is denoted as sensor translation. The 

literature has shown that the impact of case 3 is often negligible on signal processing 

algorithms [6]. In this paper, we only focus on the calibration of the sensor yaw rotation β 
(case 2) and roll rotation γ (case 1) w.r.t. the human body frame.

To simplify the problem, we first assume the user faces Kinect camera such that the Z-axis 

of human body frame points in the same direction as the Z-axis of the Kinect frame. Since 

the human body frame is oriented the same as the Kinect frame in this scenario, the problem 

becomes determining the sensor yaw rotation -β and roll rotation, γ, w.r.t. the Kinect frame. 

Once we obtain the results, we relax the assumption so that the human can face anywhere. 

The yaw rotation α between the Kinect frame and human body frame, which is the rotation 

about Y-axis, can be obtained from Kinect API. Now we can calculate the yaw rotation of 

sensor frame w.r.t. the human body frame. Since the Z-axis of the Kinect frame and the 

human body frame are in the same plane (human transverse plane), the sensor roll rotation 

w.r.t. the human body frame is the same as the sensor roll rotation w.r.t. the Kinect frame. 

The Z-axis of the sensor earth frame is defined as the direction of the projection of the 

sensor front face in the transverse plane of the human body frame, the yaw rotation of sensor 

local frame w.r.t. the Kinect frame is the same as the yaw rotation of the sensor earth frame 

w.r.t. the Kinect frame, which is a rotation along Kinect Y-axis. The angles used in this paper 

are defined in Table 1.
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4. METHODOLOGY

In this section, we first explain the orientation filter that estimates the orientation of sensor 

local frame w.r.t. the sensor earth frame. We also introduce the rotation distance between 3-

D rotations. Next, the two-step search algorithm is explained. In the first step, a body 

segment rotation is measured in the sensor earth frame. Meanwhile, the same rotation is 

measured from Kinect skeleton data after rotating the Kinect frame into the sensor earth 

frame. By searching for the minimum rotation distance between the rotation measured from 

inertial sensor and the Kinect, the yaw rotation β between the sensor earth frame and the 

Kinect frame is determined. The same approach is applied to the second step search to 

determine the sensor roll rotation w.r.t. the Kinect frame γ. The yaw rotation between the 

Kinect frame and the human body frame, α, can be obtained from the Kinect API. As we 

have the yaw rotation between the sensor local frame and the Kinect frame and the yaw 

rotation between the Kinect frame and the human body frame, the yaw rotation of the sensor 

local frame w.r.t. the human body frame φ is achieved. Since the Z-axis of the Kinect frame 

and human body frame are in the parallel planes (parallel to human transverse plane), the 

sensor roll rotation w.r.t. the human body frame is the same as the sensor roll rotation w.r.t. 

the Kinect frame. Thus, the sensor yaw rotation and roll rotation w.r.t. the human body 

frames are both calibrated.

4.1 Orientation Estimation for Inertial Sensor

The inertial sensor measures 3-axis acceleration and 3-axis angular velocity in its local 

frame. An orientation filter [11] is used to estimate the orientation of the sensor local frame 

w.r.t. the sensor earth frame, which is denoted as  is a quaternion representation of the 

orientation. S represents sensor local frame and E represents the sensor earth frame. A 

quaternion q is a four-dimensional complex number ([qw qx qy qz]) that can be used to 

represent the orientation of a coordinate frame in 3-D space. The relationship between 

quaternion and a rotation is explained in Section 4.3.

4.2 Rotation Distance

Before introducing our two-step search algorithm, we briefly discuss rotation distance 

metrics which are important measurements throughout our algorithm deployment. 3D 

rotations are widely used in numerous applications such as computer vision, computer 

graphics and robotics. The evaluation of the distance between two 3D rotations is an 

important task. There are several rotation distance metrics in the literature based on Euler 

angles, unit quaternion and rotation matrices [12], which are commonly used to represent 3D 

rotations. The 3D rotation matrix is a 3×3 orthogonal matrix that is used to perform a 

rotation in Euclidean space. The matrices form a group called the Special Orthogonal group, 

SO(3), in which the operations of multiplication and inversion are continuous functions of 

the matrix entries. In this paper, we use a rotation metric introduced in [13] to derive our 

algorithm. The metric is denoted as

(1)
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where R1 and R2 are two rotation matrices, I is an identity matrix and tr represents the trace 

of a matrix.

4.3 Two-step Search Algorithm

4.3.1 First step yaw rotation search—The first step search finds the yaw rotation of the 

sensor local frame w.r.t. the Kinect frame, which is the same as the yaw rotation of the 

sensor earth frame w.r.t. the Kinect frame. As shown in Figure 5, Xe, Ye and Ze are three 

axes of the sensor earth frame and Xk, Yk and Zk are three axes of the Kinect frame. Y and 

Yk are parallel to each other and point to the opposite of the gravity vector. The yaw rotation 

β is the rotation along Y axis from Kinect frame to sensor earth frame.

Consider the rotation of the body segment AB in Figure 6, this rotation can be measured 

from the inertial sensor in the sensor earth frame or from the Kinect skeleton joint position 

information in the Kinect frame. If the two frames are rotated into the same reference frame, 

the measured rotations from these two systems should be the same. In this paper, we rotate 

the Kinect frame to the sensor earth frame.

First, we calculate the rotation of body segment AB in the sensor earth frame. As discussed 

in Section 4.1, the orientation filter can measure the sensor orientation w.r.t. the sensor earth 

frame, and  and  represent the sensor orientation w.r.t. the sensor earth frame at two 

different states of the body segment movement. The ‘state’ represents the state of the body 

segment at a certain time. For example, for a sit-to-stand movement, one state would be the 

orientation of body segment (e.g. thigh) in sitting posture and the other state would be the 

orientation of the body segment in standing posture. The segment rotation in the sensor earth 

frame is calculated by:

(2)

qE is the segment rotation in sensor earth frame and  is the inverse of . The inverse 

of a quaternion, q−1, represents the inverse rotation of q.  represents quaternion 

multiplication.

The rotation of segment AB is then constructed from Kinect position data. The position data 

for joint A and joint B can be obtained from the Kinect API for every frame, denoted as PA 

and PB respectively. A 5 span moving average filter is applied to the position data to smooth 

the noise. VAB and V′AB are the body segment vectors at states AB and AB′. They are 

defined as:

(3)

(4)
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If these two vectors are rotated to the sensor earth frame from the Kinect frame, they can be 

used to construct the segment rotation in sensor earth frame. The rotation from Kinect frame 

to sensor earth frame is represented by a rotation axis [0, 1, 0] (Y-axis) and a rotation angle 

β. The rotation axis is the axis about which the rotation happens. The representation of the 

rotation by rotation axis vector r and rotation angle θ can be translated to a quaternion 

representation q by:

(5)

qx, qy, qz and qw are the four components of the quaternion vector q and rx, ry and rz are 

the three components of the unit vector r. The Kinect frame w.r.t. the sensor world frame 

 can then be calculated by (5). The 3-D vectors VAB and  are rotated into the 

sensor earth frame as  and  by:

(6)

(7)

Zero in (6) and (7) is value of qw of a quaternion. The rotation from  to  can 

be represented by a rotation axis r and the rotation angle θ. The axis r and rotation angle θ 
can be achieved by:

(8)

(9)

r and θ are also functions of β, after normalizing r, the segment rotation in the sensor earth 

frame constructed from two segment vectors q′E(β)is calculated by (5).

Now that qE and q′E(β) represent the same rotation in the sensor earth frame, and thus the 

rotation distance between them should be 0. In reality, the Kinect skeleton vectors do not 

perform exactly the same as the inertial sensors. The inertial sensor has the rotation along 

the segment itself (e.g. the twist of the arm), but the Kinect will be unable to capture this 

degree of rotation. As a result, the rotation distance between qE and q′E(β) is not exactly 0. 

If we search for β from 1 degree to 360 degrees, the targeted β will give the minimum 
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rotation distance between qE and q′E(β). In order to calculate the rotation distance, we first 

convert qE and q′E(β) to rotation matrices RE and R′E(β). The rotation distance d(RE, R
′E(β)) can be calculated from (1).

Our search algorithm relies on the rotation between two states; if there is no rotation or a 

very small rotation, the movement will not give a good estimation of the yaw rotation angle 

β. Before beginning the search, we need to choose two states between which sufficient 

rotation occurs. It is important that we do not use the rotation between two states measured 

from inertial sensor to check the rotation since the inertial sensor can have the rotation along 

the segment itself, which is different from the measurement of the Kinect system and cannot 

be used for our algorithm. In this paper, the rotation quality is validated from the segment 

rotation constructed from Kinect skeleton data. Since the gravity vector remains the same 

during one rotation of a body segment, the rotation between the body segment vector and the 

gravity vector  is calculated for each frame during the rotation. By comparing the rotation 

of a body segment w.r.t. the gravity vector at two states, we can get the rotation distance of 

this body segment between the two states. For two different states during one body segment 

rotation, state 1 and state 2, we have  and . Once we convert them to rotation 

matrices  and , the rotation distance between state 1 and state 2, μ, can be 

calculated as:

(10)

A rotation distance below 0.1 is considered to be too small to be used in our algorithm. The 

choice of threshold value of μ is discussed in Section 5.3.1. Based on the above analysis, the 

first step yaw search algorithm is formulated and described in Algorithm 1.

Algorithm 1

First step yaw direction search

Calculate μ according to (10);

 if μ < 0.1

  The movement is not qualified, choose another one;

 else

  Continue;

 end

 for β= 1:360

  Calculate d(RE, R′E(β));

   ;

 end

return .
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The  is the estimated yaw rotation of the Kinect frame w.r.t. the sensor local frame, so the 

yaw rotation of the sensor local frame w.r.t. the Kinect frame is .

4.3.2 Second step roll rotation search—From the previous section, the estimated 

sensor yaw rotation  w.r.t. the Kinect frame is obtained. In this section, we explain the 

second step search for the sensor roll rotation w.r.t. the sensor earth frame, which is the same 

as the sensor roll rotation w.r.t. the Kinect frame.

Figure 7 shows the sensor roll rotation about the Z-axis of the sensor earth frame. Xs, Ys 
and Zs are the axes for the sensor local frame and Xe, Ye and Ze are axes for the sensor earth 

frame. Like the first step search, we define two states to calculate the same rotation 

measured by the Kinect skeleton and the inertial sensor in the sensor earth frame. One state 

is an ideal state in which the body segment vector is the same as the gravity vector and the 

inertial sensor only has a rotation of γ about the Z-axis of the sensor earth frame. The other 

state is an arbitrary state with the segment vector VAB. The rotation between these two states 

is the rotation from the gravity vector to the body segment vector AB.

First, we construct the body segment rotation w.r.t. the gravity vector from the Kinect 

skeleton in the sensor earth frame. The yaw rotation  is known, and the vector VAB can be 

rotated to the sensor earth frame by (6) as . The gravity vector remains the same from 

the Kinect frame to the sensor earth frame and is represented by [0 −1 0]. Using (8), (9) and 

(5), the rotation between body segment vector and the gravity vector is calculated and 

represented by .

Next, the rotation between two states from the inertial sensor is analyzed. The arbitrary state 

sensor orientation w.r.t. the earth frame is the output of the orientation filter . At the ideal 

state, the sensor orientation w.r.t. the sensor earth frame is composed of the rotation axis Z-
axis ([0 0 1]) and rotation angle γ Then from (5), the sensor orientation w.r.t. the sensor 

earth frame at the ideal state is calculated as . The body segment rotation in sensor 

earth frame is defined as:

(11)

Covert  and qE(γ) to rotation matrices  and R(γ). By searching for the 

minimum rotation distance Ω (γ) between  and R(γ), the γ is determined.

(12)

The second step of the search algorithm is described in Algorithm 2.
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Algorithm 2

Second step roll rotation search

for γ= 1:360

 Calculate Ω (γ) according to (12);

  

end

return .

4.3.3 Sensor orientation with respect to the human body frame—From the two 

step search, we get the sensor roll and yaw rotation w.r.t. the Kinect frame. If the Kinect 

frame is the same as the human body frame (i.e., the subject is facing the Kinect), the roll 

and yaw are the same as w.r.t. the human body frame. However, if the user is not facing the 

Kinect such that the Z-axis of human body frame is not parallel to the Z-axis of the Kinect 

frame, there will be a yaw rotation between the Kinect frame and the human body frame. 

Notice that this will only affect the yaw rotation. Fortunately, we can get the yaw rotation 

between these two frames from Kinect API. The rotation of the hip center along Kinect Y-
axis represents this yaw rotation. Let this yaw rotation be α, the sensor yaw rotation w.r.t. 

the human body frame is:

(13)

5. EXPERIMENTS AND RESULTS

5.1 Experimental Setup

In the experiments, the Kinect is placed on a flat table with a tilt angle 0 degrees. The 

subjects perform daily activities in front of the Kinect. The subjects wear two sensors: one 

on the thigh and the other on the right upper arm. Four subjects were chosen for the 

experiments and 6 daily activities were performed to test our approach. The activities are 

listed in Table 2. These predefined activities are just some examples meant to exhibit 

generalizability of our method.

For each activity, the sensors are placed in four different yaw configurations approximately 

by the user. Figure 8 shows the four yaw configurations for thigh sensor: 0-degree in Figure 

8.a, 90-degree in Figure 8.b, 180-degree in Figure 8.c and 270-degree in Figure 8.d. For each 

yaw configuration, the subjects were asked to place the sensors in two random roll rotations. 

All subjects repeated each activity 8 times.

Moreover, we compare the performance of our calibration method with a non-zero-effort 

method [5] using an activity recognition application.
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5.2 Yaw Rotation Search

5.2.1 Choice of the threshold value of parameter μ—As discussed in Section 4.3.2, 

the first step of the search algorithm is based on a body segment rotation. If there is no 

rotation or a very small rotation, the algorithm will not give an accurate yaw result. The 

parameter μ measures the rotation distance between two arbitrary states of the movement 

measured in the Kinect frame.

Figure 9 shows the Euler angles for a two-stride walking for one subject with a 0 degrees 

yaw configuration. The reason why we use Euler angles in this example is that they can give 

a better understanding on the amount of rotation during the movement. The Euler angles are 

calculated from the rotation of the body segment vector and the gravity vector in the Kinect 

frame from Kinect skeleton information. The X-axis in Figure 9 is the sample number for 

the sampling rate of 30 frames per second and the Y-axis is the value of the angular change. 

The red line, green line and the blue line represent the Euler angles along X-axis, Y-axis and 

Z-axis, respectively. For the first 200 samples, the subject was standing still and there is no 

angular change. After that, a two step-stride walking was performed and there is clear 

angular change along the X-axis. We select an arbitrary set of points called states. These 

points are marked with labels A, B and C in Figure 9. States A and B are chosen during the 

standing phase while there is no rotation. State C is chosen in the middle of the walking 

stride and shows a clear rotation from the previous two states (A and B). In practice, states 

can be selected arbitrarily. If no rotation is observed, and therefore the selected states would 

not be suitable, further states will be selected until an orientation change is observed.

Figure 10 shows the path for the first step search, which is based on the rotation from state B 

to state C. The X-axis represents the search angles, ranging from 1 degree to 360 degrees, 

and the Y-axis displays the rotation distance. The value ‘6’, shown in the red circle in the 

figure, is the search angle that achieves the minimum rotation distance and thus is the result 

of our first step search algorithm. It is very close to 0 degrees, which is the approximate yaw 

configuration for this experiment. Also, the rotation distances between different search 

angles are distinguishable.

Figure 11 shows the path for the first step search based on the rotation from state A to state 

B. From the figure, the search algorithm gives the result of 58 degrees which is incorrect for 

the 0-degree configuration. From the above analysis, we show that the search algorithm 

works correctly for the movement from state B to state C since there is a clear rotation while 

it does not work for the movement from state A to state B because of the small rotation. The 

rotation distance μ is 0.2022 between state B and state C and is 1.4×10−4 between state A 

and state B for this walking case. To choose a suitable threshold for μ, we calculated μ for all 

the movements we used in the experiments and choose the minimum value of 0.1. This is a 

reliable measure since it works correctly for all our experiments. We will look into the 

optimal threshold for μ in the future.

5.2.2 Results for yaw rotation search—To validate the yaw search technique, there 

should be a rotation that occurs during the movement. For the upper arm sensor, the segment 

has a qualified rotation only for arm stretching and walking, and thus only these two 

movements are chosen to calibrate the upper arm sensor. For the thigh sensor, all movements 
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are used to calibrate the sensor except for the arm stretching. To test the yaw search 

technique, we manually place the sensor with the yaw rotation of 0 degrees, 90 degrees, 180 

degrees and 270 degrees for all experimental configurations. Since these configurations are 

only approximately achieved by the user, they are not a gold standard. By checking the 

distribution of all the search results, we determine the consistence and the correctness of our 

algorithm. Figure 12 shows the search result distribution for the arm sensor. Since the arm 

only has sufficient rotation during movement 1 and movement 6, the results are reported 

only for these two movements. The X-axis represents the number of experiments and trials 

and the Y-axis represents the search results for yaw angles. The four dashed lines from the 

bottom to the top are the four expected yaw results y = 0, y = 90, y = 180 and y = 270, 

respectively. The label ‘mx-ydeg’ in the figure represents the results for movement x with a 

yaw configuration of y degrees. For example, ‘m1-0deg’ is the result for movement 

1(walking) with the 0-degree yaw configuration. From the figure, we observe that for the 

two movements, all search results fall around the line which corresponds to their own yaw 

rotations. The distribution of the results proves our algorithm works well for the two arm 

sensor movements.

Figure 13 shows the distribution of all the search yaw results for the thigh sensor, for all 5 

movements. The lines y = 0, y = 90, y = 180 and y = 270 are the four lines for the expected 

results for the configurations of 0 degrees, 90 degrees, 180 degrees and 270 degrees 

misplacement. The obtained results for the four configurations all fall near their 

corresponding lines. The results for the 180-degree configuration have larger deviations than 

the other three. The reason for this is that when we placed the sensor on the back of the 

subject; it is harder to find the 180 degree position than in the other three cases. The overall 

distribution in the figure shows good search results for the thigh sensor for all movements.

5.3 Second Step Roll Rotation Search

To validate the accuracy of our roll search algorithm, for each movement, we asked the user 

to stand still at the beginning of the movement and measured the roll rotation from the 

inertial sensor. The measured roll angle from inertial sensor serves as the ground truth of our 

algorithm because the orientation filter can achieve a very good accuracy [11] for the roll 

rotation calculation using the gravity as a reference.

Table 3 shows the root mean square errors between the inertial sensors reported roll results 

and the results obtained by our algorithm for different subjects. The thigh sensor has a 5.59 

degree RMSE for all movements and for all the subjects while the arm sensor has a 10.73 

degree RMSE. The reason for the difference is that the thigh has less moving freedom than 

the upper arm and the arm muscle movement will lead to more rotation along the segment 

than the thigh muscle which will affect the search algorithm. The accuracy of our calibration 

technique on thigh is very consistent (RMSEs between 5 and 6 degrees) for all subjects, 

which indicates that the thigh movement does not exhibit significant variations for different 

subjects. Conversely, the arm sensor accuracy varies from subject to subject because of the 

greater level of variations for the arm movements. The total RMSEs for both the arm and the 

thigh indicate that our algorithm achieves a good accuracy for the roll rotation.
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5.4 Activity Recognition Performance

We also validate our approach leveraging an activity recognition application and compare it 

with the performance of a non-zero-effort approach [5]. Subjects perform the same set of 

activities with sensors with random orientations. A template matching algorithm based on 

dynamic time warping (DTW) is used to implement the recognition using 3-axis 

accelerations. The template is trained when the sensor is placed without any rotational 

displacement. During the testing phase, the accelerations are transformed to the original 

frame (prior to rotation displacement) and the transformed signals are compared to the 

templates for classification. To determine the global frame as outlined in [5], the user is 

asked to perform 10 seconds of walking.

Figure 14 shows the calibration results for sit-to-stand and stand-to-sit patterns. Figure 14.a 

shows the standard pattern where no rotation displacement is present. Figure 14.b shows the 

signals before transformation while a rotation displacement is present and Figure 14.c and 

Figure 14.d show the calibrated patterns using our approach and using the approach in [5] 

respectively. It can be observed that both our method and the method in [5] have good 

calibration results. The calibrated signals from both approaches are similar to each other and 

are close to the standard signals.

Table 4 shows the performance of the activity recognition algorithm leveraging both 

calibration methods. We can see that both calibration methods achieve similarly high 

accuracy which illustrates the effectiveness of our zero-effort algorithm in conjunction with 

activity recognition. The approach in [5] performs slightly better than our approach likely 

due to the fact that the error from Kinect and skeleton construction likely impacts our 

calibration whereas vision-based sensors are not used in [5].

6. CONCLUSION

In this paper, we proposed a zero effort two-step search algorithm to calibrate orientation of 

wearable sensors by calculating the orientations of the sensors with respect to the human 

body frame based on rotation distance optimization. The experimental results from 4 

subjects over 6 daily movements show that our algorithm achieves consistent and accurate 

results. We also evaluate the performance of our method for activity recognition and 

compare the results with a non-zero-effort approach and the results show our approach 

achieves similarly good performance.
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Figure 1. 
Kinect sensor and motion sensor.
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Figure 2. 
Human body frame (back view).
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Figure 3. 
Frame definitions
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Figure 4. 
Three cases of sensor displacement.
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Figure 5. 
Yaw rotation formulation.
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Figure 6. 
Body segment rotation.
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Figure 7. 
Roll rotation formulation.
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Figure 8. 
Four different yaw configurations.
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Figure 9. 
Euler angles between leg vector and gravity for walking.

Wu and Jafari Page 23

Proc Wirel Health. Author manuscript; available in PMC 2017 February 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 10. 
Path for first step search based on rotation from state B to state C.
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Figure 11. 
Path for first step search based on rotation from state A to state B.
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Figure 12. 
Search results for yaw rotation for upper arm.
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Figure 13. 
Search results for yaw rotation for thigh.
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Figure 14. 
Calibration results for sit-to-stand and stand-to-sit patterns.
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Table 1

Angle definitions.

Angle symbol Angle representation

β Yaw rotation of the Kinect frame w.r.t. the sensor local frame

γ roll rotation of the sensor local frame w.r.t. the Kinect frame

α Yaw rotation of the Kinect frame w.r.t. the human body frame

φ Yaw rotation of the sensor local frame w.r.t. the human body frame
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Table 2

Activities for the experiments.

No# Activity No# Activity

1 Walking 4 Sit-to-Stand

2 Kneeling 5 Stand-to-Sit

3 Leg-Lifting 6 Arm Stretching
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Table 3

Roll search errors for different subjects for arm and thigh.

Subject #
Arm Accuracy

(RMSE in degrees)
Thigh Accuracy

(RMSE in degrees)

Subject 1 10.733 5.98

Subject 2 5.11 5.60

Subject 3 13.5 5.32

Subject 4 9.60 5.60

Total 10.73 5.59
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