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ABSTRACT
As core counts increase and as heterogeneity becomes more
common in parallel computing, we face the prospect of pro-
gramming hundreds or even thousands of concurrent threads
in a single shared-memory system. At these scales, even
highly-efficient concurrent algorithms and data structures
can become bottlenecks, unless they are designed from the
ground up with throughput as their primary goal.

In this paper, we present three contributions: (1) a char-
acterization of queue designs in terms of modern multi- and
many-core architectures, (2) the design of a high-throughput,
linearizable, blocking, concurrent FIFO queue for many-core
architectures that avoids the bottlenecks and pitfalls com-
mon in modern queue designs, and (3) a thorough evalu-
ation of concurrent queue throughput across CPU, GPU,
and co-processor devices. Our evaluation shows that focus-
ing on throughput, rather than progress guarantees, allows
our queue to scale to as much as three orders of magni-
tude (1000×) faster than lock-free and combining queues
on GPU platforms and two times (2×) faster on CPU de-
vices. These results deliver critical insights into the design of
data structures for highly concurrent systems: (1) progress
guarantees do not guarantee scalability, and (2) allowing an
algorithm to block can increase throughput.

1. INTRODUCTION
Multicore architectures have taken over the CPU market,

and many-core accelerators and co-processors, such as GPUs
and Intel Xeon Phi, are becoming available to all segments
of computing. Each new generation contains more cores,
further compounding the demands on the scalability of soft-
ware. That scalability, more often than not, is governed by
the cost of synchronization and communication.

Concurrent data structures have become basic building
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blocks for the new wave of highly parallel applications, pro-
viding intuitive abstractions atop the complexities of low-
level synchronization and memory-coherence primitives. The
result can be both increased productivity and, when de-
signed well, performance. One of the most ubiquitous of
these is the concurrent first-in, first-out (FIFO) queue.1

The concurrent queue has been studied extensively over
the last four decades. It has gone through a variety of forms
– from infinite-array queues [7, 4] to lock-free queues [11, 14]
to advanced distributed lock-free [8, 5] or even wait-free [9,
10] variants. As concurrency has increased, so has the con-
tention on concurrent queues and the cost of synchroniza-
tion, and frequently serialization, in these designs.

Our goal with this paper is to characterize the perfor-
mance requirements and considerations of concurrent queues
in the multi- and many-core era and to create a concurrent
queue that is tailored for high throughput, even under ex-
treme contention. Our design and evaluation span CPU,
GPU and co-processor architectures using the C, OpenCL,
and OpenMP programming models. Specifically, this paper
makes the following contributions:

1. A characterization of queue designs in terms of mod-
ern multi- and many-core architectures, demonstrat-
ing that allowing blocking in high-contention and low-
oversubscription environments can improve through-
put significantly over non-blocking designs.

2. The design of a linearizable and inspection-compatible,
blocking FIFO queue based on the above characteriza-
tion which is, to our knowledge, the first to combine
these properties.

3. A thorough evaluation of our queue in OpenCL and
OpenMP, including a comparison with several clas-
sic and state-of-the-art concurrent queues and demon-
strating up to a 2-fold speedup on CPUs and as much
as a 1000-fold speedup on GPUs running more than
1000 concurrent threads.

The rest of the paper is laid out as follows. Section 2
presents the background and setup for our work, includ-
ing the machine abstraction that we employ to discuss syn-
chronization and threading in OpenCL and OpenMP en-
vironments interchangeably. Related work follows in Sec-
tion 3. Section 4 characterizes the bottleneck points in con-
current queue designs and models their performance in terms

1As we only discuss FIFO queues in this paper, the term
queue shall be used in place of FIFO queue henceforth.
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of the atomic-operation throughput of many-core architec-
tures. Section 5 presents the design of our queue and its
three interfaces while Section 6 discusses linearizability [7].
Section 7 presents our experimental setup and benchmarks
while Section 8 presents the results of our experiments. Sec-
tion 9 presents concluding remarks and future work.

2. BACKGROUND
In order to discuss the properties of our target architec-

tures in a uniform manner, we first present our abstraction
of the concurrency and memory model that we use across
devices. This section discusses the abstraction that we em-
ploy in this paper in order to discuss OpenMP on CPUs and
OpenCL on CPUs, GPUs and co-processors all interchange-
ably, along with our microbenchmark evaluation of atomic
operations that make this possible across each architecture.

2.1 Threading Abstraction
While the threading models of OpenMP and OpenCL are

significantly different, they can be reconciled. An OpenCL
kernel runs a set of work-groups, each consisting of work-
items or, as they are sometimes unfortunately misnamed
“threads.” We exclusively use the term “work-item” to refer
to these throughout this paper. Work-items are usually a
single lane of a vector computation, rather than an indepen-
dent thread of control. In OpenMP, there is no observable
equivalent to the work-item, though a single iteration of a
loop parallelized by an omp simd directive would be closest.

OpenCL does have an equivalent to the OpenMP thread
however, but its interpretation changes from device to de-
vice. In NVIDIA GPUs, one thread is a “warp,” composed
of 32 work-items. In AMD GPUs, a thread is a “wavefront”
of 32 or 64 work-items. When run on CPUs, work-items
may be either operating system threads or individual lanes
of vector calculations as on GPUs. For common CPUs, this
means each thread may be composed of one to eight work-
items. The width of the thread-equivalent used in a com-
piled kernel in OpenCL can be reliably determined based on
the OpenCL 1.1 kernel work group info property “preferred
work group size multiple,” which is what we use in our im-
plementations. To establish consistent terminology, we use
the term thread to refer to OpenMP threads on the CPU and
Xeon Phi or independent groups of work-items in OpenCL.
Work-items within a thread must execute in lockstep. It is
unsafe for more than one work-item in a thread to interact
with a concurrent data structure simultaneously. When a
thread accesses any queue in this paper, only one work-item
is active.

The additional wrinkle is that OpenCL has no mechanism
to get the number of threads that actually run concurrently.
While a user can request any number of threads, the num-
ber that run concurrently can be anywhere from one to the
requested number. We add counters as depicted in Figure 1
to all benchmarks to count the number of threads that exist
before the first thread finishes execution, which is a reliable
upper bound on the number of concurrent working threads
regardless of the behavior of the OpenCL runtime.

2.2 Memory Model
CPU models like OpenMP depend on cache-coherent shared

memory for correctness. The OpenCL standard does not
provide a sufficiently strong coherence model or a mem-
ory flush that can be used to implement one. The stan-

void test(unsigned *num_threads, unsigned *present){
if(atomic_read(num_threads) != 0)

return;
atomic_fetch_and_add(present,1);
run_benchmark();
atomic_compare_and_swap(num_threads, 0, atomic_read(present));

}

Figure 1: Design of concurrency detection in OpenCL bench-
marks

dard states that “there are no guarantees of memory consis-
tency between different work-groups executing a kernel [1].”
Writes in different work-groups are only guaranteed to be
synchronized at the end of a kernel, and are thus available in
subsequent kernels. The standard specifically allows writes
to global memory to never become visible to other work-
groups within a single kernel.

The exception is atomic operations, available since OpenCL
1.1, which are guaranteed to be visible and coherent across
work-groups within a kernel as long as all work-groups are
executing on the same device. Thus, every write and every
read to global memory that is shared between work-groups
must be atomic to ensure correctness in OpenCL. In prac-
tice, some OpenCL devices support a more coherent memory
model than this, but it is not required and several architec-
tures do not. For example, NVIDIA GPUs present a weak
coherence model, but offer a fence/flush through the PTX
instruction membar.gl, but this is not standard OpenCL and
must be used carefully. AMD GPUs have similar instruc-
tions at the ISA level but inline assembly only accepts the
intermediate CAL language, which has no equivalent.

For consistency, we express all algorithms as a set of ab-
stract atomically coherent instructions. In OpenCL, all op-
erations are implemented with explicit atomic intrinsics, in-
cluding load and store, to maintain coherence. In the CPU
implementation, atomic reads and writes are standard load
and store instructions, while fetch-and-add (FAA) and compare-
and-swap (CAS) use the sequentially consistent memory or-
dering. The algorithm does not intrinsically require that
the ordering be that strong, using the relaxed model on in-
crements with matching acquire and release on reads and
exchanges would be sufficient. We use the stronger consis-
tency model because it is the default in OpenCL 2.0 and
the only model exposed in OpenCL 1.2, which we used to
implement our non-CPU device tests.

3. RELATED WORK
Concurrent queues have been studied for decades, nearly

as long as computers with multiple computational units have
existed to run them. We will elide some of the early history
and refer the reader to the surveys provided by the papers
referenced below, especially the Michael and Scott [11] sur-
vey, which provides significant discussion of early designs.

Array queues. The array queue proposed by Gottlieb et
al. [4] in 1983 is notable for scaling near-linearly to 100 cores
in simulation at the time. The Gottlieb queue can scale to
as many threads as the hardware can run concurrently due
to the use of a a pair of counters to select a location and
fine-grained locking on each location in the queue. Unfortu-
nately, however, the Gottlieb queue has been proven to be
non-linearizable [2] due to the counters, which can cause the
queue to appear empty or full spuriously. Orozco et al. [13]
present two related array queues called the Circular Buffer
Queue (CB-Queue) and the High-Throughput Queue (HT-
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Queue). The CB-queue merges the Gottlieb queue’s two
counters per side into one and in so doing offers linearizabil-
ity. In so doing however, the CB-queue loses the ability to
detect and return full or empty states to the user. Further,
the paper asserts that full and empty status cannot be deter-
mined for the CB-queue and provide only blocking enqueue
and dequeue calls. Lacking inspection, a closed state, and
a non-waiting interface, the CB-queue becomes impractical
for any case where the queue may over- or under-flow, as
either case may cause an irrecoverable deadlock. The pro-
posed solution to the weaknesses of the CB-Queue is to use
the HT-Queue, which regains the ability to detect full and
empty by using the same flawed double-counter mechanism
employed by the Gottlieb queue.

Contended-CAS queues. Michael and Scott [11] present
a pair of unbounded linked-list queues, one lock-free (MS-
queue hereafter) and one lock-based. The MS-queue offers
a linearizable, lock-free queue using a portable single-word
CAS operation and has become the standard unbounded
lock-free queue. While this queue has no full state, due to
its unbounded nature, it naturally detects empty as a func-
tion of the CAS operation, all queues of this and later types
support these states without further work, unlike the ar-
ray queues above. An alternative bounded variant has also
been proposed by Tsigas and Zhang (TZ-queue) [14], which
uses a slightly different mechanism but performs similarly
due to its use of contended CAS for committing operations.
Queues like these are also common components of relaxed
queues [8, 5]. Relaxed queues reduce contention by relaxing
the semantics of linearizability from a strict FIFO queue and
spreading the operations across multiple underlying queues.

List of array queues. Morrison et al. [12] combine ar-
ray and list queues to create the Linked Concurrent Ring
Queue (LCRQ). The LCRQ retains lock-freedom while avoid-
ing contended CAS operations in the common case, by using
a FAA to select a target element like a blocking array queue
might. Since the item selection method is inherently block-
ing, a dequeuer could get a location and then be forced to
wait indefinitely on a slow enqueuer, the LCRQ maintains
lock-freedom by allowing threads to skip operations that
block for too long, introducing the need for retries. After
a certain number of operations, or retries, the underlying
concurrent ring queue (CRQ) is closed, requiring enqueuers
to allocate and initialize new CRQs and then enqueue them
into the LCRQ. The downsides to this approach are the re-
liance on a double-wide CAS (which while common in x86 is
not widely available in mobile or many-core architectures)
and the reliance on the potentially frequent and expensive
allocation and initialization of new CRQs.

Combining. Hendler et al. [6] embrace the serial nature
of lock-free designs and propose a queue that uses coarse-
grain locking along with a request-and-assist model called
the flat-combining (FC) queue. Since only one thread is
actually accessing the queue at any given time, fulfilling re-
quests from other threads, the synchronization overhead and
cache coherence traffic are comparatively low. The down-
side is that the maximum throughput of the FC queue is
the maximum throughput of a single thread, regardless of
the number of accessors. Even so, the throughput limit is
higher than with CAS queues like MS-queue, but it is still
bounded to serial performance.

Finally, several of these queues have been evaluated on
CUDA GPUs by Cederman et al. [3]. Out of a number of

lock-based and two lock-free designs (i.e., MS-queue and TZ-
queue), they conclude that for higher concurrency, the two
lock-free queue designs are nearly always highest performing.
The performance they observe for the MS and TZ queues is
similar to that found in our results for the same number of
workers on comparable GPUs.

4. QUEUE CHARACTERIZATION
Each queue type’s throughput can be modeled in terms of

the time each successful operation blocks other operations
from succeeding. In essence, the throughput is the average
number of times the critical section of each design can be
executed per unit of time. In most queues however, there
is no explicit critical section where a lock is acquired and
released. Rather the critical section is the time spent in a
successful atomic operation, or set of operations, required to
complete an action on the queue. This section benchmarks
the performance of basic atomic operations across CPUs,
GPUs and Xeon Phi and then models the scalability and
throughput of different queue types in terms of atomic op-
eration throughput.

4.1 Atomic Performance
To understand the scaling behavior of current queues, we

must first understand the scalability of atomic operations
on modern architectures. We measure the throughput of
each atomic operation on a contended memory location for
each number of threads. This is accomplished with a set
of microbenchmarks in OpenCL that execute each opera-
tion 1,000,000 times per thread, not work-item, and for each
successful operation increment a 32-bit counter in a register.
At the end of the test, each thread’s count is written to a
separate memory location in global memory to be summed
on the host. The throughput is computed as the number of
operations completed divided by the time taken to execute
the test, not including data movement or host-side setup.

Figure 2 shows the results of our atomic benchmarks for
the five atomic primitives that queue designs commonly rely
on, especially the compare-and-swap (CAS) and fetch-and-
add (FAA) instructions. The CAS test is further broken
down into two components because it is the only atomic
operation we tested that can fail. For CAS we present the
number of operations that were attempted per unit time, and
the number that actually succeeded as separate values. We
do not include results for any atomic arithmetic or bitwise
operations other than add, but they all perform similarly.

The scalability of the operations on each of the three CPU
systems generally follows common knowledge, FAA is faster
than successful CAS at high contention by as much as 10×.
Neither operation scales well however, losing throughput
with additional threads on both Intel systems and gaining
only marginally on the AMD system. An unexpected result
here however was the write/XCHG performance is higher
than read and FAA for most thread counts on the AMD
Opteron CPU. This is probably due to a difference in the
way that the AMD CPUs handle memory invalidation in
their coherence protocol, but a full analysis of the cause
is beyond the scope of this paper. In the past, the higher
cost of CAS has been considered acceptable in order to offer
strong progress guarantees in concurrent algorithms, ensur-
ing that at least one thread makes progress at any given
time. The full cost of it was also limited by the compar-
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Figure 2: Contended atomic operation throughput, each thread executes its instruction 1,000,000 times, successful CAS
represents only the CAS operations that succeed in updating the value

atively small number of threads that could be run concur-
rently on CPU systems.

On the GPUs and Intel’s Xeon Phi FAA, read, write and
exchange throughput scale up dramatically as more threads
are added, and attempted CAS operations increase as well.
Successful CAS throughput does not increase however, in
fact it universally falls as the number of threads contending
to update the single target value increases. At worst, the dif-
ference between successful CAS and FAA expands to 600×
with 1000 threads on the AMD 7970. The stark difference
between these results is due to the fact that operations such
as FAA, read, write, and exchange can be executed com-
pletely in the memory controller without any chance of fail-
ure or retry. Contending operations are then simply queued
there for later execution. On modern hardware, a single
memory location can be incremented by FAA once per cycle
in this fashion. CAS operations can also be handled at the
memory controller, but if they fail they cannot retry without
returning to the program first. As a result, every failure re-
quires a full round-trip back to the processing core for every
failing thread, and often an extra read or other logic, before
another attempt.

4.2 Queue Throughput Modeling
To evaluate the expected performance of each type of

queue across our target architectures, we construct an ide-
alized model of maximum throughput for each type based
on its critical operations. We will model the throughput, T ,
of each queue class in terms of the average latency of the
atomic operations used to implement it. By modeling the
queues in this way, we can extrapolate their expected scal-
ing behavior as the number of available threads increase in
terms of the scaling of their constituent atomics. To simplify
the discussion, we treat the arrival distribution and service
latency as deterministic and uniform and an arrival rate ap-
proaching the throughput. Fixing these allows us to deal
directly with the service rate, or the per-operation latency.

Specifically we are going to discuss contended-CAS queues,
like the Michael and Scott or Tsigas and Zhang queues; un-
contended CAS queues, like the LCRQ or k-fifo queue; com-
bining queues, like the FC-queue; and finally blocking FAA

queues, like the classic array queue of Gottlieb et al. or the
CB-queue. Each model is based on an idealized, minimum
critical section for each type, and serves as an upper bound
on the expected throughput. They do not account for effects
of intermixing other operations on the performance of the
critical section, which can have significant effects especially
on cache-coherent devices. We leave these model extensions
to future work.

Contended-CAS queues rely on a CAS operation on a head
or tail value to update the queue. We base our model on the
canonical MS-queue. The critical section for the MS-queue
is the amount of time between a read of the head or pointer
value and the completion of a CAS to update it, since the
value must not have changed in the intervening period, or
the CAS will fail. In addition to the read and CAS, an extra
write is required to update the next pointer on an enqueue
whereas an extra read to dereference the next pointer is
required on dequeue. The resulting max throughput for a
given number of threads t, which we will represent as Tt, is
modeled in terms of the average latency of read, rt, write,
wt, and successful contended-CAS, ct, by Equation 1. In
words, two operations, one enqueue and one dequeue, can
complete after a period of three reads, one write and two
contended-CAS operations.

Tt =
2

(rt × 2 + ct) + (rt + wt + ct)
(1)

An un-contended-CAS queue behaves quite differently from
a contended version. They tend to use an FAA instruction
to either round-robin between queues, in the case of k-FIFO
and similar, or to select a slot in the manner of an array
queue, which they then update with CAS for safety but
without the failure cost of contended-CAS queues. As a
result, the maximum throughput is not dependent on suc-
cessful CAS latency but rather on attempted CAS latency,
since in the best case there are no CAS failures in this type
of queue. The enqueue and dequeue are also more symmet-
rical in this case, since the CAS is used as both a reading
and writing operation, and no pointer chasing is required in
array-based variants. The resulting model, using Ct and at
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Figure 3: Predicted maximum throughput of each queue for each device and thread count

for average attempted CAS and FAA latency respectively,
is presented in Equation 2.

T =
1

a + r + C
(2)

The combining queue type is unique in that its throughput
is dependent on the latency of reads and writes for exactly
one thread rather than the throughput a given number of
threads is capable of. By using a single thread to perform
all operations on the queue at any given time, the maximum
throughput at any level of contention is the same. At all
numbers of threads we model the combining queue using
the atomic latency for one thread in terms of Equation 3.
This form is effectively the same as one would use for a
serial queue, except that an additional read is performed to
determine the operation to perform. This is followed by the
operation itself, a read or a write into the queue, and a write
to inform the requesting thread of completion.

T =
2

(r1 + w1 × 2) + (r1 × 2 + w1)
(3)

Lastly, FAA queues are relatively similar to the un-contended-
CAS type in behavior, except that instead of relying on a
CAS for the final update they depend on an algorithmic
guarantee that the target they receive from the initial FAA
will eventually be valid for their use. As a result, the best-
case performance is just an add, a read or write depending
on the operation, and a write to update the target for the
next thread.

T =
2

(a + r + w) + (a + w + w)
(4)

The predicted maximum throughput for each design based
on the models above and the atomic latency measured in
the last section is presented in Figure 3. On the CPUs, it
is clear why combining queues have come into favor, since
the throughput of a single thread is universally better than
that with threads on all cores contending on memory. The
contended-CAS type starts as best on all three CPUs with
one thread, but universally falls below as the number of
threads increases. The un-contended CAS and FAA queue

designs are the most promising for modern high-contention
devices such as GPUs however. The prediction for the AMD
7970 and Tesla K20c GPUs show the FAA queue throughput
reaching as much as 196 and 377 times faster respectively
than the contended-CAS queue on the maximum number
of threads. Our modeled results show that the bottleneck
of contended-CAS-based synchronization becomes progres-
sively more onerous as the number of threads increases, and
incurs an unacceptable level of overhead on many-core de-
vices. Despite the fact that the FAA queue shows the best
scaling on high thread counts however, as mentioned in Sec-
tion 3, the existing array or FAA queue variants all lack at
least one desirable property of safety or usability.

5. DESIGN
The main goal of our design is to create a queue with as

little overhead and as much concurrency as possible while
maintaining linearizability and usability. Given the signifi-
cant throughput advantages demonstrated in Section 4, our
goal becomes to produce a linearizable and practical concur-
rent queue without the need for contended CAS operations
in the common case. The CAS operations are normally used
to provide a strong progress guarantee, at least non-blocking
if not complete lock-freedom, that is highly valuable in en-
vironments where oversubscription is common and threads
being scheduled out while in critical sections is a significant
performance concern. Combining queues have come into
being based on the fact that CPUs are less oversubscribed
now than they were in the past, and many-core devices such
as GPUs often cannot be oversubscribed at all, lacking a
context-switching mechanism.

Because oversubscription has become relatively rare in
many-core, we propose an array-based blocking queue that,
unlike those existing in the literature, offers both inspection
of state, in terms of full, empty and number of operations in-
flight, and linearizability together. We further support safe
interaction with the queue from threads that cannot block,
or should deal with full/empty states, by providing two dis-
tinct interfaces to the same queue, similar to those offered by
communication libraries (e.g., TCP sockets). Each interface
has different waiting characteristics: (1) a high-throughput
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blocking interface and (2) a low-latency non-waiting inter-
face.

5.1 The Queue Structure
Our queue’s structure, represented in Figure 4a, is rela-

tively simple, containing head and tail counters as unsigned
integers along with arrays of items and IDs. For simplicity
we use unsigned integers as the values, but extensions for
arbitrary data are trivial.

In order to correctly handle integer rollover, a real concern
as 232 queue operations can complete in a matter of seconds
on GPUs, we include a #define for the maximum id value
based on the queue size. The maximum is selected such that
when the head or tail roll over to zero, the id value will do
the same. The MAX_ID value must be at least double the
value of MAX_THREADS+1 and the sum of MAX_THREADS and
QUEUE_SIZE, the MAX_DISTANCE, must be less than half of
the maximum value representable by the unsigned integer
type storing head and tail. All values in the data structure
should be initialized to zero.

5.2 The Blocking Interface
Our blocking functions are represented in Figure 4b.2 Our

blocking functions begin by acquiring a ticket for their cur-
rent transaction by atomically incrementing their respective
counters on line 4. A ticket serves to select both the target
location, by being modded by QUEUE_SIZE on line 5, and
the id for the transaction. The ID is the number of times
the algorithm has passed through the entire queue’s length,
calculated by the GET_ID() macro, plus one in the dequeue
case. Once the target id is equal to the transaction id the
current thread effectively holds a lock on that element of the
queue and leaves the loop. A value is then either added to
or copied from the queue, as appropriate on line 12, and the
id safely incremented to preserve consistency across rollover
on line 13, which also frees the next transaction on that slot.

Subsequent, or concurrent, calls to the blocking interface
receive unique target addresses and ID combinations with-
out retries or waiting, thanks to the FAA. As long as the
queue is not full, each enqueue can complete with a con-
stant total of four atomic operations. When the target item
is busy, it waits in the loop at line 7 checking for closed status
and backing off as appropriate. This can be a truly blocking
operation, yielding to the system to wait on a notification,
but is implemented as a busy wait in our tests. The CPU
version does use a scheduling yield in the backoff routine
to allow other threads to proceed however. The ordering
imposed by incrementing the target address at each request
has the effect of also enforcing fair ordering and preventing
individual starvation in this interface short of a thread dy-
ing inside a critical section or complete OS starvation of a
thread.

Unlike other blocking array queues in the literature, we
contend that a closed state is required for usability, and does
not interfere with linearizability. Once all items that will
exist have been completely enqueued and dequeued, there
must be a way to inform the threads blocked in dequeue to
exit. The closed value in the queue is used for this purpose.

2Note that the CPU and OpenCL implementations of all of
our interfaces are identical save for the addition of memory
qualifiers in the OpenCL version. In fact, our evaluation
uses a single source version of all queues for both CPU and
OpenCL tests, simply compiled with different compilers.

Setting closed to true invalidates the queue for all future
operations. Closing causes any enqueue or dequeue that is
waiting to reverse its ticket acquisition, allowing the sta-
tus inspection interface to detect when all waiting threads
have left, and return immediately with the status CLOSED.
All subsequent calls also return CLOSED without attempting
to update the queue. This is equivalent to closing a commu-
nication channel like a socket or file descriptor.

5.3 The Non-Waiting Interface
Figure 4c presents our non-waiting interface. Fundamen-

tally, the non-waiting functions are inverted versions of the
blocking functions. Rather than immediately reserving a
ticket, which could require them to block, the non-waiting
functions simply read the value. Having read a ticket, they
check whether the current target item is ready on line 7. If
the id value indicates the item is busy then acquiring an item
at this time would require blocking, so BUSY is returned im-
mediately. If the id matches, the thread attempts to acquire
the associated target by incrementing the counter with the
CAS on line 9. If the CAS fails, the non-waiting function
returns BUSY, otherwise it has successfully acquired a ready
target so it completes its operation and returns SUCCESS.

While we implemented the blocking interface completely
without CAS, to implement the non-waiting functions in
that way is infeasible. Specifically, there is no way to atomi-
cally acquire a specific ticket without a conditional atomic or
transaction, such as CAS, Load-Linked Store-Conditional,
or optimally a compare-and-add. Using an unconditional
FAA in place of the CAS would get a ticket, but with no
guarantee that it would be the ticket which had been checked
ahead of time. While this has the same performance con-
sequences as the contended-CAS queues face, it has the ad-
vantage of interleaving with the blocking queue, allowing
threads to attempt an operation on the queue safely, or a
single thread using the interface persistently to watch for
persistent full or empty states and act to remedy them. This
cannot be done with other blocking queue designs that pre-
serve linearizability, and is a key benefit to the overall design.

Note that we avoid the use of the terms “wait-free,”“lock-
free” and “non-blocking” in this section. While these func-
tions do not wait, calls to either enqueue_nb() or dequeue_nb()
will fail if another operation is in progress on the slot they
request, or if the queue is full. In a non-full queue, the non-
waiting interface does guarantee that at least one thread
makes progress at a time, equivalent to the guarantees made
by other array-based queues such as the tz-queue.

5.4 The Status Inspection Interface
Much like the CB-queue, our blocking interface does not

support returning “full” or “empty” states directly from the
enqueue or dequeue functions. While they are not required
for a correct concurrent queue, these states are often used
to simplify the detection of completion in a concurrent al-
gorithm, and as such are missed when they are unavailable.
Rather than re-designing the algorithm to address this weak-
ness however, we design a separate interface that provides
checks for these states as well as the number of waiting
threads on either end of the queue. The main difficulty
in implementing this functionality is that head and tail can
not be directly compared. There is a distinct chance that
one, but not the other, has rolled over causing the less-than
or greater-than relationships to be reversed.
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1 /* Defines */
2 #define MAX_ID (UINT32_MAX/(QUEUE_SIZE*2))
3 /* Maximum possible distance between head and
4 * tail for the status inspection interface */
5 #define MAX_DISTANCE (QUEUE_SIZE \
6 + MAX_THREADS)
7

8 /* Macros */
9 #define GET_ID(X) ((X / QUEUE_SIZE) * 2)

10 #define INC_SAFE(Q, T, ID) atomic_write( \
11 &(Q)->ids[T],\
12 ((ID)+1) % MAX_ID)
13

14 /* Structures */
15 typedef struct {
16 union {//anonymous pair, allows inspection
17 uint64_t combined;
18 struct {
19 uint32_t head, tail;
20 };
21 };
22 bool closed;
23 uint32_t items[QUEUE_SIZE];
24 uint32_t ids[QUEUE_SIZE];
25 } queue_t;

(a) Definitions and Structure

1 int enqueue(queue_t *q, uint32_t item) {
2 if (atomic_read(&q->closed) != 0)
3 return CLOSED;
4 uint32_t ticket = atomic_add(&q->tail,1);
5 uint32_t target = ticket % QUEUE_SIZE;
6 uint32_t id = GET_ID(ticket);
7 while(atomic_read(&q->ids[target])!=id){
8 if (atomic_read(&q->closed) != 0){
9 atomic_sub(&q->tail,1);

10 return CLOSED; }
11 backoff(); }
12 atomic_write(&q->items[target], item);
13 INC_SAFE(q, target, id);
14 return SUCCESS;
15 }

1 int dequeue(queue_t *q, uint32_t * p) {
2 if (atomic_read(&q->closed) != 0)
3 return CLOSED;
4 uint32_t ticket = atomic_add(&q->head,1);
5 uint32_t target = ticket % QUEUE_SIZE;
6 uint32_t id = GET_ID(ticket) + 1;
7 while(atomic_read(&q->ids[target])!=id){
8 if (atomic_read(&q->closed) != 0){
9 atomic_sub(&q->head,1);

10 return CLOSED; }
11 backoff(); }
12 *p = atomic_read(&q->items[target]);
13 INC_SAFE(q, target, id);
14 return SUCCESS;
15 }

(b) Blocking Interface

1 int enqueue_nb(queue_t *q, uint32_t item) {
2 if(atomic_read(q->closed) != 0)
3 return CLOSED;
4 uint32_t ticket = atomic_read(&q->tail);
5 uint32_t target = ticket % QUEUE_SIZE;
6 uint32_t id = GET_ID(ticket);
7 if(atomic_read(&q->ids[target]) != id)
8 return BUSY;//next slot not ready
9 if(atomic_cas(q->tail,

10 ticket, ticket+1) != ticket)
11 return BUSY;//CAS failed, return
12 atomic_write(q->items[target], item);
13 INC_SAFE(q, target, id);
14 return SUCCESS;//element enqueued
15 }

1 int dequeue_nb(queue_t *q, uint32_t * p) {
2 if(atomic_read(q->closed) != 0)
3 return CLOSED;
4 uint32_t ticket = atomic_read(q->head);
5 uint32_t target = ticket % QUEUE_SIZE;
6 uint32_t id = GET_ID(ticket);
7 if(atomic_read(&q->ids[target]) != id)
8 return BUSY;//oldest not ready
9 if(atomic_cas(&q->head,

10 ticket, ticket+1) != ticket)
11 return BUSY;//CAS failed, return
12 *p = atomic_read(q->items[target]);
13 INC_SAFE(q, target, id);
14 return SUCCESS;//element dequeued
15 }

(c) Non-waiting Interface

Figure 4: Structure and interfaces to the queue with the volatile keyword removed for space; All “atomic *” calls map to the
corresponding atomic intrinsic

We address this case by establishing the maximum abso-
lute distance possible between head and tail and checking
to see if the current distance is greater than that maximum.
If this happens, it must be because one counter has rolled
over and the distance should be calculated across the rollover
point. The maximum distance between head and tail in our
queue is the sum of the queue length and the maximum num-
ber of threads that are allowed to interact with the queue
concurrently. If the maximum distance is less than half the
maximum value representable by the counter, single-counter
rollover can be reliably detected in this fashion. For a 64-
bit unsigned integer, the sum of the queue’s length and the
maximum concurrent accessors must be less than or equal
to 263 − 1, which we believe is a reasonable limit. If more is
required, the size of the counter should be increased.

6. LINEARIZABILITY
To provide a proof of linearizability, we must first define

the semantics of our target data structure. Based on in-
struction ordering our algorithm models a concurrent FIFO
queue. When return states, such as empty, full, closed
and busy, are included in the requirements for linearizabil-
ity however, our states do not match. We give our queue
the semantics of a channel queue: a queue which models a
double-sided communication channel, such as is presented by
file descriptors and sockets, that can return success, closed,
busy, empty or full. If a channel queue is in the closed state
then all functions will return closed. If a non-waiting func-
tion cannot complete without blocking, busy is returned. All
other cases model a concurrent FIFO queue, allowed only to
return success, full or empty. In truth, this semantic is more
common of concurrent queues in production than the tradi-
tional model’s restriction to empty, full and success, and
is modeled by the interface of the standard BlockingQueue
class in Java as well as the interface to the concurrent Wait-

ingQueue class proposed for inclusion in the C++1y stan-
dard.

Using the techniques and definitions presented by Her-
lihy et. al. [7], we model access to our concurrent queue as
a history h. That history is a potentially infinite series of
invocation and response events, representing the beginning
and end of calls to functions defining our interface. Any
response in h is necessarily preceded by a matching invo-
cation in h but it is valid for an invocation in h to remain
pending, lacking a response, at the end of h. Events are
said to be ordered in h only if the response of an event e1
precedes the invocation of an event e2 and this relation is
denoted by e1 <h e2. Any pair of events that cannot be
compared in this way is said to overlap, and thus may be
ordered arbitrarily with respect to one another. The history,
h, is linearizable if the strict partial order can be fixed into
a total order →h such that the specifications of the object
are preserved.

Any history that can be produced by our implementa-
tion can be associated with a history mapped onto an aux-
iliary array of infinite size. Using this auxiliary array, our
algorithm guarantees that every enqueue, blocking or non-
waiting, will monotonically increase the values of the tail
counter and thus insert elements consecutively into the infi-
nite array. In the same way, our dequeues monotonically in-
crease the value of head and consume elements consecutively.
Thus all items are dequeued in the same order they were en-
queued, or are overlapped. Any element that is added is
accounted for, and cannot be removed until it is acquired.
Acquisition can only happen in order, preventing any items
from being skipped or dequeued before being enqueued. All
interleaving between the blocking and non-waiting interface
are also in-order, as they acquire and interact with the queue
using the same ticket and turn mechanism.

Given these, the only source of non-linearizable behav-
ior possible is from multiple operations waiting on the same
target item with the same id. Given our invariant that the
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MAX_ID is greater than double MAX_THREADS, this case cannot
occur, as ids are not recycled until the queue has been cy-
cled through completely at least MAX_ID times. Given that
invariant, even if a queue of length one were to have the
maximum number of threads waiting on it, both ordering
and fairness are preserved between those accesses.

The above sketches a proof of the key invariant for concur-
rent queues, that if enqueue(x) < enqueue(y), where x and
y are the values enqueued, then dequeue(x) < dequeue(y)
or dequeue(x) and dequeue(y) overlap. To simplify reason-
ing about the ordering, our functions “take effect” at specific
points between their invocation and response, but as with
any algorithm employing critical sections there is no single
instruction that serves as the universal linearization point.
Operations are considered to take effect on the status of the
queue, observable only through the get_distance() func-
tion and its siblings, after committing to the addition or
removal of an element by acquiring a ticket with either FAA
or incrementing CAS. All enqueue and dequeue operations
are ordered in the sequential history by their increment of
the id associated with their target item. Any temporary
discrepancy in queue structure between invocation and re-
sponse is protected by the critical region formed between
ticket acquisition and id increment.

7. EXPERIMENTAL SETUP
In order to perform our evaluation across a wide range of

modern hardware, we have created a version of each queue
using both OpenMP and OpenCL. This section will discuss
the evaluated queues, our benchmark designs and the hard-
ware evaluated.

7.1 The Queues
In addition to our own, we include implementations of

two traditional lock-free queues, the TZ and MS queues,
the Flat Combining (FC) queue, and the LCRQ. All queues
are implemented to store 32-bit unsigned integers and where
memory allocation would normally be necessary use a non-
blocking concurrent free-list of appropriately-sized objects
that is pre-allocated before each test. The same free-list
mechanism is used on both CPUs and GPUs for consistency,
and nearly eliminates de-allocation cost but still incurs ini-
tialization cost.

Our MS-queue implementation is directly derived from the
source code used in the original MS-queue publication [11].
It has been modified minimally to support thread-based
rather than process-based parallelism and the memory model
presented by OpenCL. The TZ-queue has been faithfully
re-implemented using the algorithm and optimizations de-
scribed in the paper proposing it [14]. The flat combining
queue is based on the authors source but reimplemented
in C/OpenCL from the original C++. Lastly, the LCRQ
is based on the pseudocode in the publication proposing
it [12]3. Our LCRQ implementation deviates in two key
ways from the original pseudocode, it includes the spin wait-
ing optimization proposed in the paper, and uses 32 rather
than 64 bit values. The value size is changed to allow the al-
gorithm to function on devices that support 64-bit but not

3We did correct one error in the pseudocode, line 45 should
compare (safe,idx,val) rather than (safe,h,val) as the original
states, the text description in the original paper agrees with
this modification.

128-bit CAS operations. We evaluated the 32-bit version
against a 64-bit version of the algorithm and found that the
throughput remains within the range of measurement error
for all cases.

The OpenCL and OpenMP implementations of each queue
share the same source, with only memory location qualifiers,
atomics and memory synchronization primitives differenti-
ated through C macros. For all fixed-length queues, the
queue length was set at 65,536 elements for the purpose of
our evaluation, separate tests with varied sizes did not reveal
significant correlation with performance except when using
very small sizes, so these results are elided.

7.2 Benchmarks and Methodology
These queue implementations are evaluated across a pair

of microbenchmarks designed to measure queue throughput.
We define throughput for our evaluation as the number of
enqueue and dequeue operations successfully completed per
second, or queue operations per second. The first bench-
mark is a traditional matching enqueue and dequeue bench-
mark, essentially a balanced producer consumer pattern. All
threads execute a loop containing an enqueue, a call to some
work, a dequeue, and another call to work. The work be-
tween each queue operation is comprised of 100 iterations of
addition and multiplication on a value read from and stored
back to positions in global memory determined by the value
last received from the queue. This work is sufficient to avoid
a single thread running through multiple operations without
interference, and decreases the performance of the highest
throughput implementations by approximately 10% com-
pared to a version without work4. Our second benchmark is
based on an imbalanced producer/consumer pattern. One in
every four threads only enqueues, and the other three only
dequeue, these operations are also separated by the same
work as in the first benchmark. Both benchmarks are con-
figured to perform as many operations as possible in five
seconds and report the number of successful operations. We
selected five seconds after running a round of tests ranging
from two seconds to a minute and a half per data point
and finding that anything over three seconds is sufficient to
overcome variance effects across our target platforms.

The OpenMP implementation ends the test by creating
an extra thread that sleeps and sets a done value, stop-
ping the test after the specified time. OpenCL offers no
such mechanism, neither the extra thread nor the sleep. To
get around this, we assign one thread to execute a loop per-
forming mathematical operations on its registers for approx-
imately five seconds. Since the number of operations re-
quired changes based on the device, the test and sometimes
the queue under test, as a result of register usage changes,
our run-scripts automatically tune the number of iterations
such that each test runs for between 4.95 and 5.5 seconds
on all OpenCL platforms. The downside to this approach
is that we lose one potential thread, but with throughputs
that range up to three orders of magnitude, evaluation us-
ing a fixed time rather than a fixed number of operations is
essential.

7.3 Devices
Table 1 lists the devices used to conduct our experiments,

4Some implementations, including LCRQ, perform better
with the work than without it, as a result of reduced con-
tention on the queue producing fewer CAS retries.
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Device Cores/ Threads/ Max. Max.
device core threads achieved

GPUs/Co-processors
AMD HD5870 20 24 496 140
AMD HD7970 32 40 1280 386

AMD HD7990(one die) 32 40 1280 1020
Intel Xeon Phi P1750 61 4 244 244

NVIDIA GTX 280 30 32 960 960
NVIDIA Tesla C2070 14 32 448 448
NVIDIA Tesla K20c 13 64 832 832

CPUs
2xAMD Opteron 6272s 16 1 32 32
4xAMD Opteron 6134s 8 1 32 32

2xIntel Xeon E5405s 4 1 8 8
Intel Xeon X5680 12 2 24 24
Intel Core i5-3400 4 1 4 4

Table 1: Target hardware platforms

along with their core counts, the number of thread con-
texts that can be loaded concurrently on each core, and
the maximum hardware threads on the device. Note that
the maximum threads listed in the table is the theoretical
maximum, and in the case of GPUs is not always achievable
due to limitations on available register space. The maxi-
mum achieved column lists the largest number of concurrent
threads available to our tests, not all queues make it to those
values but none make it above. All test systems run Debian
Wheezy Linux on a 64-bit 3.2.0 stock kernel. NVIDIA de-
vices use driver version 313.30 and the CUDA 5.0 SDK for
OpenCL. AMD GPUs use the AMD APP SDK version 2.8
for OpenCL and the FGLRX version 9.1.11 driver. The In-
tel Xeon Phi card uses the MPSS gold update 3 driver and
firmware. OpenMP tests were compiled with the Intel ICC
compiler version 13.0.1 with optimization level 3 and inter-
procedural-optimization turned on.

8. RESULTS AND DISCUSSION
We evaluate all queues across all hardware discussed above,

with the exception of LCRQ on AMD GPUs because the
AMD GPUs do not support bitfields or 64-bit atomic CAS.
Since our queue presents two interfaces, we present three
different configurations for it. Each is labeled in the fig-
ures as “New -” followed by which enqueue and dequeue
functions it uses for all enqueues and dequeues in the test.
The three configurations are the two homogeneous config-
urations, paired sets of blocking or non-waiting interface
calls, plus a version using the non-waiting dequeue with the
blocking enqueue. We expect that the most common use-
case would be using the blocking interface for all but one, or
perhaps a small number, of threads using the non-waiting
interface to detect algorithm completion, which is best rep-
resented by the blocking results.

8.1 CPU Performance
The CPU results based on these tests can be found in Fig-

ure 5. Each CPU is tested from two threads up to the maxi-
mum number of hardware threads supported by the system.
In multi-socket systems threads are spread in round-robin
fashion across dies using the Intel OpenMP “scatter” affin-
ity policy. While the multi-socket systems tend to maintain
or lose throughput as threads are added, the single socket
Intel Xeon X5680 gains throughput with each additional
thread. This due to the fact that the single CPU only has
one memory controller, allowing atomics to be completed
without out-of-die coherence overhead. The AMD Opteron
6272 results are also notable for having better performance

in practice than the predicted maximums from Section 4.
Since our predictions are based entirely on 100% contentious
atomic throughput, our models evidently under-predict for
platforms that gain higher throughput of atomic operations
when contention is lower.

In terms of the individual queues, in almost all cases the
highest throughput comes from our blocking interface, fol-
lowed by the LCRQ. The TZ and MS queues fare poorly
in general across each of the CPUs, their performance de-
grading with each additional thread due to the increasing
CAS retry overhead. On the AMD devices and the Xeon
X5680, the FC-queue performs materially better than the
classic lock-free variants for the matching enqueue/dequeue
benchmark. The FC-queue even gains performance with ad-
ditional threads on the AMD devices thanks to its compar-
atively low coherence overhead.

LCRQ’s performance on the AMD systems reveals an im-
portant characteristic of its design. In the matching en-
queue/dequeue test it scales well, performing nearly as well
as our blocking interface up to 32-cores. The producer/-
consumer benchmark, on the other hand, shows LCRQ’s
performance degrading sharply as more threads are added.
This is due to retries and memory initialization overhead
caused, not by CAS, but by LCRQ operations skipping slots
by marking them unsafe. Whenever an operation times out,
as is common in our imbalanced producer/consumer bench-
mark, the item reserved by that operation is marked unsafe,
and it retries potentially marking many more unsafe along
the way. This also means that the matching operation on
that item must retry. Eventually, the retries cascade into
the closing of the CRQ as a whole, forcing initialization of
a new CRQ by all threads attempting to enqueue at that
time. We employ the optimizations proposed to minimize
this behavior, specifically spin waiting before marking a slot
unsafe and employing a high starvation cutoff for enqueues,
but still observe the problem. The Intel X5680 does not
observe this behavior because of those optimizations, but
they are insufficient for the multi-socket systems. This con-
dition could be avoided in LCRQ if it were allowed to wait
indefinitely for a matching enqueue, but that would make
it blocking, and can actually produce deadlocks in the al-
gorithm, since dequeuers might not be aware of the need to
move to a new CRQ.

8.2 Effects of Oversubscription
While we designed our queue with no oversubscription in

mind, and for architectures where it is often not possible, it
is still at least a potential reality in CPU systems. In order
to evaluate the effect of oversubscription on throughput we
tested all queues with thread counts from two to 128 on
a four-core CPU in Figure 6. All queues include a thread
yield as part of their back-off routine, immediately allowing
another thread to be scheduled in place of the thread which
is waiting.

As has been shown in other recent work [12], the FC-
queue suffers greatly from oversubscription as a result of
the combiner being scheduled out frequently. The lock-free
queues, MS, TZ and LCRQ on the other hand perform quite
well in this test, as expected since this is the environment
they are designed for. Both the MS and LCRQ designs
maintain their performance across the full range. On the
other hand the TZ-queue and our non-waiting interface tend
to perform better than either by between 10 and 75%.
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Figure 6: CPU performance when heavily oversubscribed,
results of tests running from two to 128 threads on a four
core Intel CPU

Finally the blocking interface does lose performance as
more threads are added, but not so much as might be ex-
pected from a blocking design. Since the blocking is ex-
tremely fine-grained, and the potential concurrency extremely
high, the blocking interface actually outperforms the MS-
queue and maintains 50% of its maximum throughput with
32× more threads than hardware thread contexts.

8.3 Accelerator Performance
This section presents throughput results with the same

benchmarks across seven many-core accelerator architectures
in Figures 7a and 7b. Please note that unlike the CPU re-
sults, the range in performance on the accelerators requires
us to use a log-scale for the bandwidth axis on our plots.

The first important difference between the accelerators
and CPUs is the sheer number of thread contexts the accel-
erators support. Even the smallest, the AMD 5870, hosts
140 concurrent thread contexts for most benchmarks, more
than four times as many as the CPUs. Recall that this
is in threads, not OpenCL work-items, for the number of

work-items multiply the threads on AMD GPUs by 64, and
NVIDIA GPUs by 32 to get the full number. The two
largest go far higher, with the 7990 reaching 1020 concur-
rently loaded threads, and the K20c hosting 832 for a total of
65,280 and 26,624 work-items respectively. The Phi device
runs the OpenMP benchmark source from the CPU tests,
so its 244 threads are standard OpenMP threads.

8.3.1 Matching Enqueue/Dequeue Results
The enqueue/dequeue results on accelerators (Figure 7a)

scale more like a single-socket CPU than a multi-socket sys-
tem. Since the accelerator cores all share a single memory
controller, this is expected. The material difference from the
CPUs is that each additional thread increases performance
noticeably for our blocking interface. On the 7990 the per-
formance scales from 0.585 million operations per second on
two threads to 380 million operations per second on 1019
threads. This makes for a 650× increase in throughput for
a roughly 509× increase in the number of threads5. Simi-
larly, the K20c attains 256× higher throughput with 415×
more threads. The cache-coherent Intel Xeon Phi coproces-
sor scales somewhat less than the GPUs, going from 0.963
Mops/s to 11.462, for a more modest but still significant in-
crease in throughput of 12× for roughly 120× more threads.
The exceptions to the rule in terms of scalability are the
GTX280 and C2070 NVIDIA GPUs, whose atomic imple-
mentations are less mature, and as a result only scale to a
fraction of the throughput of the others.

By far the best performing lock-free design across the ac-
celerators is the LCRQ. On the Xeon Phi its performance is
nearly indistinguishable from that of our blocking interface.
The NVIDIA implementations do not scale to the full num-
ber of threads due to LCRQ’s high register usage, but for
the thread-counts supported the throughput is quite high.

5The super-linear increase in throughput is not due to any
super-linear property of the algorithm, but rather to the fact
that the GPU tends to run in a lower performance state
when under-utilized.

International Conference on Performance Engineering (ICPE), Austin, TX, USA, 2015.



● ●
●

●
●

● ●
● ● ● ● ● ●

● ● ● ● ● ● ●

●

●

●
● ● ● ● ●

●

●

●
●

●
● ● ● ●

AMD HD5870 AMD HD7970 AMD HD7990 Intel Xeon Phi

NVIDIA GeForce GTX 280 NVIDIA Tesla C2070 NVIDIA Tesla K20c

2−6

2−4

2−2

1

4

16

2−4

2−2

1

4

16

64

256

2−4

2−2

1

4

16

64

256

2−3

2−2

2−1

1

2

4

8

2−8

2−6

2−4

2−2

1

4

2−2

1

4

16

2−2

1

4

16

64

256

0 25 50 75 100 125 0 100 200 300 0 250 500 750 1000 50 100 150 200

0 250 500 750 0 100 200 300 400 0 200 400 600 800

Independent threads

O
pe

ra
tio

ns
 in

 m
ill

io
ns

 p
er

 s
ec

on
d 

(L
og

 2
)

Queue

●

Flat−Combining queue

LCRQ−32bit

Michael and Scott queue

New − Blocking Enq&Deq

New − Non−waiting Deq, Blocking Enq

New − Non−waiting Enq&Deq

Tsigas and Zhang queue

(a) Throughput on each accelerator for the weak-scaling matched enqueue/dequeue benchmark

●
●

●

●

●

●
● ●

●
●

●

●

●

●

● ●
●

●
●

●

● ●

●

●
●

●
● ●

● ●

●

●
●

● ● ● ● ● ●

AMD HD5870 AMD HD7970 AMD HD7990 Intel Xeon Phi

NVIDIA GeForce GTX 280 NVIDIA Tesla C2070 NVIDIA Tesla K20c

2−6

2−4

2−2

1

4

2−4

2−2

1

4

16

64

2−4

2−2

1

4

16

64

256

2−3

2−2

2−1

1

2

4

2−8

2−6

2−4

2−2

1

2−8

2−6

2−4

2−2

1

4

16

2−8

2−6

2−4

2−2

1

4

16

64

0 25 50 75 100 125 0 100 200 300 0 250 500 750 1000 50 100 150 200

0 250 500 750 0 100 200 300 400 0 200 400 600 800

Independent threads

O
pe

ra
tio

ns
 in

 m
ill

io
ns

 p
er

 s
ec

on
d 

(L
og

 2
)

Queue

●

Flat−Combining queue

LCRQ−32bit

Michael and Scott queue

New − Blocking Enq&Deq

New − Non−waiting Deq, Blocking Enq

New − Non−waiting Enq&Deq

Tsigas and Zhang queue

(b) Throughput on each accelerator for the producer/consumer benchmark, of every four threads, one is producer the other three are
consumers

Figure 7: Accelerator benchmark results
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LCRQ’s highest performance on the K20c, at 623 threads,
is 201.848 Mops/s, only 16% below the throughput of our
blocking interface with the same number of threads.

The contentious-CAS-based queues, FC-queue and our
non-waiting interface, tend to lose performance as the num-
ber of threads increases and the rate of successful CAS op-
erations drops. The fastest of these, the TZ and our non-
waiting design, only achieve 0.342 and 0.994 Mops/s respec-
tively on 1019 threads on the AMD 7990, or 1, 112× and
383× lower respectively than the blocking interface in the
same test. The K20c results are similar, with TZ perform-
ing 0.386 Mops/s and our non-waiting performing 1.357 for
differences of 635× and 181× respectively. FC performs sim-
ilarly to these traditional designs on the GPUs, but achieves
5× better throughput on the cache-coherent Phi, where its
cache friendly design offers material benefits. It is worth
noting that, while it is not lock free, the non-waiting in-
terface of our queue tends to outperform its counterparts in
this space on these architectures, seemingly due to the lower
number of instructions per operation.

8.3.2 Producer/Consumer Benchmark Results
Results for the producer/consumer test are presented in

Figure 7b. As expected, the producer consumer test shows
roughly 50% lower throughput across the board due to using
50% less enqueuers than dequeuers. All queues are affected
by the imbalance roughly equally, except LCRQ.

The change in LCRQ results is most visible on the Xeon
Phi, where rather than being nearly a match for the blocking
interface, it drops to the performance of FC-queue after only
75 threads. Though LCRQ’s throughput is variable, it never
reaches half of the throughput of the blocking interface in
this test on Xeon Phi. On the NVIDIA GPUs, LCRQ is now
below the traditional lock-free designs and our non-waiting
interface by a factor of 8. LCRQ’s performance degrades
with each added thread on the k20c, reaching a low of 0.003
Mops/s with 623 threads, where the next lowest, the FC-
queue, is 0.322 Mops/s, and the blocking interface performs
91.803 Mops/s, four orders of magnitude higher throughput
than LCRQ. It is quite apparent that applications of this
nature, where consumers and producers are imbalanced, are
pathologically bad for LCRQ. None of the other queues are
materially affected by the imbalance.

9. CONCLUSIONS
In this paper, we present a characterization of concur-

rent queue designs across multi- and many-core architec-
tures, and our design of a linearizable, inspection capable,
high-throughput FIFO queue engineered for many-core ar-
chitectures. Our characterization found that, largely due to
the serialization caused by CAS operations, either an un-
contended CAS design or a FAA-based array queue should
scale best. Despite this, there are algorithms that are dif-
ficult or impractical to implement on a queue with only a
blocking interface that does not allow detection of full or
empty states. To address this limitation, our queue de-
sign includes both high-throughput blocking and low-latency
non-waiting interfaces to customize interactions with the
queue on a per-thread or per-interaction basis, both of which
are linearizable to the semantics of a “channel queue,” as
well as a status inspection interface which can reveal full
and empty states as well as how many blocking enqueues or
dequeues exist. While queues with hard progress guaran-

tees and unbounded size have their benefits, we have shown
that focusing on throughput and avoiding retry-based al-
gorithms can produce exceptionally high throughput across
a wide range of real-world multi- and many-core hardware.
Counter-intuitively, designing an algorithm that allows block-
ing to occur but increases the maximum concurrency of the
structure results in greater throughput. In fact, our evalua-
tion finds that performance can be improved by as much as
1000-fold for some problems in an environment with more
than 1000 concurrent threads.

In the future, we intend to investigate ways to create data
structures of this type that are capable of offering some of
the progress and safety guarantees of lock-free structures.
Our queue might for example serve the purpose that the
CRQ serves for the LCRQ data structure. An extension
to support blocking, rather than spinning, thread waiting
semantics could also be added by exchanging the id-based
scheme for another. Further, we believe that this queue
could be used to enhance a number of design patterns such
as dynamic load-balancing and persistent threading on GPU
and fused CPU/GPU architectures.
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