
ClusterFetch: A Lightweight Prefetcher for General
Workloads

Haksu Jeong
Software R&D Center
Samsung Electronics

Suwon, 443-742, Korea
hks.jeong@samsung.com

Junhee Ryu
Networks Business

Samsung Electronics
Suwon, 443-742, Korea

junhee.ryu@samsung.com

Dongeun Lee
School of Electrical and

Computer Engineering, UNIST
Ulsan 689-798, Korea

eundong@unist.ac.kr
Jaemyoun Lee

Dept. Computer Science &
Engineering

Hanyang University
Ansan 426-791, Korea

jaemyoun@hanyang.ac.kr

Heonshik Shin
Dept. Computer Science &

Engineering
Seoul National University

Seoul 151-744, Korea
shinhs@snu.ac.kr

Kyungtae Kang
Dept. Computer Science &

Engineering
Hanyang University

Ansan 426-791, Korea
ktkang@hanyang.ac.kr

ABSTRACT
Application loading times can be reduced by prefetching disk
blocks into the buffer cache. Existing prefetching schemes
for general workloads suffer from significant overheads and
low accuracy. ClusterFetch is a lightweight prefetcher that
identifies continuous sequences of I/O requests and identifies
the files that trigger them. The next time that the same files
are opened, the corresponding disk blocks are prefetched.
In experiments, ClusterFetch reduced the launch time, by
which we refer to the latency that occurs when a program
first runs, by 15.2 to 30.9%, and loading times, meaning the
delays that are incurred while additional data is loaded from
the disk during program execution, by 15.9%.

Categories and Subject Descriptors
D.4.3 [Software]: Operating Systems—File Systems Man-
agement

General Terms
Design

Keywords
ClusterFetch; Lightweight prefetch; Launch and loading times
reduction

1. INTRODUCTION
Prefetching disk blocks effectively reduces subsequent disk
access times, allowing applications to load and run more
quickly [1, 2]. Successful prefetching depends on the accu-
racy with which upcoming disk I/O can be predicted, mea-
sured by the buffer cache hit-rate [3, 4], and many authors

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full
citation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s).
Copyright is held by the author/owner(s).
ICPE’15, Jan. 31–Feb. 4, 2015, Austin, TX, USA.
ACM 978-1-4503-3248-4/15/01.
http://dx.doi.org/10.1145/2668930.2688062

Figure 1: Operation of ClusterFetch.

have tried to improve this accuracy. However, most tech-
niques incur significant memory and CPU overheads, and
the predictions they make are not particularly accurate [3,
4]. In addition, existing prefetching approaches have largely
focused on reducing application launch time, which is the
delay in starting a program.

ClusterFetch is a general-purpose, lightweight prefetcher that
runs within the Linux kernel to reduce the launch time, and
also the delays incurred when a program which is already
running has to load additional data from disk (i.e. load-
ing times). Experiments show reductions of up to 30.9% in
launch times and 15.9% in loading times, at the cost of less
than 3MB of memory overhead in establishing correlations
between disk blocks.

2. DESIGN AND IMPLEMENTATION
Periods during which there is continuous disk I/O, but neg-
ligible memory and CPU activity, can be identified by using
a circular queue to record every disk I/O operation. For as
long as the period between the first and the last entry in
the queue is less than a predefined threshold, ClusterFetch

99

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2668930.2688062&domain=pdf&date_stamp=2015-01-31


considers the entries to correspond to a period of continu-
ous disk I/O, and stores the identification numbers (IDs)
of the blocks that were accessed in a prefetch information
file. In addition, ClusterFetch traces the file which triggered
the continuous I/O by looking at the log of file opening op-
erations. Then it links this trigger file to an entry in the
prefetch information file by setting the sticky permission bit
on the trigger file; this bit is available because the current
implementation of Linux only uses it when accessing a di-
rectory file. Subsequently, whenever the Linux kernel opens
the trigger file, the disk blocks corresponding to the IDs
written in the prefetch information file are brought into the
buffer cache. Thus this scheme is able to detect, and uti-
lize, the correlation between disk blocks with a negligible
overhead, unlike many previous prefetching schemes which
impose significant memory overhead [4] or generate limited
information on block correlation [3].

To avoid prefetching operations delaying I/O from other pro-
cesses, I/O control process shown in Figure 1 manages the
I/O priority of other block requests and prefetch operations.
In addition, ClusterFetch provides a control parameter to
limit the I/O bandwidth of prefetching operations. Cluster-
Fetch also uses native command queuing (NCQ) within the
SATA2 standard to maximize I/O throughput. The struc-
ture and operation of ClusterFetch are illustrated in Fig-
ure 1.

3. EXPERIMENTAL RESULTS AND CON-
CLUSION

We compared launch and loading times of three popular ap-
plications, with and without ClusterFetch. The applications
were Eclipse (a development tool), Flightgear (a flight sim-
ulator), and Savage 2 (a game), and we measured both cold
and warm start times. The results in Table 1 show that our
scheme reduce the launch times of Eclipse and Flightgear
by 30.9% and 15.2% respectively, and the loading time of
Savage 2 by 15.9%, at the expense of the minor overhead
incurred in detecting and utilizing the correlation between
disk blocks.

Table 1: Effect of ClusterFetch on Launch and Load-
ing Times

Applications Cold Warm ClusterFetch Reduction

Eclipse (LA) 16.5s 6.1s 11.4s 30.9%
Flightgear (LA) 27.5s 18.9s 23.3s 15.2%
Savage 2 (LO) 22.0s 17.0s 18.5s 15.9%

LA: Launch, LO: Loading

4. ACKNOWLEDGMENTS
This research was supported in part by the Ministry of Sci-
ence, ICT, and Future Planning (MSIP), Korea, under the
Information Technology Research Center support program
(NIPA-2014-H0301-14-1044) supervised by the NIPA (Na-
tional ICT Industry Promotion Agency), in part by the
MSIP, Korea, under the IT/SW Creative research Program
supervised by the NIPA (Nationa1 IT Industry Promotion
Agency) (NIPA-2013-H0502-13-1061), and in part by the
Basic Science Research Program through the National Re-
search Foundation of Korea (NRF) funded by the MSIP
(NRF-2013R1A1A105-9188).

5. REFERENCES
[1] JOO, Y., RYU, J., PARK, S., AND SHIN, K. G. Fast:

Quick application launch on solid-state drives. In Proc.
FAST’11 (2011), pp. 259–272.

[2] YAN, T., Chu, D., Ganesan, D., Kansal, A., AND Liu,
J. Fast app launching for mobile devices using predictive
user context. In Proc. MobiSys’12 (2012), pp. 113–126.

[3] DING, X., JIANG, S., CHEN, F., DAVIS, K., AND
ZHANG, X. Diskseen: Exploiting disk layout and access
history to enhance I/O prefetch. In Proc. ATC’07
(2007), pp. 261–274.

[4] LI, Z., CHEN, Z., SRINIVASAN, S. M., AND ZHOU,
Y. C-miner: Mining block correlations in storage
systems. In Proc. FAST’04 (2004), pp. 173–186.

100




