
Optimizing Transfers of Control
in the Static Pipeline Architecture

Ryan Baird
Peter Gavin

Florida State University
Tallahassee, Florida, USA

baird@cs.fsu.edu, pgavin@gmail.com

Magnus Själander
Uppsala University
Uppsala, Sweden

magnus.sjalander@it.uu.se

David Whalley
Gang-Ryung Uh ∗

Florida State University
Tallahassee, Florida, USA

whalley@cs.fsu.edu, uryung@gmail.com

Abstract
Statically pipelined processors offer a new way to improve the per-
formance beyond that of a traditional in-order pipeline while si-
multaneously reducing energy usage by enabling the compiler to
control more fine-grained details of the program execution. This
paper describes how a compiler can exploit the features of the static
pipeline architecture to apply optimizations on transfers of control
that are not possible on a conventional architecture. The optimiza-
tions presented in this paper include hoisting the target address cal-
culations for branches, jumps, and calls out of loops, performing
branch chaining between calls and jumps, hoisting the setting of
return addresses out of loops, and exploiting conditional calls and
returns. The benefits of performing these transfer of control opti-
mizations include a 6.8% reduction in execution time and a 3.6%
decrease in estimated energy usage.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors- compilers, optimization

General Terms Algorithms, Measurements, Performance.

Keywords Transfers of Control, Compiler Optimizations, Energy
Efficiency.

1. Introduction
Power and energy are now critical design constraints in processors
for several reasons. Mobile devices rely on low power usage to im-
prove battery life, embedded devices have a limited power budget,
processor clock rates are constrained due to thermal limitations,
and electricity costs are increasing. Designing a more power effi-
cient processor helps to address all of these issues.

The static pipeline (SP) is a recent approach to processor de-
sign that reduces energy usage by giving the compiler fine-grained
control over the scheduling of pipeline effects. This approach en-
ables the compiler to avoid many redundant pipeline actions, such

∗ Currently with Qualcomm Technologies, Inc.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
LCTES’15, June 18–19, 2015, Portland, Oregon, USA.
Copyright c© 2015 ACM 978-1-4503-3257-6//. . . $15.00
http://dx.doi.org/10.1145/2670529.2754952

as accesses to registers whose values are already available within
the datapath. Additionally, this approach enables the processor to
be simplified because design issues such as data forwarding and
many hazards are handled by the compiler instead of the hardware.

The focus of this paper is to evaluate how a compiler can make
transfers of control (ToCs) faster and more energy efficient in the
SP architecture. The primary contributions of this paper are (1) ad-
justing ToCs in the SP architecture to deal with an extra stage in the
pipeline, (2) providing the first detailed description of how ToCs
are implemented in the SP architecture, (3) implementing a variety
of new SP ToC optimizations that exploit the decoupling of ToC
effects in a fully exposed datapath that would not otherwise be pos-
sible, and (4) evaluating the impact of these SP ToC optimizations.

2. Overview of Static Pipeline Architecture
Figure 1 illustrates the basic idea of the SP approach as compared
to a traditional architecture. Each instruction spends several cycles
within the processor with traditional pipelining. For example, the
load instruction in Figure 1(b) requires one cycle for each stage
after being fetched and decoded and remains in the pipeline from
cycles six through nine. Figure 1(c) illustrates how an SP processor
operates. Conventional operations, such as a load, still require mul-
tiple cycles to complete. However, these conventional operations
are spread over multiple SP instructions, which are performed in
three stages: fetch, decode, and execute. Each SP instruction spec-
ifies how all the remaining portions of the processor besides fetch
and decode are controlled during the cycle it is executed. An SP
instruction consists of one or more effects. In the execute stage, the
SP processor executes each of these instruction effects in parallel.
Essentially, an SP instruction controls a set of parallel effects dur-
ing a single cycle instead of a sequence of interdependent effects.

A high-level overview of the datapath for our current SP design
is shown in Figure 2. There are ten internal registers that are explic-
itly accessed within SP instructions. The SEQ (sequential address)
register is assigned the address of the next sequential instruction
at the time it is written. The RS1 and RS2 (register source) regis-
ters contain source values read from the register file. The SE (sign
extend) register contains a signed-extended immediate value. The
CP1 and CP2 (copy) registers hold values copied from one of the
other internal registers. The OPER1 (ALU result) register receives
values calculated in the ALU. The OPER2 (FPU result) register ac-
quires results calculated in the FPU, which is used for multi-cycle
operations. The ADDR (address) register holds the result of an in-
teger addition and is often used as an address to access either the
instruction cache or data cache. The LV (load value) register gets
assigned a value loaded from the data cache. Each internal register
requires less power to access than the centralized register file since

or

store

sub

load

add

IF

2

ID

IF

3

ID

RF

IF

4

ID

EX

RF

5

IF

ID

MEM

EX

RF

7

WB

MEM

EX

RF

8

WB

MEM

EX

9

WB

MEM

10

WB

or

store

sub

load

add

IF

2

ID

IF

3

ID

RF

IF

4

ID

EX

RF

5

IF

ID

MEM

EX

RF

6

ID

WB

MEM

EX

RF

7

WB

MEM

RF

EX

8

WB

EX

MEM

9

MEM

WB

10

WB

IF

1

clock cycle

(a) Traditional Pipelining

IF

1 6

ID

WB

MEM

EX

RF

clock cycle

(b) Static Pipelining

Figure 1: Traditionally Pipelined vs.
Statically Pipelined Instructions Figure 2: Static Pipeline Datapath

these internal registers are small and can be placed near the portion
of the processor that accesses them. Since these internal registers
are explicitly accessed in SP instructions, a new level of compiler
optimizations can be exploited.

To better illustrate the mechanics of an SP instruction, it is
helpful to look at an example:

RS1=r[3]; OPER1=RS1+SE; SE=4;

This instruction, in parallel, (1) reads the integer register r[3],
(2) adds the values of internal registers RS1 and SE, and (3) sign
extends the value 4. At the end of the cycle, it stores the result of
(1) into RS1, (2) into OPER1, and (3) into SE. Forwarding logic
is eliminated as the compiler explicitly controls which internal
register values are to be read and hazard detection is simplified
compared to a conventional pipeline.

Unfortunately, allowing for every possible combination of ef-
fects in an SP instruction would require more than 80 bits. To keep
the instruction size small, we use a template based instruction en-
coding with the formats shown in Figure 3 by selecting the most
frequent combinations of effects to be encoded into instructions.
Essentially, we compile benchmarks allowing all instructions that
could possibly fit in one of the templates and then select the 32
most frequently used instructions.

Figure 3: Static Pipeline Template Formats

3. Changes to the Static Pipeline Architecture
The SP pipeline in our previous simulations consisted of two
stages, instruction fetch (IF) and execute (EX), where decoding
instructions was assumed to be part of the EX stage [7]. In order to
make the clock period comparable to a baseline MIPS processor in
a new SP VHDL implementation, we added an instruction decode
(ID) stage between the IF and EX stages in which the instructions
are converted into control signals. This change now requires that
target addresses for ToCs be computed one instruction earlier. We
also now require the address of a load/store operation to be calcu-
lated before the load/store effect is executed, which enables us to
maintain 1-cycle loads for data cache accesses. The previous SP
framework had a dedicated TARG register that was used to hold the
address of a PC-relative target. We now use a single ADDR register
for both data memory address calculations and target address cal-
culations for both conditional and unconditional PC-relative ToCs.
The costs of these hardware changes are that all loads and stores
go through a single adder (creating extra name dependencies),
which sometimes requires an extra effect to move an address to
the ADDR register. The result is an increase in dependence height
for blocks ending with a ToC (creating extra instructions in small
basic blocks), and branch mispredictions stall for an extra cycle.

4. Static Pipeline Transfers of Control
ToC operations (branches, jumps, calls, returns) in an SP architec-
ture are explicitly separated into three parts that spans multiple SP
instructions: (1) the target address calculation, (2) the prepare to
branch (PTB) command, and (3) the point of the ToC. Figure 4
provides examples of how ToCs are accomplished in the SP ar-
chitecture. Most SP target address calculations are initially accom-
plished by either calculating the sum of the program counter (PC)
and a constant for a PC-relative address or by using two long im-
mediate effects to construct an absolute address, as depicted in Fig-
ures 4(a) and 4(b), respectively. At some point after the target ad-
dress is calculated, a prepare-to-branch (PTB) effect is issued. PTB

instructions have been proposed in other architectures, but PTB ef-
fects have a low cost in the SP architecture because they can be
encoded as a 4-bit effect, rather than as an entire instruction. These
4 bits consist of one enable bit, one bit to select between conditional
and unconditional ToCs, and 2 bits to select a source to obtain the
target address. The possible SP target address sources are ADDR
(PC-relative targets), SE values (direct call targets), RS2 (origi-
nally used for only indirect targets such as returns), and SEQ (top
of innermost loop targets). The PTB effect also indicates that the
point of the ToC is in the following instruction. If the conditional
bit (c) is set, a comparison effect must be within the instruction
immediately following the PTB. Calls and returns are made using
the same control-flow effects as any other ToC. Instead of using a
unified jump and link instruction for a call, we represent the set of
the return address register as a separate effect to accomplish this
goal (r[31]=PC+1;).

SE=offset(label);
ADDR=PC+SE;
...
PTB=c:ADDR;
PC=OPER1!=RS1,ADDR;

(a) PC-Relative SP Branch

SE=LO(label);
SE=SE|HI(label);
...
PTB=u:SE;
PC=SE;r[31]=PC+1;

(b) Absolute SP Call

Figure 4: SP Transfer of Control Examples

Figure 5 contains a pipeline diagram showing how the SP in-
structions involving the effects that comprise a ToC operation are
pipelined. We require that the target address be assigned at least one
instruction before the instruction containing the PTB effect is exe-
cuted, as shown in Figure 5. Likewise, the PTB effect has to occur
in the instruction immediately preceding the point of the ToC. The
PTB effect is performed during the ID stage as it only determines
whether or not the next instruction is a ToC, if the ToC is con-
ditional or unconditional, and which source is used for the target
address. In the diagram in Figure 5 both the target address calcula-
tion and the PTB effect are completed at the end of cycle 3. Thus,
the exact target address is always known before the instruction at
the target address is fetched, which occurs in cycle 4 in Figure 5.

IF ID

1 2 3 4 5 6

EX

IF ID

IF ID EX

IF ID EXtarget instruction

point of ToC instruction

PTB effect

set target address

Figure 5: Pipelining SP Transfers of Control

One advantage of SP ToCs is that accesses to a branch target
buffer (BTB) and a return address stack (RAS) are eliminated and
many accesses to a branch prediction buffer (BPB) can be avoided.
A conventional processor accesses a BTB, RAS, and a BPB on
every cycle. The BTB and RAS are accessed in the IF stage and
contain target addresses and tags to confirm the instruction being
fetched is the correct ToC. The target addresses in the BTB and
RAS are not needed in an SP processor since the target address
is always known before the target instruction is fetched. The BTB
and RAS tags are not needed since the PTB effect identifies that
the following instruction is a ToC. Thus, the BTB and RAS are
completely removed in the SP architecture. Removing the need for
a BTB has a significant impact on energy usage since the BTB is a
large and expensive structure to always access during the IF stage.
A BPB in a conventional processor is also always accessed in the
IF stage and contains bits to indicate if the branch is predicted to
be taken or not taken. Conditional ToCs in an SP processor are
indicated in the PTB effect that immediately precedes the point of
the ToC, so the BPB is only accessed for conditional SP ToCs.

There are several other advantages of breaking a ToC operation
into separate effects that occur in different instructions. Most ToCs
are to direct targets, meaning that the target address does not change
during the application’s execution. One advantage of decoupling
these effects is that the compiler can perform transformations on the
target address calculation that are not possible using a conventional
instruction set where these calculations are tightly coupled with
ToC instructions. For instance, by decoupling the target address
calculation from the point of the ToC, the calculation can be hoisted
out of loops. Likewise, the target address calculation for multiple
ToCs to the same target address can be done once. Thus, many
redundant target address calculations can be eliminated.

Other SP ToC optimizations are possible. Since unconditional
jump, call, and return operations are also separated into three parts,
the compiler can perform additional optimizations, such as chain-
ing between jumps and calls and hoisting return address assign-
ments out of loops. The SP processor supports both direct and in-
direct sources for conditional and unconditional ToCs, which the
compiler can exploit by converting conditional branches that are
preceded by a call or followed by a call or a return into conditional
calls and conditional returns. Conditional indirect jumps are not
available in most conventional instruction sets.

5. Compilation for the SP Architecture
In this section, we describe the overall compilation process in
more detail. For an SP architecture, the compiler is responsible
for controlling each portion of the datapath during each cycle, so
effective compiler optimizations are critical to achieve acceptable
performance and code size. Because the instruction set architecture
(ISA) for an SP processor is quite different from that of a RISC
architecture, many compilation strategies and optimizations have
to be reconsidered when applied to an SP architecture.

Figure 6 shows the steps of our compilation process. First, C
code is input to the frontend, which consists of the LCC com-
piler [10] frontend that converts LCC’s output format into the reg-
ister transfer list (RTL) format used by the VPO compiler [2].

Modified

MIPS Backend

Effect Expander SP Backend

MIPS RTLs

Optimized MIPS RTLs

C Code

Assembly

Frontend

Statically Pipelined RTLs

Figure 6: SP Compilation Process

These RTLs are then input into a modified MIPS backend, which
performs all the conventional compiler optimizations applied in
VPO with the exception of instruction scheduling. These optimiza-
tions are performed before conversion to SP instructions because
many are more difficult to apply on the lower level SP representa-
tion, which breaks many assumptions in a conventional compiler
backend. VPO’s optimizations include those typically performed
on ToCs, such as branch chaining, reversing branches to eliminate
unconditional jumps, minimizing loop jumps by duplicating a por-
tion of a loop, reordering basic blocks to eliminate unconditional
jumps, and removing useless conditional branches and uncondi-
tional jumps whose target is the following positional block. This
strategy enables us to concentrate on optimizations specific to the
SP as all conventional optimizations have already been performed.

The effect expander breaks the MIPS instructions into instruc-
tions that are legal for the SP. This process works by expanding
each MIPS RTL into a sequence of SP RTLs, each containing a
single effect, that together perform the same computation. Thus,
ToCs are also broken into multiple effects at this point.

Lastly, these instructions are fed into the SP backend, also based
on VPO, which was ported to the SP architecture since its RTL in-
termediate representation is at the level of machine instructions.
A machine-level representation is needed for performing code im-
proving transformations on SP generated code. This backend ap-
plies additional optimizations, which include the SP ToC optimiza-
tions described in this paper, and produces the final assembly code.

6. SP Transfer of Control Optimizations
Several new ToC optimizations are possible and beneficial due to
the way ToCs are represented in the SP architecture. The relevant
optimizations we describe are (1) using the SEQ register to hoist
top of innermost loop target address calculations out of loops,
(2) using general-purpose registers to hoist other target address
calculations out of loops, (3) performing call-jump and jump-call
chaining, (4) hoisting return address assignments out of loops, and
(5) exploiting conditional calls and returns. This is the first paper
that describes how any SP ToC optimizations are accomplished.
With the exception of the SEQ hoisting optimization, all of these
optimizations are new as compared to prior SP studies [6–8].

6.1 Hoisting the Top of Innermost Loop Target
Since address calculations are typically tightly coupled with ToC
instructions in a conventional ISA, they are recalculated every loop
iteration, even though the target address does not change. For PC-
relative ToCs, this means an addition is performed every time the
ToC is encountered, which requires both additional energy usage
and encoding space. Even for ToCs that use an absolute PC address,
the encoding space for that address is still required in the ToC
instruction. Encoding space for calculating SP target addresses
could impact performance if not hoisted out of loops since more
instructions may need to be executed.

The most frequent instructions that perform ToCs in an appli-
cation are typically in the innermost loops of functions. The SP
architecture provides the SEQ internal register to hold the address
of the top-most instruction of an innermost loop. The only opera-
tions involving the SEQ register that are supported by the SP ar-
chitecture are (1) assigning the incremented value of the program
counter to the SEQ register (SEQ=PC+1;), (2) storing the SEQ reg-
ister value to memory (M[ADDR]=SEQ;), and (3) assigning the
value from the LV register (result of a load operation) to the SEQ
register (SEQ=LV;). The last two operations are used to save and
restore the SEQ register value so that its value can be preserved
across a function call.

The example in Figure 7 depicts the RTLs within an innermost
loop that contains ToCs to the top of a loop. All of the examples
in this paper showing SP ToC optimizations are depicted at the
time the optimizations are applied, which is before multiple effects
are scheduled in each instruction. PTB effects are actually inserted
during scheduling, but are included to clarify the examples shown
in this paper. The compiler exploits the SEQ register by placing
the SEQ=PC+1; effect in the last instruction of the block imme-
diately preceding the innermost loop. This block has to dominate
the header of the loop, which is usually the case as the block is
typically the loop preheader. Thus, executing this effect results in
the address of the top-most instruction in the loop (L1 in Figure 7)
being assigned to the SEQ register. Note the top-most block in the
loop is not always the loop header, but it is always a target of one
or more ToCs within the loop. The compiler then modifies all con-
ditional and unconditional ToCs to the top-most block of the loop
to reference the SEQ register instead of performing a PC-relative
address calculation. Two effects in the loop are eliminated for each
ToC referencing the SEQ register, which can potentially improve
performance due to possibly decreasing the number of instructions

in the loop after scheduling SP effects. For instance, Figure 7(a)
has two conditional ToCs in the loop that both have the same tar-
get, which is the top-most instruction within the loop and both of
the ToCs can now just reference the SEQ register after the transfor-
mation, as depicted in Figure 7(b).

L1 # Beginning of loop
...
SE=offset(L1);
ADDR=PC+SE;
PTB=c:ADDR;
PC=RS2==LV,ADDR(L1);
...
SE=offset(L1);
ADDR=PC+SE;
PTB=c:ADDR;
PC=OPER1!=CP1,ADDR(L1);

(a) Before SEQ Optimization

SEQ=PC+1;
L1 # Beginning of loop

...
PTB=c:SEQ;
PC=RS2==LV,SEQ(L1);
...
PTB=c:SEQ;
PC=OPER1!CP1,SEQ(L1);

(b) After SEQ Optimization

Figure 7: Example of SEQ Optimization

6.2 Hoisting Other Target Address Calculations
There are often other ToCs in loops whose targets are not to the top-
most instruction in an innermost loop. In a prior version of the SP
datapath [7], only one other target address calculation was hoisted
out of loops into a dedicated internal TARG register, which is no
longer supported in the SP datapath. The compiler now hoists these
target address calculations out of the loop when an integer register
is available, which can reduce both execution time (because there
are fewer effects to schedule) and energy usage.

We hoist both PC-relative target address calculations (condi-
tional branches and unconditional jumps) and absolute target ad-
dress calculations (direct calls) out of loops using registers from
the integer register file. Due to the irregularity of the SP ISA, con-
ventional loop-invariant code motion is unable to hoist these target
address calculations. The algorithm for this optimization, which is
shown in Figure 8, hoists target address calculations starting with
the innermost loops. When there are multiple target address cal-
culations in a given loop, the compiler must prioritize which ones
to hoist as each target requires a separate register and there are a
limited number of available registers. The prioritization is based
on estimated benefits. We consider the likelihood of the block con-
taining the ToC being executed to be the most important factor as
hoisting a computation that rarely gets executed would not be ben-
eficial. The next factor is the number of ToCs in the loop to the
same target, as a single register assigned the target address outside
the loop can replace multiple target address calculations inside the
loop. The next factor is if an absolute target address calculation is
performed versus a PC-relative target address calculation. An ab-
solute target address calculation occurs for direct calls and requires
two long immediate effects, which each require 17 bits (see Fig-
ure 3). In contrast, a PC-relative target address calculation is used
for conditional branches and unconditional jumps and typically re-
quires a short immediate and an integer addition, which each re-
quire 7 bits (see Figure 3). We consider the least important factor
to be the number of instructions in the basic block containing the
ToC. The effects associated with an absolute or PC-relative target
address calculation do not have any true dependences with other
effects in the loop. A basic block with fewer instructions will likely
have fewer available slots to schedule the target address calculation
effects with the instructions comprising the other SP effects within
the block. A target address calculation can only be hoisted out of a
loop if an integer register is available to hold the target address and
RS2 is available at the ToC since RS2 is used to read the register
value and serve as the target specified in the PTB effect.

FOR each loop L (innermost first) DO
create list A of all targets of ToCs at outer level in L
prioritize the order of A based on following constraints:

1. estimated frequency of block containing target calc
2. number of target calcs to that target
3. absolute over PC-relative target calcs
4. fewest instructions in block containing target calc

WHILE a register R is available DO
IF RS2 available at ToCs in first target in A THEN

assign to T first target in A not yet hoisted
place target calc C for T in L’s preheader
after C assign C’s result to R
replace target calc(s) of T in L with reads of R

Figure 8: Algorithm for Hoisting Target Address Calculations

Figure 9 depicts an example of applying this optimization
within a loop nest. Figure 9(a) shows C source code that results
in five ToCs in SP instructions, which are two conditional branches
associated with the if statement, one direct call associated with
the call to f, and two conditional branches associated with the for
statements. Figure 9(b) shows the SP instructions, where the condi-
tional branch associated with the inner for statement already has
a target of SEQ. The two conditional branches associated with the
if statement both have L2 as a PC-relative target address. Having
multiple branches to the same target is common when logical AND
or OR operators are used in conditional expressions. The call to f
is constructed using two large immediate effects. Figure 9(c) shows
the SP instructions after applying this optimization. The target ad-
dress calculation of L3 and f have been hoisted out of the loop nest
and their values have been stored in r[17] and r[18], respec-
tively. Storing the address of PC+1 into a register was originally
only used by the compiler to store the return address into r[31]
for a call. Now we assign PC+1 to a register to obtain the address
of the topmost block of outer loops (r[19]=PC+1;). Each modi-
fied ToC in the loop now requires three effects instead of four. The
target address calculations associated with the ToCs have been re-
placed with the appropriate register read effect. Note that only one
target address calculation is performed for L3, where two distinct
calculations are required in the loop in Figure 9(b) if the values of
SE or ADDR are overwritten between the two ToCs. The second
read of r[17] in Figure 9(c) will be eliminated after common
subexpression elimination is applied if RS2 is not overwritten after
the first read of r[17]. The transformation increases the static
number of effects and often the overall code size, but decreases the
dynamic number of effects and often the number of instructions
within a loop, which results in improvements in energy usage and
possibly performance.

6.3 Performing Call-Jump and Jump-Call Chaining
Sometimes a call is followed by an unconditional jump or the target
block of an unconditional jump contains a call. In these situations
the unconditional jump can be eliminated by adjusting the return
address register assignment associated with the call.

Figure 10 shows how a jump is eliminated when a call is fol-
lowed by a jump. We move the instructions between the call and
the jump to before the call when there are no dependences so this
transformation can be more frequently applied. Figure 10(a) shows
a call to f1 in the then portion of an if-then-else statement.
As shown in Figure 10(b), the call to f1 is followed by an uncon-
ditional jump to L2 that jumps over the else portion of the state-
ment. Figure 10(c) shows that the jump to L2 is eliminated and
before the call r[31] is now assigned the address of L2, which
was the target of the unconditional jump. Besides eliminating the
PTB and PC effects of the unconditional jump, this transformation
also places the target address calculation of the jump target at a
point where it can be scheduled in parallel with effects preceding
the call and effects associated with the call itself.

for (...) {
for (...) {

...
if (... && ...)

f();
...

}
}

(a) Loop at Source Code Level

L1 # start of outer loop
...
SEQ=PC+1; # SEQ=L2

L2 # start of inner loop
...
SE=offset(L3);
ADDR=PC+SE; # 1st if
PTB=c:ADDR; # ToC
PC=OPER1!=RS1,ADDR(L3);
...
SE=offset(L3);
ADDR=PC+SE; # 2nd if
PTB=c:ADDR; # ToC
PC=LV!=RS1,ADDR(L3);
...
SE=LO:f; # call to
SE=SE|HI:f; # f
PTB=u:SE;
PC=SE(f);r[31]=PC+1;

L3 ... # inner for
PTB=b:SEQ; # ToC
PC=OPER1!=SE,SEQ(L2);
...
SE=offset(L1);
ADDR=PC+SE; # outer for
PTB=b:ADDR; # ToC
PC=OPER1!=SE,ADDR(L1);

(b) Loop after SEQ
Transformation

SE=offset(L3);
ADDR=PC+SE;
r[17]=ADDR; # r17=L3
SE=LO:f;
SE=SE|HI:f;
r[18]=SE; # r18=f
r[19]=PC+1; # r19=L1

L1 # start of outer loop
...
SEQ=PC+1; # SEQ=L2

L2 # start of inner loop
...
RS2=r[17]; # 1st if
PTB=c:RS2; # ToC
PC=OPER1!=RS1,RS2(L3);
...
RS2=r[17]; # 2nd if
PTB=c:RS2; # ToC
PC=LV!=RS1,RS2(L3);
...
RS2=r[18]; # call to
PTB=u:RS2; # f
PC=RS2(f);r[31]=PC+1;

L3 ... # inner for
PTB=b:SEQ; # ToC
PC=OPER1!=SE,SEQ(L2);
...
RS2=r[19]; # outer for
PTB=b:RS2; # ToC
PC=OPER1!=SE,RS2(L1);

(c) Loop after Hoisting other
Target Address Calculations

Figure 9: Example of Target Address Calculation Hoisting

if (...) {
...
f1();
...

}
else {

...
}

(a) Call Followed by Jump at Source Code Level

SE=LO:f1;
SE=SE|HI:f1; # call to
PTB=u:SE; # f1
PC=SE(f1);r[31]=PC+1;
...
SE=offset(L2);
ADDR=PC+SE; # jump
PTB=u:ADDR; # over
PC=ADDR(L2); # else

(b) Before Chaining Call to Jump

...
SE=offset(L2);
ADDR=PC+SE;
r[31]=ADDR; # call to
SE=LO:f1; # f1
SE=SE|HI:f1; # with
PTB=u:SE; # return
PC=SE(f1); # to L2

(c) After Chaining Call to Jump

Figure 10: Example of Call-Jump Chaining

Figure 11 shows how a jump is eliminated when a jump is
followed by a call. Figure 11(a) shows a call to f2 after an
if-then-else statement. As shown in Figure 11(b), the tar-
get block, L4, of the unconditional jump contains a call to f2.
Figure 11(c) shows that the call to f2 is duplicated at the point of
the unconditional jump, the jump to L4 is eliminated, and r[31]
is now assigned the address of L5, which is the address of the

instruction following the call. The transformation eliminates two
effects (assignments to PTB and PC) at the expense of duplicating
the call. Jump-call chaining is more aggressively performed than
call-jump chaining since instructions at the jump target preceding
the call can always be duplicated in the jump block.

if (...) {
...

}
else {

...
}
...
f2();

(a) Jump Followed by Call at Source Code Level

SE=offset(L4);
ADDR=PC+SE; # jump
PTB=u:ADDR; # over
PC=ADDR(L4); # else
...

L4 ...
SE=LO:f2; # call to
SE=SE|HI:f2; # f2
PTB=u:SE;
PC=SE(f2);r[31]=PC+1;
...

(b) Before Chaining Jump to Call

...
SE=offset(L5);
ADDR=PC+SE;
r[31]=ADDR; # call to
SE=LO:f2; # f2
SE=SE|HI:f2; # with
PTB=u:SE; # return
PC=SE(f2); # to L5
...

L4 ...
SE=LO:f2; # call to
SE=SE|HI:f2; # f2
PTB=u:SE;
PC=SE(f2);r[31]=PC+1;

L5 ...

(c) After Chaining Jump to Call

Figure 11: Example of Jump-Call Chaining

An interesting note about these call-jump and jump-call chain-
ing optimizations is that both could be performed in a conventional
ISA by updating the return address register and using a jump in-
stead of a call instruction. However, such an optimization would not
be beneficial for any processor with a return address stack (RAS)
because the resulting code would perform more return address pops
than pushes, which would result in returns to the wrong address.
Note that the SP architecture eliminates the need for a RAS since
the return address is known at the point of the return ToC.

6.4 Hoisting Return Address Assignments
In SP generated code, the return address is set in an effect that is
independent from the PTB effect causing the ToC associated with
the call operation. In some cases, it can be beneficial to set the
return address outside of the loop. Since the return address register
is callee-save, loops with a single call or loops for which all calls
can be made to return to the same instruction do not need to set the
return address register every loop iteration.

Figure 12 shows the algorithm for hoisting return address as-
signments out of loops. The optimization we implemented exam-
ines each call within a loop, starting with the outermost loop as it
can hoist at most one return address assignment out of a loop nest
since the return address has to be assigned to the single return ad-
dress register r[31]. For each call in the loop, the compiler deter-
mines the instruction associated with the return address. If the call
is immediately followed by an unconditional jump, then the return
address is associated with the target of the unconditional jump. This
requires skipping over any address calculations and checking if all
values computed before the jump are dead at the point of the jump.
If the return address differs for any two calls or if no registers are
available, then the optimization is not performed. Otherwise, the re-
turn address assignment is placed in the preheader of the loop and
the return address assignments within the loop are removed along
with any jumps to the common return target that follow a call.

FOR each loop L (outermost first) DO
IF a register unavailable within L THEN

CONTINUE
create list C of all calls in L
FOR each C DO

IF instructions following C comprise a
direct unconditional jump J THEN
associate return address of C to be target of jump J

ELSE
associate return address of C to be instruction after C

IF any two C’s have different return addresses THEN
CONTINUE

FOR each C DO
IF C is followed by a direct jump J THEN

remove instructions comprising jump J
remove return address assignment of C

place return address assignment to common target in preheader
BREAK

Figure 12: Hoisting Return Address Assignments Algorithm

Figure 13 depicts an example of this transformation performed
on multiple calls within a single loop. Figure 13(a) shows a loop
with calls to functions f1 and f2. The ToCs in the loop include
one for the if statement condition, one for each call, one for the
unconditional jump at the end of the then portion of the if state-
ment, and one for the for statement condition. Figure 13(b) shows
the SP code after hoisting all the target address calculations out of
the loop. At this point there are assignments to r[31] in the loop
at each call. Note that the call to f1 is followed by an unconditional
jump to L3 and the return address from the call to f2 is also L3.
Figure 13(c) shows the SP code after hoisting the two return ad-
dress assignments to r[31] out of the loop. The instructions com-
prising the unconditional jump after the call to f1 are eliminated
since these instructions can no longer be reached in the control flow.
Likewise, the target address calculation instructions resulting in the
assignment to r[20] in the loop preheader are eliminated since
these assignments are now dead after the removal of the uncondi-
tional jump. In this example, the return address hoisting transfor-
mation reduces the overall code size, the number of ToCs executed,
and the energy usage required to execute the code.

6.5 Exploiting Conditional Calls and Returns
The SP ISA enables PC-relative, absolute, and indirect addresses
to be used for both conditional and unconditional ToCs. We exploit
these features in our compiler by introducing conditional calls and
conditional returns without any changes to the SP architecture. A
conditional branch where one successor goes directly to a call or
return can in some circumstances be replaced with a conditional
branch directly to the call target or return address. If a conditional
branch falls into the call or return, then the condition must be
reversed. If a conditional branch falls into a call, then the first
instruction after the call must be the target of the original branch.

Figure 14 depicts an example of exploiting a conditional return.
Figure 14(a) shows a source code fragment and Figure 14(b) shows
the corresponding SP instructions. This transformation can only be
applied when the return immediately follows the taken path (L4)
of the branch, meaning the current function must be a leaf and no
space is used for an activation record (no adjustment of the stack
pointer and no restores of register values). Figure 14(c) shows the
SP instructions after performing the optimization. The branch tar-
get is set to the return address and the original target address calcu-
lation of L4 is removed by dead assignment elimination. Note the
second read of r[31] will be eliminated if there is no assignment
to RS2 between the conditional return and the return. Branches to
calls are handled in a similar manner.

Exploiting conditional calls between a branch and its succes-
sor requires not changing the behavior or adversely affecting the
performance when the branch has a different outcome. We found
that we can exploit conditional calls more frequently when a call

for (...) {
...
if (...) {

...
f1();

}
else {

...
f2();

}
...

}

(a) Loop with Calls at Source Code Level

SE=offset(L3);
ADDR=PC+SE;
r[20]=ADDR; # r20=L3
SEQ=PC+1; # SEQ=L1

L1 # Beginning of loop
...
RS2=r[17]; # if stmt
PTB=c:RS2; # ToC
PC=OPER1!=RS1,RS2(L2);
...
RS2=r[18]; # call to
PTB=u:RS2; # f1
PC=RS2(f1);r[31]=PC+1;
RS2=r[20];
PTB=u:RS2; # jump to
PC=RS2(L3); # L3

L2 ...
RS2=r[19]; # call to
PTB=u:RS2; # f2
PC=RS2(f2);r[31]=PC+1;

L3 ... # for stmt
PTB=b:SEQ; # ToC
PC=OPER1!=SE,SEQ(L1);

(b) Loop without Return Address
Assignment Hoisting

...
SE=offset(L3);
ADDR=PC+SE;
r[31]=ADDR; # r31=L3
SEQ=PC+1; # SEQ=L1

L1 # Beginning of loop
...
RS2=r[17]; # if stmt
PTB=c:RS2; # ToC
PC=OPER1!=RS1,RS2(L2);
...
RS2=r[18]; # call to
PTB=u:RS2; # f1
PC=RS2(f1);

L2 ...
RS2=r[19]; # call to
PTB=u:RS2; # f2
PC=RS2(f2);

L3 ... # for stmt
PTB=b:SEQ; # ToC
PC=OPER1!=SE,SEQ(L1);

(c) Loop with Return Address
Assignment Hoisting

Figure 13: Example of Return Address Assignment Hoisting

if (...) {
...

}
return;

(a) Branch Followed by a Return at the Source Code Level

...
SE=offset(L4);
TARG=PC+SE; # if stmt
PTB=c:ADDR; # ToC
PC=LV==SE,ADDR(L4);
...

L4 RS2=r[31]; # return
PTB=u:RS2;
PC=RS2;

(b) Without a Conditional Return

...
RS2=r[31]; # cond
PTB=c:RS2; # return
PC=LV==SE,RS2;
...

L4 RS2=r[31]; # return
PTB=u:RS2;
PC=RS2;

(c) With a Conditional Return

Figure 14: Example of Exploiting a Conditional Return

precedes a conditional branch. The requirements are that a call pre-
cedes a branch and the effects between the call and the branch can
be moved before the call. Figure 15 depicts an example of exploit-
ing a conditional call. Figure 15(a) shows the source code of a
loop and assume i and n are local variables that are not affected
by the call to f. A loop branch often just controls the number of
times the loop iterates and is independent of a preceding call. Fig-
ure 15(b) shows the corresponding SP instructions. The call pre-
cedes the branch, and the address of f and the return address L3
assignment have been hoisted out of the loop. Figure 15(c) shows
the SP instructions after performing the optimization. The effects
after the call have been moved before the call, the address of the

Table 1: Benchmarks Used

Category Benchmarks
automotive bitcount, qsort, susan
consumer jpeg, tiff
network dijkstra, patricia
office ispell, stringsearch
security blowfish, rijndael, pgp, sha
telecom adpcm, CRC32, FFT, GSM

branch target L2 has been stored in r[31] in the preheader, the
target of the branch is now the address of the called function, and
the original call is moved after the branch. The called function from
the loop will directly return to the original branch target L2. The
call after the loop is needed since the call in the last original loop
iteration still has to occur when the branch is not taken.

for (i = 0; i < n; i++) {
...
f();

}

(a) Call at End of a Loop at the Source Code Level

SE=LO:f;
SE=SE|HI:f;
r[17]=SE; # r17=f
SE=offset(L3);
ADDR=PC+SE;
r[31]=ADDR; # r31=L3
SEQ=PC+1; # SEQ=L2

L2 # Beginning of loop
...
RS2=r[17]; # call to
PTB=u:RS2; # f
PC=RS2(f);

L3 ...
PTB=c:SEQ;
PC=OPER1!=CP2,SEQ(L2);

(b) Without a Conditional Call

SE=LO:f;
SE=SE|HI:f;
r[17]=SE; # r17=f
r[31]=PC+1; # r31=L2

L2 # Beginning of loop
...

L3 ...
RS2=r[17]; # cond call
PTB=c:RS2; # to f
PC=OPER1!=CP2,RS2(f);
PTB=u:RS2; # call to f
PC=RS2(f);r[31]=PC+1;

(c) With a Conditional Call

Figure 15: Example of Exploiting a Conditional Call

7. Evaluation
In this section we describe the experimental environment and
present results from applying SP ToC optimizations.

7.1 Experimental Setup
We use 17 benchmarks shown in Table 1 from the MiBench bench-
mark suite [11], which is a representative set of embedded applica-
tions. We use an extended GNU assembler to assemble SP instruc-
tions and a simulator based on the SimpleScalar in-order MIPS [1].
For all benchmarks, when compiled for the SP, over 90% of the in-
structions executed are SP instructions, with the remaining MIPS
instructions coming from calls to standard library routines such as
printf. All cycles and register accesses are counted towards the re-
sults whether they come from the MIPS library code or the SP code.

For the MIPS baseline, the programs were compiled with the
original VPO MIPS port with all optimizations enabled and run
through the same simulator, as it is also capable of simulating
MIPS code. We extended the simulator to include branch prediction
with a simple bimodal branch predictor with 256 two-bit saturating
counters, and a 256-entry branch target buffer. The branch target
buffer (BTB) is only used for MIPS code as it is not needed for the
SP. The simulator was also extended to include level one data and
instruction caches, which were configured to have 256 lines of 32
bytes each and are direct-mapped.

7.2 Results
Each of the graphs in this section represent the ratio between SP
code to MIPS code. A ratio less than 1.0 means that the SP has
reduced the value, while a ratio over 1.0 means that the SP has in-
creased the value. When a given benchmark had more than one sim-
ulation associated with it (e.g., jpeg has both encode and decode),
we averaged all of its simulations to avoid weighing benchmarks
with multiple runs more heavily.

There are more PC-relative calculations in the initial SP code
since these calculations are sometimes speculatively performed due
to cross block scheduling and unconditional jumps on the MIPS
were performed using absolute addresses and SP unconditional
jumps used PC-relative target addresses. PC-relative target address
calculations improved from a ratio of 1.04 to a ratio of 0.44, as
shown in Figure 16. This improvement was primarily due to both
utilizing the SEQ register and the integer register file to hoist target
address calculations out of loops. Note the MIPS ISA does not
provide a way to perform a conditional branch with the target in
a register.

Benchmarks

a
d

p
c
m

b
it
c
o

u
n

t

b
lo

w
fi
s
h

c
rc

d
ijk

s
tr

a ff
t

g
s
m

is
p

e
ll

jp
e

g

p
a

tr
ic

ia

p
g

p

q
s
o

rt

ri
jn

d
a

e
l

s
h

a

s
tr

s
e

a
rc

h

s
u

s
a

n

ti
ff

a
ri
th

 m
e

a
n

g
e

o
 m

e
a

n

N
o
rm

a
liz

e
d
 T

a
rg

e
t
C

a
lc

u
la

ti
o
n
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3
Without ToC Opts With ToC Opts

Figure 16: PC-Relative Target Address Calculation Ratio

The number of absolute target address calculations improved
from a ratio of 1.00 to a ratio of 0.87, as shown in Figure 17. This
improvement came from performing fewer target address calcula-
tions of calls inside loops. This improvement is less than the im-
provement for PC-relative addresses since direct calls are not al-
ways in loops while at least one conditional branch will be in each
loop and the SEQ hoisting optimization does not hoist absolute
(call) target address calculations. Likewise, the presence of a call
in a loop requires that only the callee-save registers are available
for hoisting target address calculations. Sometimes the number of
absolute target address calculations increases after hoisting the cal-
culation of out a loop when the direct call is rarely executed in the
loop due to conditional control flow.

On average, we were able to reduce the number of return ad-
dress assignments to a ratio of 0.83, as shown in Figure 18. Occa-
sionally some benchmarks increased the number of return address
assignments, which occurs when a loop immediately exits after be-
ing entered. This occurred for ispell, which performs a number of
string comparisons where the first character in each string may dif-
fer. The results indicate that about 17% of the calls are in loops
with one call or multiple calls with a common return address when
a register is available to hoist the return address assignment.

The SP ToC optimizations improved the execution cycle ratio,
depicted in Figure 19, from an average of 0.99 to 0.93. All of the
benchmarks improved in performance relative to not performing
ToC optimizations.

Benchmarks

a
d

p
c
m

b
it
c
o

u
n

t

b
lo

w
fi
s
h

c
rc

d
ijk

s
tr

a ff
t

g
s
m

is
p

e
ll

jp
e

g

p
a

tr
ic

ia

p
g

p

q
s
o

rt

ri
jn

d
a

e
l

s
h

a

s
tr

s
e

a
rc

h

s
u

s
a

n

ti
ff

a
ri
th

 m
e

a
n

g
e

o
 m

e
a

n

N
o
rm

a
liz

e
d
 T

a
rg

e
t
C

a
lc

u
la

ti
o
n
s

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
Without ToC Opts With ToC Opts

Figure 17: Absolute Target Address Calculation Ratio

Benchmarks

a
d

p
c
m

b
it
c
o

u
n

t

b
lo

w
fi
s
h

c
rc

d
ijk

s
tr

a ff
t

g
s
m

is
p

e
ll

jp
e

g

p
a

tr
ic

ia

p
g

p

q
s
o

rt

ri
jn

d
a

e
l

s
h

a

s
tr

s
e

a
rc

h

s
u

s
a

n

ti
ff

a
ri
th

 m
e

a
n

g
e

o
 m

e
a

n

N
o
rm

a
liz

e
d
 R

e
tu

rn
 A

d
d
re

s
s
 S

e
ts

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Without ToC Opts With ToC Opts

Figure 18: Return Address Assignment Ratio

Benchmarks

a
d

p
c
m

b
it
c
o

u
n

t

b
lo

w
fi
s
h

c
rc

d
ijk

s
tr

a ff
t

g
s
m

is
p

e
ll

jp
e

g

p
a

tr
ic

ia

p
g

p

q
s
o

rt

ri
jn

d
a

e
l

s
h

a

s
tr

s
e

a
rc

h

s
u

s
a

n

ti
ff

a
ri
th

 m
e

a
n

g
e

o
 m

e
a

n

N
o
rm

a
liz

e
d
 E

x
e
c
u
ti
o
n
 T

im
e

0.6

0.7

0.8

0.9

1

1.1

1.2

Without ToC Opts With Toc Opts

Figure 19: Execution Cycle Ratio

Figure 20 shows that our ToC optimizations resulted in a small
increase in code size from 0.914 without ToC optimizations to
0.922 with ToC optimizations. Note some ToC optimizations can
decrease the code size while others, such as hoisting target address
calculations, typically increased it.

We also present an estimate of the processor energy savings
achieved by the SP approach. We use the simulated counts of events
such as register file accesses, branch predictions and ALU oper-
ations along with estimates of how much power is consumed by
each event. The SRAMs within the pipeline have been modeled us-
ing CACTI [13]. Other components have been synthesized for a
65nm process, then simulated at the netlist level to determine av-
erage case activation power. We have normalized the power per
component to a 32-entry dual-ported register file read, because the

Benchmarks

a
d

p
c
m

b
it
c
o

u
n

t

b
lo

w
fi
s
h

c
rc

d
ijk

s
tr

a ff
t

g
s
m

is
p

e
ll

jp
e

g

p
a

tr
ic

ia

p
g

p

q
s
o

rt

ri
jn

d
a

e
l

s
h

a

s
tr

s
e

a
rc

h

s
u

s
a

n

ti
ff

a
ri
th

 m
e

a
n

g
e

o
 m

e
a

n

N
o
rm

a
liz

e
d
 S

ta
ti
c
 I
n
s
tr

u
c
ti
o
n
 C

o
u
n
t

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Without ToC Opts With ToC Opts

Figure 20: Code Size Ratio

power per component are dependent on process technology and
other implementation dependent issues. The ratios between com-
ponent power are also somewhat dependent on process technology,
however these differences should not have a qualitative impact on
the final estimates. The resulting total energy estimate is a linear
combination of the number of activations and the power attribu-
tions per component. The relative power per activation we attribute
to each component is given in Table 2.

Table 2: Pipeline Component Relative Power

Component Relative Access Power
Level 1 Caches (8kB) 5.10
Branch Prediction Buffer 0.65
Branch Target Buffer 2.86
Register File Access 1.00
Arithmetic Logic Unit 4.11
Floating Point Unit 12.60
Internal Register Writes 0.10

Figure 21 shows the results of our simulations. On average, the
SP reduces energy usage by 20.2%. These savings comes primarily
from the reduction in register file accesses, branch prediction table
accesses, and the fact that we do not need a branch target buffer. Of
course these results are also affected by the relative running time of
the benchmark as that has a direct effect on instruction cache usage
and static power consumption. While these estimates take into
account the number of accesses to the larger structures of the two
pipelines the difference in control logic and interconnect routing
is not taken into account. Applying ToC optimizations decreases
energy usage by an additional 3.6%.

Benchmarks

a
d

p
c
m

b
it
c
o

u
n

t

b
lo

w
fi
s
h

c
rc

d
ijk

s
tr

a ff
t

g
s
m

is
p

e
ll

jp
e

g

p
a

tr
ic

ia

p
g

p

q
s
o

rt

ri
jn

d
a

e
l

s
h

a

s
tr

s
e

a
rc

h

s
u

s
a

n

ti
ff

a
ri
th

 m
e

a
n

g
e

o
 m

e
a

n

N
o
rm

a
liz

e
d
 E

n
e
rg

y
 U

s
a
g
e
 E

s
ti
m

a
te

0.5

0.6

0.7

0.8

0.9

1

Without ToC Opts With ToC Opts

Figure 21: Estimated Energy Usage Ratio

Figures 22 and 23 show the impact of the ToC optimizations on
execution time and energy usage, respectively, where a ToC opti-
mization is added to the previous set applied. The execution time
ratio is largely affected by using the SEQ register to hoist the tar-
get address calculation of the top-most block in an innermost loop.
There are many applications where most of the execution cycles
are spent in innermost loops that do not have any other conditional
control flow. Hoisting other target address calculations out of loops
provided an additional 0.8% reduction. The execution time bene-
fits for this optimization were also limited by only eliminating one
effect for each ToC rather than eliminating two effects for each
ToC when using the SEQ register. Call-jump/jump-call chaining
provided only a small benefit, which was primarily due to the in-
frequency of unconditional jumps that limited the opportunities for
this optimization to be applied. Hoisting return address assignments
also provided a small benefit. Most of the benefit for exploiting
conditional calls/returns was due to merging calls before branches,
as depicted in Figure 15. Call-jump/jump-call chaining, hoisting
return address assignments, and exploiting conditional calls all re-
quire the invocation of a function and thus their benefits are limited
due to the relative execution time of the invoked function. Condi-
tional returns were also infrequently applied. The impact of all of
the call and return related optimizations together was only about
0.24%. We anticipate that these call and return related ToC opti-
mizations will be more effective for applications that are more call
and return intensive, such as object-oriented applications in C++.
The impact of ToC optimizations on energy usage is highly corre-
lated to the improvements for execution time. Note that much of the
20% energy usage reduction with no ToC optimizations is achieved
by the way that ToCs are performed, which eliminates the need for
a BTB and RAS and significantly decreases BPB accesses.

ToC Optimizations

no
ToC
opts

+hoist
using
SEQ

+hoist
other
targs

+call/
return
opts

N
o

rm
a

liz
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Figure 22: Impact of ToC Opts
on Execution Time

ToC Optimizations

no
ToC
opts

+hoist
using
SEQ

+hoist
other
targs

+call/
return
opts

N
o

rm
a

liz
e

d
 E

n
e

rg
y
 U

s
a

g
e

 E
s
ti
m

a
te

0.76

0.77

0.78

0.79

0.8

Figure 23: Impact of ToC Opts
on Energy Usage

8. Related Work
SP instructions are most similar to horizontal microinstructions [15],
however, there are significant differences. While horizontal micro-
instructions also specify computation at a low level, they do not
expose pipelining at the architectural level. In a micro-programmed
processor, each machine instruction causes the execution of micro-
instructions within a micro-routine stored in ROM. Furthermore,
compiler optimizations cannot be performed across these micro-
routines since this level is not generally exposed to the compiler.
Static pipelining also bears some resemblance to VLIW [9] in that
the compiler determines which operations are independent. How-
ever, most VLIW instructions represent multiple RISC operations
that can be performed in parallel. In contrast, the SP approach en-
codes individual instruction effects that can be issued in parallel,
where most of these effects correspond to an action taken by a
single pipeline stage of a traditional RISC instruction.

A prepare-to-branch (PTB) instruction has been previously pro-
posed [3]. However, the use of this feature required an entire in-
struction and thus will impact code size and performance. In con-
trast, our PTB field only requires 4 bits as the target address calcula-
tion is decoupled from both the PTB field and the point of the ToC.

One study proposed to use a set of branch registers to hold
branch target addresses, a set of instruction registers to hold branch
target instructions, and to have every instruction reference a branch
register (be a transfer of control), where one branch register rep-
resented the next sequential address [5]. The proposed approach
enables target address calculations to be hoisted out of loops or
eliminated by common subexpression elimination. However, their
technique still requires the use of a delayed branch and that each as-
signment to a branch register cause a prefetch of the branch target
instruction into an instruction register in order to make each taken
ToC feasible without a delay. This prefetching requires a multi-
ported instruction cache, which would increase the L1 IC complex-
ity, area, and access power. This study also did not utilize the other
optimizations that we present in our paper.

There have been other proposed architectures that also expose
much of the datapath to a compiler. The No Instruction Set Com-
puter (NISC) [12] has no fixed ISA that bridges the compiler with
the hardware. Instead, the compiler generates control signals for the
datapath directly. The FlexCore processor [14] also exposes datap-
ath elements at the architectural level. The design features a flexible
datapath with an instruction decoder that is reconfigured dynami-
cally at runtime. The Transport-Triggered Architectures (TTAs) [4]
are similar to VLIWs in that there are a large number of paral-
lel computations specified in each instruction. TTAs, however, can
move values directly to and from functional unit ports, to avoid the
need for large, multi-ported register files. However, the SP back-
end performs many other optimizations that are not performed for
the the NISC, FlexCore, and TTA architectures while using fewer
internal registers. The NISC, FlexCore, and the initial TTA stud-
ies improve performance at the expense of a significant increase in
code size and were evaluated using tiny benchmarks. In contrast,
static pipelining focuses on improving energy usage while still ob-
taining performance and code size improvements on the MiBench
benchmark suite. In addition, the NISC, FlexCore, and TTA rely
on delayed branches, where the SP decouples the branch target
address calculation from the branch and uses a PTB field, com-
pletely eliminating the need for a BTB, which is the most expensive
part of branch prediction. Finally, many new ToC optimizations are
performed for the SP that are not performed for these other fully-
exposed datapath architectures.

9. Conclusions
Processors perform a significant number of ToCs and often use aux-
iliary hardware structures (BTB, RAS, and BPB) to quickly per-
form ToCs. In micro-effect based architectures, it makes sense to
reconsider the way branches are handled. ToC operations on the SP
architecture are separated into multiple effects that eliminate the
need for a BTB or RAS, significantly decrease the number of BPB
accesses, and provide opportunities for the compiler to perform ad-
ditional ToC optimizations. Many of the target address calculations
performed by traditional architectures are redundant as direct tar-
gets do not change when they are repeatedly calculated. For the SP
architecture, these target address calculations can be hoisted out
of loops or eliminated when the target address is already avail-
able. Likewise, branch chaining can be performed between calls

and jumps, return address assignments can be hoisted out of loops,
and conditional calls and returns can be exploited. We have shown
in this paper that the low-level SP representation enables a compiler
to more effectively optimize ToCs and provides improvements in
both performance and energy usage.

10. Acknowledgements
We appreciate the comments provided by the anonymous review-
ers of this paper. This research was supported in part by the US Na-
tional Science Foundation grants CNS-0964413 and CNS-0915926
and the Korean Ministry of Science, ICT and Future Planning grant
10041725.

References
[1] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An Infrastructure

for Computer System Modeling. Computer, 35(2):59–67, 2002.
[2] M. Benitez and J. Davidson. A Portable Global Optimizer and Linker.

ACM SIGPLAN Notices, 23(7):329–338, 1988.
[3] A. Bright, J. Fritts, and M. Gschwind. Decoupled fetch-execute engine

with static branch prediction support. Technical report, IBM Research
Report RC23261, IBM Research Division, 1999.

[4] H. Corporaal and M. Arnold. Using Transport Triggered Architec-
tures for Embedded Processor Design. Integrated Computer-Aided
Engineering, 5(1):19–38, 1998.

[5] J. Davidson and D. Whalley. Reducing the cost of branches by using
registers. In International Symposium on Computer Architecture,
pages 182–191, May 1990.

[6] I. Finlayson, G. Uh, D. Whalley, and G. Tyson. An Overview of Static
Pipelining. Computer Architecture Letters, 11(1):17–20, 2012.

[7] Finlayson, I. and Davis, B. and Gavin, P. and Uh, G. and Whalley, D.
and Själander, M. and Tyson, G. Improving Processor Efficiency by
Static Pipelining Instructions. In Conference on Languages, Compil-
ers, and Tools for Embedded Systems, pages 33–43, 2013.

[8] Finlayson, I. and Uh, G. and Whalley, D. and Tyson, G. Improving
Low Power Processor Efficiency with Static Pipelining. In Proceed-
ings of the 15th Workshop on Interaction between Compilers and Com-
puter Architectures, 2011.

[9] J. Fisher. VLIW Machine: A Multiprocessor for Compiling Scientific
Code. Computer, 17(7):45–53, 1984.

[10] C. Fraser. A retargetable compiler for ansi c. ACM Sigplan Notices,
26(10):29–43, 1991.

[11] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and
R. Brown. MiBench: A Free, Commercially Representative Embed-
ded Benchmark Suite. In Workload Characterization, 2001. WWC-4.
2001 IEEE International Workshop on, pages 3–14. IEEE, 2002.

[12] M. Reshadi, B. Gorjiara, and D. Gajski. Utilizing horizontal and ver-
tical parallelism with a no-instruction-set compiler for custom datap-
aths. In International Conference on Computer Design, pages 69–76,
Washington, DC, USA, 2005.

[13] S. Thoziyoor, N. Muralimanohar, J. Ahn, and N. Jouppi. Cacti 5.1.
Technical report, HP Laboratories, Palo Alto, Apr. 2008.

[14] M. Thuresson, M. Själander, M. Björk, L. Svensson, P. Larsson-
Edefors, and P. Stenstrom. Flexcore: Utilizing exposed datapath con-
trol for efficient computing. Journal of Signal Processing Systems,
57(1):5–19, 2009.

[15] M. Wilkes and J. Stringer. Micro-Programming and the Design of the
Control Circuits in an Electronic Digital Computer. In Mathemati-
cal Proceedings of the Cambridge Philosophical Society, volume 49,
pages 230–238. Cambridge Univ Press, 1953.

