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ABSTRACT 

The vast amount of geo-tagged social images has attracted great 

attention in research of predicting location using the plentiful 

content of images, such as visual content and textual description. 

Most of the existing researches use the text-based or vision-based 

method to predict location. There still exists a problem: how to 

effectively exploit the correlation between different types of 

content as well as their geographical distributions for location 

prediction. In this paper, we propose to predict image location by 

learning the latent relation between geographical location and 

multiple types of image content. In particularly, we propose a 

geographical topic model GTMI (geographical topic model of 

social image) to integrate multiple types of image content as well 

as the geographical distributions, In GTMI, image topic is 

modeled on both text vocabulary and visual feature. Each region 

has its own distribution over topics and hence has its own 

language model and vision pattern. The location of a new image is 

estimated based on the joint probability of image content and 

similarity measure on topic distribution between images. 

Experiment results demonstrate the performance of location 

prediction based on GTMI.   

Categories and Subject Descriptors 

H.3.1 [Information storage and retrieval]: Content Analysis and 

Indexing. H.2.8 [Database management]: Data mining. 

General Terms 

Algorithms, Measurement, Experimentation. 

Keywords 

Image topic; Location prediction; Geographical topic; Topic 

model 

1. INTRODUCTION 
With the rapid development of Web 2.0 and GPS-equipped 

mobile terminals, geo-tagged social media data are tremendously 

increasing. These location-based social network (LBSN) services, 

such as Flick and Google Latitude, not only allow users to 

maintain cyber links with other users, but also enable users to 

share their activities happening at certain locations in various 

forms. Usually, users associate their documents in social network 

with a geographic record which is mainly denoted by a two 

dimensional vector, i.e., latitude and longitude. Nowadays, Flickr 

hosts more than 100 million images associated with textual 

descriptions (e.g., titles, comments, and tags), visual contents, and 

GPS records. This large amount of geo-tagged social images 

presents various popularities across different geographical regions. 

That is, the language models and vision patterns of social images 

relate to their locations. For example, images about New York 

City might cover entirely different events compared to those about 

Beijing. The preference of tag words and visual contents are 

different for the two cities. On the other side, there are also many 

social images remained untagged. These characteristics make it 

possible to learn a reasonable model to identify the relation 

between location and distribution of image content including 

textual description and visual content, which is important for 

predicting the location of a untagged image. 

Recently, many approaches have been proposed to estimate the 

geographic location of social image [1, 2, 4, 6, 22].  These 

approaches can be categorized into two classes. The first class of 

approaches is vision-based, which estimates the location of new 

image based on the locations of visually similar images [1, 11, 22]. 

However, due to the large variety of visual content and semantic 

gap problem [23, 24], exploiting visual content only is 

challenging.  Another class of approaches is text-based, which 

exploits the relation between text description and location to 

predict where the image was taken [3, 16]. These approaches 

perform better than vision-based approaches, since the text words 

are more effective in conveying the location information. Besides, 

some location-specific tags (e.g., Summer Palace and Forbidden 

City) are helpful to disambiguate some visually similar images. 

However, these approaches mainly employ a pure language model, 

and thus they are ineffective to process social images with rich 

visual contents. Unlike textual document, geo-tagged social image 

contains multiple types of contents, i.e., textual description, visual 

contents, and geographical information. Each location has its own 

characteristic of both language model and vision pattern, and 

different types of content are also correlated with each other. 

These contents should be incorporated simultaneously in a model 

to identify relations between social image and location. Although 

there are some works on using different content for landmark 

prediction and representation, these works unite different types of 

feature linearly. There still exists an challenge: how to learn the 

latent correlation between visual content and text content for each 

location and in turn estimate the location based on the latent 

correlation.  

To address this problem, we propose a geographical topic 

model of social image (GTMI), by simultaneously incorporating 

geographical information, textual description and visual contents. 

To combine the different data modalities of text content and visual 

content, we propose a common structure shared by both domains, 

i.e., image topic.   Each topic is modeled as a distribution on both 

text words and visual features. GTMI could identify different 
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topic patterns across regions, where the geographical 

characteristics of languages and visual contents are integrated by 

topics consistently. That is, each region has its own topic 

distribution, and hence has its own language models and vision 

patterns. A generative procedure is employed to model the 

production of text content and visual content, i.e., image patches 

that comprise of the pixels that are spatially coherent, based on 

location information. The location of a new image can be 

predicted  by a two-step method. First, the region which has the 

greatest joint probabilities of the query image's content is selected. 

Then, the location is estimated by propagating the locations from 

the most similar images in this region to the query image, and  the 

influences of these similar images are determined by their weights. 

Experimental results show that our GTMI outperforms non-trivial 

baselines on predicting image location. Compared with existing 

works, our main contributions are as follows: 

1. We propose a geographically generative model of image 

content and locations, which incorporates multiple facets of 

image environments in an integral fashion. A Gibbs 

sampling method is employed to infer the model parameters. 

2. A two-stage strategy is proposed to predict image location 

based on GTMI, which exploits the latent topic distribution 

of region and image. 

3. A set of experiments are conducted on a real-world social 

image dataset, and the experimental result shows that the 

proposed model outperforms several state-of-the-art models 

on image location prediction. 

   The remainder of this paper is organized as follows. In the next 

section, we introduce related works. We describe our model in 

Section 3, and location prediction based on GTMI is introduced in 

Section 4. The experiments are described in section 5. Finally, the 

paper is concluded in section 6. 

2. RELATED WORKS 
The study of predicting the location at which an image was 

taken has drawn much research attention from the computer 

vision and data mining community. Most of the studies addressing 

this task fall into two categories: text-based prediction, which 

predict the location based on the text content associated with 

social image using language model, and vision based prediction, 

which propagates the locations from visually similar images to the 

query image. 

User-contributed text tags have been used as a basis of a large 

range of successful geo-coordinate predication algorithms. These 

works exploit the geographical characteristic of language model to 

mine what tags are location-specific. LGTA (Latent Geographical 

Topic Analysis) [3] combines geographical clustering and topic 

modeling to identify the geographical topics of social images, as 

well as estimate the topic distributions in different geographical 

locations for topic comparison. Another work proposes a language 

model based on user annotations, to place the annotated Flickr 

images on the map [6]. The MDP-based geographical topic model 

(MGTM) captures dependencies between geographical regions to 

support the detection of text topics with complex, non-Gaussian 

distributed spatial structures [15]. This model is based on a multi-

Dirichlet process (MDP). In [16], a two-step approach is proposed 

to estimate where a given image or video was taken, using only 

the tags that a user has assigned to it. In the first step, a language 

modeling approach is adopted to find the area which most likely 

contains the geographic location of the image. Then, a precise 

location is determined within the area that was found to be most 

plausible. Those works mainly use a pure language model to 

identify the link between text content and location, which neglect 

the relation between text content and visual features as well as 

their distributions over locations.  

Another category of approaches are vision-based. These works 

predict the location of image based on the visual features of image 

only.  The method IM2GPS first retrieves visually similar images 

and form clusters based on geo-coordinate information [1]. The 

geo-centroid of the cluster containing the most images is used as 

the predicted location. GVR [11] searches a set of candidate 

images that are visual neighbors of the query image and expands 

each candidate image with a geo-visual expansion set of images 

that are geographical neighbors of the candidate. The candidate 

images are ranked according to the visual similarity of their geo-

visual expansion sets and the query image. Then, the locations of 

the top ranked candidates are propagated to the query image. 

There are also some vision-based approaches for landmark 

recognition [17] and scenes matching [18]. The performance of 

most of these approaches falls short of the performance of text-

based approaches in the large-scale location prediction.  

Besides, there are also some works using both text description 

and visual content to mine the link between landmark and image. 

For example, the content analysis (based on text tags and visual 

features) is combined with structural analysis (based on geospatial 

data) for landmark recognition [2]. Similarly, multiple types of 

contents, i.e., locations, tags and visual features, are used to 

generate diverse and representative images for landmarks in [5]. 

However, these approaches consider different types of feature 

independently, which are not effective in learning the latent 

relation between different types of contents. In this paper, a novel 

generative model integrating geographical information, textual 

description and visual contents with their correlation is proposed 

to mine the distributions of geographical language and vision 

patterns across different regions, by which new image locations 

are predicted.   

3. GEOGRAPHICAL TOPIC MODEL of 

SOCIAL IMAGE 
Geo-tagged image contains multiple types of content, i.e., 

visual content, textual description, and geographical information. 

Usually, the text content and image visual content are highly 

correlated [19] and they also relate to the location.  We propose to 

identify the language models and vision patterns for each location, 

based on which location prediction can be developed. However, 

incorporating those contents simultaneously in the model to 

identify relations between image content and location is 

challenging, since the text space and visual content space have 

inherently different structures. To address this problem, it is 

necessary to apply a common structure to link them. On the other 

hand, this structure is also can be used to discover the 

geographical characteristic of each location. Thus, we propose a 

geographical image topic model GTMI, in which latent topic is 

used as the common structure and modeled on both text feature 

and visual feature. The geographical language models and visual 

content patterns are reflected by the topic distribution 

corresponding to the location. We accomplish this thanks to the 

large amount of social image data and the diversity of language 

and visual content variations appearing in social images. There are 

many factors that influence the language and visual content used 

in a social image taken in a particular location. For example, 

textual words used in an image depend on the local culture and 

the visual content of the image, while the visual content depend 

on the local view of the geographical region, e.g., famous building, 



nature view, and local sports activity. We will take these factors 

into the construction of GTMI. 

The graphic representation of GTMI is shown in figure.1. In 

GTMI, geo-coordinates are grouped into regions, and each image 

belongs to a region which has its own distribution over topics. 

Each topic is represented by two topic-specific distributions: 

topic-specific word distribution and topic-specific distribution 

over visual features. The two topic-specific distributions are 

correlated with each other. The topic-specific word distribution is 

modeled as a multinomial distribution, and the topic-specific 

distribution over visual features is modeled as a normal 

distribution. Then, the location of a query image is predicted 

based on the geographical model, i.e., estimating the joint 

probability of its contents given a region and propagating the 

location from the most similar images of this region to the query 

image. The geographical topic model can also be used to other 

image application, such as image tagging, image retrieval, and 

image clustering and so on. 

3.1 The generative procedure 
     Compared with the text words, visual features, e.g., color, edge, 

and texture, are much lower level representation on semantics. We 

introduce a middle-level feature for image representation. Each 

image is segmented into multiple patches that comprise of the 

pixels that are spatially coherent and perceptually similar with 

respect to certain appearances [20].  Then, each patch is 

represented by a |f|-dimensional visual features, e.g., Bag-of-

Words (BOW) features. Therefore, each geo-tagged social image 

p={wp, fp, lp}pP consists of three atoms: wp is a vector of words 

extracted from its textual contents, e.g., tags, titles, comments,  fp 

=( ,1pf , ,2pf , …, , f p
p Nf ) is a set of patches segmented from p, and lp 

is a real-valued pair lp={la, lo}, representing the latitude and 

longitude where the image is taken. For simplicity, we assume that 

all the textual contents in our data are generated by a fixed 

vocabulary of W words, and the geographical locations are 

clustered into R latent regions and the topic number is K. Each 

topic z Z is generated from regions instead of documents. The 

notations are list in Table 1. 

Table 1. Notations used in the paper 

Notation Size Description 

l R2 Mean location of a latent region 

l R22 Covariance matrix of a latent region 

f R|f| Mean visual feature of a latent topic 

f R|f||f| Covariance matrix of a latent topic 

 RW Region-specific word distribution 

 KW Topic-specific word distribution 

 RK Region-specific topic distribution 

 R2 Region-specific topic type distribution 

 

    The geographical distribution of each region is assumed to be 

normal 
:( , )l l

r r r 1...RN   , where l

r  and l

r  are the mean vector and 

covariance matrix of region r, respectively. Moreover, the topic-

specific visual features are also assumed to follow a normal 

distribution, parameterized as ( , )f f  = {( , )}f f

k k k:1..K  . The 

words that are close in space are more likely to belong to the same 

region, and they are more likely to be generated by the same 

topics. Similarly, the visual features that are close in space are 

more likely to appear in the same region, and they are more likely 

to be clustered into the some topic. Our model GTMI has the 

following intuitions: 

1. Words used in a social image depend on both the location and 

topic of the image, while the topic generating the words 

depends on the topic distribution of the location and has 

influence on the topics of visual contents of this image.  

2. Visual features used in a social image depend on the semantic 

of this image, and therefore the topic of visual feature depend 

on the topics assigned to the text words corresponding to the 

image. 

3. Topics have different distributions over different regions. 

Different geographical regions have different language 

variations and different distributions of visual patterns. 
     Figure. 1 depicts a graphical representation of GTMI. To 

generate a geo-tagged image p, the generative procedure of GTMI 

can be described as following: 

1. Sampling a region r from the discrete distribution of region 

importance , r ( )Discrete  . 

2. Sample location lp from normal distribution of ( , )l l

r rN   . 

3. To generate the visual feature of each patch fp,i in image p 

i: Sample topic: 
,p i

p

fz ( )Multinomial   

ii: Sample visual features: 
,, | z

p i

p

p i ff k ( , )f f

k kN   . 

4. To generate every word 
,p iw in image p 

            Sample a coin:
ix ( )rBernoulli  . 

             If 0ix   

                Sample word: ,p iw ( )rMultinomial  . 

             If 1ix   

i: Sample topic: 
p

iz ( )Multinomial   conditioned on 

image patches. 

ii: Sample word: , | p

p i iw z k  ( )kMultinomial  . 

 

Figure. 1. A graphical representation of GTMI 

3.1.1  Generation of Textual Words 
Textual word describes the context or the semantic information 

of image’s visual contents, which suggests that each word can be 

generated by correlating them to the collective set of topic 



indicators selected from the image generating region. As different 

regions have their own language characteristics, we adopt an 

additional machinery to handle special words, which are similar to 

the subtraction of document-specific words [9]. Beside the 

standard latent topic produced by standard topic model [12], we 

introduce a region-specific topic  (sampled from Dir(1) once 

for each region) to generate the region-specific words. Thus, the 

topics in our model consist of two types, i.e., region topic and 

standard latent topic which is similar to those produced by the 

LDA topic model [12]. 

The generative process for textual words now proceeds as 

follows. For each image p, we associate a Bernoulli distribution  
with prior parameters b and c, which models the distributions of 

region-specific words, and latent topic words. As shown in step 4 

of the generative procedure, to generate a word wp,i of image p, we 

first sample a random variable xi from a region-specific Bernoulli 

distribution r, which in turn has prior parameters b and c. If x=0, 

the word is sampled from the region-specific topic; if x=1, a 

standard latent topic indicator, p

iz , is selected according to topic 

distributions on the region and visual feature generation. The 

intuition is that, if a topic has a high co-occurrence with the 

region from which the image is sampled and has a high productive 

probability for the corresponding words and image patches, it has 

a high probability to be chose. 

3.1.2 Generation of Visual Features 

The visual feature of each image patch is modeled as a normal 

distribution whose mean and variance are topic-specific. Many 

works embellish the parameters of a normal distribution with an 

inverse Wishart prior [13], which are computationally expensive. 

In this paper, we take a simpler approach by placing a non-

informative Jeffrey’s prior over the values of the mean parameters, 

i.e. f

z Unif . Meanwhile, an inverse prior over the variance is 

placed to penalized large variances, i.e. 1( ) ( )f f

z zP     [13].  It is 

because that the calculation of image features might introduce 

noises. With such prior, the estimation of 
f

z  for a give topic is 

more robust to outliers. Then, the pdf function for an image, given 

a topic-specific normal distribution, is revised as a function 

( ; , , )t f n  , which is a student t-distribution with mean , 

variance , and n degree of freedom. Similarly, the pdf function 

( | , )l l

p r rP l     for a geographical location, given a region-specific 

normal distribution, is also revised as a student t-distribution 

function. 

3.2 Inference 
Under the generative process, we seek to compute the posterior 

probability: 

1: 1: 1: 1: 1: 1: 1: 0:2( , , , , , , , | , , , , , , )l l f f

R K R R R K KP a b c        w f l (1) 

    The above posterior probability can be easily written down 

from the generative model. However, the posterior is intractable. 

We approximate it via a collapsed Gibbs Sampling procedure [7, 

8], by integrating the hidden variables, e.g., the topic-mixing 

vectors of each region, the coin base for each region, and the topic 

distributions over all modalities. Therefore, the state of the 

sampler at each iteration contains the topic indicators for all 

regions. We alternate sampling each of these variables 

conditioned on its Markov blanket until convergence. When it 

converges, the expected values of all the parameters that were 

integrated out can be calculated. To simplify the calculation of the 

Gibbs sampling update equations, we keep a set of sum matrices 

with the form XY

xyC
 
to denote the number of times instance x 

appeared with instance y. Moreover, the subscript –i is used to 

denote the same quantity it is added to without the contribution of 

item i. For example, WZ

wkC denotes the number of times word w as 

sampled from latent topic k, and 
,

WZ

wk iC 
 is the same as WZ

wkC  

without the contribution of word wi. The sampling procedure can 

be described as following: 

For each image p, a latent region r is firstly drawn from the 

following distribution, conditioned on the old topic assignments:  

| ,r p 
 

( | ) ( | , ) ( | ) ( | )
j j

l l

j p r r p j p jP r P l P w r P f r    (2) 

where ( | , )
j j

l l

p r rP l    is the pdf function for a multivariate normal 

distribution corresponding to region rj. ( | )jP r  , 
r and 

r are 

estimated as following: 

1
( ( ) )

( , ) Pj

l

r j pp
j

g r p r l
Num p r




   
(3) 

( ( ) )( ) ( )

( , ) 1

P j j

j

l T l

j p r p rpl

r

j

g r p r l l

Num p r

 


  
 





 

 (4) 

( ( ) )
( | )

| | | |

jp

j

g r p r
P r







 




 P

P R
  

(5) 

where ( , )
j

Num p r is the number of images assigned to region rj, 

and ( ( ) )jg r p r is a indicator function which is 1 if and only if 

the image p is assigned to region rj. The component ( | )p jP w r  is 

estimated as following: 

, ,

, ,

,

( | ) ( | ) ( ( 0 | ) ( | )

( 1| ) ( | ) ( | ))

p i p i

p j p i j i j p i j

w w

i j p i jz Z

P w r P w r P x r P w

P x r P w z P z r





  

 

 

  
(6) 

''

( , )
( | )

RX

rs s
j RX

rxx

C b c
P x s r

C b c


 

 

 

(7) 

1
,

' 1'

( | )
WR

ir
p i j WR

w rw

C
P w

C W









  

(8) 

2
,

' 2'

( | )
WZ

ik
p i WZ

w kw

C
P w z k

C W






 



 

(9) 

''

( | )=
( )

RZ

rk
j RZ

rkk

C a
P z k r

C a






 

(10) 

where RZ

rkC  denotes the times that topic k is assigned to the word 

tokens in region r, ( , )s b c  =b and c for s= 0 and 1 respectively, 



and the variable xi act as a switch: if xi=1, the word is generated 

by the standard topic production mechanism, whereas if xi=0 the 

word is sampled from a region-specific multinomial. RX

rsC counts 

the number of words in region r is assigned the region-specific 

topic (s=0), and the number of words in region r is assigned a 

standard latent topic (s=2) .  P( fp | rj )is estimated as following: 

,

,

1

( | ) ( ) (z= | )
p i

K

p j p i j

kf

P f r P f | z k P k r


   
(11) 

where 
, ,( )= ( | , )f f

p i p i k kP f | z k P f   is the productive probability 

of the visual features, the pdf of a multivariate normal distribution, 
f

k is the sample mean of the values of image feature that are 

assigned to topic k, and f

k is defined similarly. 

Then, we update the topic assignments for the textual words 

and visual features of image p conditioned on the region 

assignment as following: 

Sample a topic for every patch fp,i： 

,, ,

'

( | , ) ( )
( ) p i

RZ

rk
p i p p i fRZ

rkk'

C a
P z k f w P f | z k

C a


   


 

(12) 

where the first part measures the comparability of joining a topic, 

given the region. As described above, the pdf function for a patch, 

given a topic-specific normal distribution, can be revised as a 

function ( ; , , )t f n  of a student t-distribution. Thus, the second 

part is calculated by: 

, ,
ˆˆ( ) ( ; , , 1)f f FZ

p i k k fk iP f | z k t f C    

 

(13) 

where ˆ f

k is the sample mean of the values of image features 

assigned to topic k,  ˆ f

k is defined similarly, and FZ

fkC is the 

number of times that image patches are sampled from topic k. 

Additionally, the pdf function ( | , )
j j

l l

p r rP l    in Eq. (2) can also 

be calculated similarly. 

Sample a topic for every word token wp,i in p： 

1

0, , 1

', ' , i 1' '

( 0 | , , , , , )i i i

RX WR

r i wr i

RX WR

rx i w rx w

P x x z b c

C b C

C b c C W







 

 

 



 
 

   

w

 

(14) 

2

2, i

,

','

, 2

2'

( 1, | , , , , , , )

( ) ( | )

i i i

RX

r RZ

rk i p iXR

rx ix

WZ

wk i

WZ

w'k,-iw

P x z k x z a b c

C c
C a Multi f z k

C b c

C

C W







 









 


    

 










w

 (15) 

Since the generation of visual feature is affected by text words, 

the topic assignment of word should consider the topic 

assignment of image patches. In Eq. (15), Multi(.) denotes how 

likely the topic assignment of wp,i matches the topic assignment of 

image patches, calculated as following: 

,

,

,

1 ','

( )
( | )

( )

f p

i p j

p j

RZN

rz i f

p i RZ
j rk i fk

C a g z k
Multi f z k

C a g z k



 

  
 

  



 (16) 

where
,

( )
p jfg z k  is an indicator function, equal to 1 if and only 

if the express inside is evaluated to be true. Equation (15) 

indicates that the topic assignment for a word is affected by the 

region preference of the topic and the topic assignments of the 

patches of the corresponding image. 

4. LOCATION PREDICTION 
    To predict the location for a query image, we first find the 

region that has the greatest joint probability of image content. In 

reality, a uploaded image may contains only visual content or 

contains both of visual content and text description. For a query 

image q with only visual content fq, we selected the target region 

r̂  which has the greatest joint probability as following: 

ˆ max ( | ) ( | ) max ( | ) ( | ) ( | )q qzr r
r P r P f r P r P f z P z r     (17) 

    For a query image q with both text content wq and visual 

content fq, the joint probability is revised as following: 

ˆ max ( | ) ( | ) ( | )q q
r

r P r P f r P w r  
(18) 

where ( | )qP w r  can be estimated with a similar formulation as 

(6). Then, the location of the query image can be estimated based 

on the locations of the images located in this region. There are 

two method to propagate the locations of the images in the target 

region to the query image. The first method uses the mean 

location of the selected region as the predicted location directly. 

This method may be sensitive to outliers. Instead of the mean 

location, we use the weighted locations of the most similar images 

in the selected region as the predicted location in the second 

method. That is, the location of a query image q is estimated as 

following: 

( )

( )

( )

( )

n

n

gg N q

q

g N q

wei g l
l

wei g










 (19) 

where ( )
n

N q denotes the n most similar images selected from 

region r̂ , and wei(g) is a weight which determines how strongly 

the result is influenced by image g. The similarity between two 

images is estimated by using JSD (Jensen-Shannon-Divergence) 

to measure the similarity between their two probability 

distributions over topics which can be obtained from the topic 

count matrices, i.e., ( , ) exp( ( (z | ), (z | )))
js

sim q g D P q P g  .  The 

weight is determined by the coherence of image gi with other 

images. Since the n images are selected based on their similarity 

with the query image rather than randomly selected, many of these 

images should cover the same semantic with the query image and 

they are more coherent with each other. However, the noisy ones 

of the top-n images are relatively different from other images, and 

it is less coherent with other images.  Based on this intuition, we 

estimate wei(gi) as following: 



( )/
( , )

( )
1

ny N q g
sim g y

wei g
n







 (20) 

    Equation (20) indicates that, if a image is more similar to other 

ones of the top-n images, it is more important in determining the 

location of the query image.  

5. EXPERIMENTS 
In this section, we study the effectiveness of our approach on a 

real-world dataset. 

5.1 Dataset 
The evaluation dataset is a set of images released by the 

MediaEval2012 Placing Task [21]. MediaEval2012 contains geo-

tagged Flickr (http://www.flickr.com/) images randomly sampled 

with a method that attempts to maintain coverage of the globe. 

Since this released dataset includes only the metadata and not the 

images themselves, we download the raw images using the links 

in the metadata. Because some images were removed after the 

dataset was collected, we download one million of images to 

evaluate the performance. We divided the dataset into 90% for 

training and 10% for testing. We resize all the images to the 

resolution of 320*240 pixels and set the maximal patch size M1 

=300 [20]. For each image, we obtain about 40 to 50 patches. The 

SIFT feature [14] is used to represent the visual content of each 

patch. Specifically, we sample a number of keypoints per image, 

and all the SIFT features of these keypoints are clustered to create 

a “visual vocabulary”. We set the number of clusters to be 1000, 

and each patch is represented by a 1000-dimensional vector. 

Textual words are extracted from image’s tags, title, and 

description after filtering the stop words. Some tags contain more 

than one word. To avoid destroying the semantic information of 

these tags, we take the whole tag as a single word token. 

5.2 Baselines and evaluation measure 
Here, we are to study the performance of GTMI on image 

location prediction. Other four approaches are used as baselines in 

this set of experiments.  

The first two approaches are text-based ones, i.e., LGTA [3] 

and LMSS (language model and similarity search) [16]. We 

realize LGTA by two steps. First, the region index which 

maximizes the query image likelihood is selected. Then, the mean 

location of the region is used as the predicted location. As for 

LMSS, we use the  hybrid method proposed in [16]. 

The other two approaches are vision-based ones, i.e., IM2GPS 

[1] and GVR [11]. IM2GPS uses the visual feature distance to 

find the 130 nearest neighbors and derive the location from these 

geo-tagged neighbors. To estimate the location of the query image, 

mean-shift [10] (scale=0.00001) is used to cluster the neighbors 

based on the location information. Then, the mean location of the 

cluster which has the highest cardinality is used as the location of 

the query image. GVR first retrieves a set of top-K visual-

neighbors as candidates. Then the candidate whose geographical 

neighbors that are also in the candidates set and is visually similar 

to the query image is selected as the target, and the location of the 

target image is used as the location of the query image.  

In practice, image might be uploaded with or without text 

description. Therefore, we test the performance of location 

prediction for both types of query image, i.e., query image 

containing text content and query image without text content, 

respectively. The two implementations are named GTMI-TV and 

GTMI-V respectively. For performance evaluation, we calculate 

the Euclidean distance between the predicted location and real 

location, using the metric of average distance error (ADE) 

calculated as following: 

1

1 ˆ, )
N

i ii
ADE dis(l l

N 
 

 

(21) 

where N is the total number of query images, and ˆ , )i idis(l l is the 

Euclidean distance between the predicted location and the true 

location. Moreover, the percentages of distances within different 

ranges are also taken for performance evaluation.  

5.3 Experimental results 
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Figure 2. ADE of the query image containing both text content 

and visual content with different setting of n and R  

    There are several parameters in our approach, i.e., R-the 

number of regions used to cluster the training images, and K-the 

number of latent topics in GTMI, n-the number of most similar 

images selected from the target region. First, we fix the topic 

number to be 100 and evaluate the performance of our approach 

with different values of n and R. Fig. 2 and Fig. 3 show the 

average distance errors that are obtained for a variety of cluster 

sizes and number of similar images to consider, where the mean 

line denotes the performance of setting the location of the query 

image with the mean location of the target region. In Fig. 2, we 

show the performance of GTMI-TV that predict the location using  

both of the visual content and text content of the query image, In 

Fig. 3, we evaluate the performance of another implementation of 

our approach, i.e., GTMI-V that uses only the visual content of 

query image to predict its location. From these figures, we find 

that the performance is not always proportionate to the number of 

similar images to be selected. The optimal choice of n is 4 for the 

query image containing both visual content and text content, and 

8 for the query image containing only visual content. Setting with 

the mean location is worse than the method propagating location 

from similar images to the query image except n=1. This is 

because that the mean location of a region is effect by the outliers. 

All of the performances are affected by the number of regions that 

are clustered. If the number is too small, the region will be too 

coarse, and each region will cover a great number of geo-tagged 

images many of that may be noisy images. These noisy images 

may be selected to estimate the location of the query image, and 

thus the performance decreases. If the number is too large, the 

chance of selecting a wrong region which has the greatest joint 

probability of the query image increases, and the time complexity 

also increases. Therefore, there is trade-off found in figure 2 and 

figure 3. It can also be concluded that combining different types 



of content to predict location has a better performance than using 

only the visual content to predict location, which is because that 

image text words are related to the geographical location of image 

greatly. Then, we conduct experiments to analyze how the 

performance is affected by the parameter of topic number. As 

LGTA is also based on a topic model, we compare GTMI-TV 

against LGTA with different numbers of topics and a fixed region 

number of 1500. As shown in Fig. 4, the average distance error 

does not change greatly as the number of topics varies.  It might 

because that LGTA predict the location based on the mean vectors 

of latent regions. Fixing the number of regions is approximate to 

fixing the range of regions. Thus, a fixed number of regions 

would bound the prediction performance to some range. Our 

approach also has a dependence on the result regions. Second, it 

is clear that GTMI significantly outperforms LGTA. It is because 

that GTMI learns special words for different regions, which are 

helpful to discriminate different regions. Moreover, the visual 

features as well as their relations with textual contents are 

exploited in GTMI, which is complementary to geographical 

language model mining. As different region has its own vision 

patterns and great vision variety, the language model is inadequate 

to discriminate the geographical characteristic of different regions, 

which might explain why LGTA performs worse. 
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Figure 3. ADE of the query image containing only visual 

content with different setting of n and R  
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Figure. 4. Performance comparison with different number of 

topics  

Previous experiments are used to evaluate how the performance 

is effected by the parameters setting. In this set of experiments, we 

compare our approach with other approaches by fixing n=4 (n=8 

for GTMI-V), K=100, and R=1500. Fig. 5 shows the average 

distance error of different approaches, with the training data used 

in these approaches varied from 20% to 100%. It can be 

concluded that all the performances are affected by the volume of 

training data. This is might because that when the training dataset 

is too small, the distributions of images in many locations are very 

sparse, especially in the locations that are less frequently 

photographed. Therefore, the prediction of these locations is less 

effective. It is interesting to find that the text-based approaches 

perform better than the vision-based approaches. This is because 

that text content is more effective in conveying the semantic 

information than the visual content. The result shows that our 

approach GTMI-TV consistently outperforms other approaches, 

and GTMI-V perform better than other vision-based approaches. 

The performances of both IM2GPS and GVR have a high 

dependency on the selection of visually similar images. However, 

the visually similar images might be semantically dissimilar 

images due to the “semantic gap” problem. Thus, visually similar 

images could be far away from each other. Our approach GTMI-V 

can discover the geographical discrimination of visual feature 

based on its correlation with text content and geographical 

information in the training process. Thus, GTMI-V perform better 

than these visual similarity based methods, and it performs 

comparably against other text-based approaches LGTA and LMSS. 

LGTA and LMSS use the pure text model to discover the 

geographical language characteristic of each region based on the 

text content of geo-tagged images, which ignore the large variety 

of visual content in each geographical location. Therefore their 

performance is affected. Our approach GTMI-TV integrates 

different types of contents, using their correlations to identify the 

latent relation between locations and image’s textual content and 

visual content, which is more effective in location prediction. 
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Figure. 5. Performance comparison with different percentage 

of training data 

   In fig. 6, the percentage of distance errors belonging to different 

ranges is used as the evaluation measure. It shows the comparison 

of our approaches against other approaches, with the distance 

error range varied from 10 Kms to 150 Kms, which indicates that 

GTMI-TV has the greatest percentages in the former distance 

ranges compared with other approaches, e.g., 1-10(Kms), 10-

30(Kms). Therefore, more number of the query images are 

predicted by GTMI-TV more accurately, which denotes that 

GTMI-TV has the lowest ADE. As for GTMI-V, its percentages 

corresponding to the former distance ranges are greater than other 

vision-based approaches, and is similar to the text-based 

approaches. This figure also indicates that the text-based 

approaches are more effective than the vision-based approaches, 

since the text content usually is more effective in conveying the 

semantic information. 
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Figure. 6. Model comparison with different ranges of error 

6. CONCLUSION 
The emerging trend of geo-tagged social image stimulates a 

wide variety of novel researches and applications. In this paper, 

we address the problem of image location prediction by 

introducing a geographical topic model of social image (GTMI), 

which simultaneously incorporates multiple types of image 

contents, i.e., textual description, visual contents, and location 

information. GTMI introduces the topic structure to combine both 

text features and visual features, and the latent relation between 

image content and geo-location is captured by the coherence of 

topic distributions between image content and regions. A real-life 

datasets and several baselines are used for comparative studies. 

Experimental results show that GTMI is effective in location 

prediction, for new images. Specifically, GTMI is more effective 

in predicting location for the query image with only visual content 

than other vision-based approaches, and it is more effective than 

other text-based approaches in predicting location for the query 

image with both text content and visual content.  
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