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ABSTRACT

This paper explores the potential for using Brain Computer

Interfaces (BCI) as a relevance feedback mechanism in content-

based image retrieval. Several experiments are performed
using a rapid serial visual presentation (RSVP) of images
at different rates (5Hz and 10Hz) on 8 users with different
degrees of familiarization with BCI and the dataset. We
compare the feedback from the BCI and mouse-based inter-
faces in a subset of TRECVid images, finding that, when
users have limited time to annotate the images, both inter-
faces are comparable in performance. Comparing our best
users in a retrieval task, we found that EEG-based relevance
feedback can outperform mouse-based feedback.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Relevance
feedback; H.5.2 [User Interfaces]: Input devices and strate-
gies

General Terms

Experimentation, Design

Keywords

Brain-computer interfaces, Electroencephalography, Rapid
Serial Visual Presentation, Classification, Instance Retrieval

1. MOTIVATION

The exponential growth of visual content and its huge
diversity has motivated considerable research on how doc-
uments can be retrieved according to user intentions when
formulating a query.

Advances in image processing and computer vision have
provided tools for a perceptual and semantic interpretation
of both the query and the indexed content. This has allowed
the development of retrieval systems capable of processing
queries by example and concepts.
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The role of a human user during visual retrieval is criti-
cal, and his judgment about the correctness of the retrieved
results can greatly speed up the search processes. This kind
of relevance feedback has been demonstrated to significantly
improve retrieval performance in image [10] and video [1]
retrieval. Manually annotating images using a mouse, espe-
cially in a visual retrieval context can be tedious and men-
tally exhausting. In that such a scenario, EEG-based brain
computer interfaces offer a potential solution as a mecha-
nism to quickly annotate images.

2. RELATED WORK

EEG signals have been used for object detection in [2],
where authors aim to detect airplanes in a dataset of satellite
images from the city of London. The work in [3] expands the
catalog of objects in very simple images, where the object
on a black background occupies the whole image.

EEG signals have been also used for image retrieval in [9],
where authors used EEG relevance annotations to retrieve
specific concepts in a complex dataset of keyframes from
TRECVid 2005. However, while that work aimed at detect-
ing concepts depicted by the whole image, we focus on the
more challenging task of detecting a local object in a com-
plex scenario. Another similar work [8], addresses the usage
of EEG for image retrieval by formulating the problem as a
semi-supervised learning problem. The noisy relevance la-
bels generated by EEG classifiers on a small subset of a large
database are expanded through a visual similarity graph.
In our experiments, the highest and lowest EEG relevance
scores are used to train a binary classifier, instead of feed-
ing a semi-supervised algorithm. This way results are more
comparable to the binary relevance labels collected with the
mouse interface.

3. EXPERIMENTAL SET-UP

Following previous work on EEG-based image retrieval
[3, 4, 8], the experimental design was based in the ‘oddball
paradigm’, in which two different stimuli are presented to the
user in random order and with different probabilities. One
stimulus (the ‘target’) appears with low probability during
the visual presentation and the other (the ‘distractor’) ap-
pears frequently. Users are asked to focus on detecting the
target and to express their reaction by either counting or
pressing a button.

In this context, it has been found that when a user reacts
to a target stimulus, a P300 wave appears in the captured
brain signals. This wave is a kind of Event Related Poten-
tial (ERP) and it consists in a positive peak in the EEG



activity around the 250ms-500ms range after the stimulus
presentation.
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Figure 1: Visual evidence of discriminative P300 re-
sponse on averaged epochs for 1000 images (5 blocks
of 200) captured at 5Hz for the Pz channel. On the
left, the response on target images. On the right,
the response for 50 distractors.

For our experiments, we selected a ‘real world’ set of im-
ages from a subset of the TRECVid 2013 instance search
dataset. Three queries were selected, each one containing 4
visual examples. Figure 2 shows one visual example of each
of the three selected queries. Using the ground truth labels
provided by TRECVid, 1000 images were selected for each
query. To adapt the data to the oddball paradigm, the ‘tar-
get’ ratio of the dataset has been set to 5% (i.e. for each
query, 50 relevant images and 950 non-relevant images are
used).

Figure 2: Visual examples of the three query objects
(top) and the actual images where they appear (bot-
tom). From left to right: 1. A circular ‘no smoking’
logo, 2. A small red obelisk, 3. A Metropolitan
Police logo.

The selected images are presented in a Rapid Serial Visual
Presentation (RSVP). For each query, the 1000 images are
divided in 5 blocks of 200 images keeping a 5% target ratio
within each block (i.e. 10 ‘target’ images and 190 ‘distrac-
tors’). Once this division is done, the images are randomly
sorted within the block. These blocks are presented to the
user one after the other, allowing him/her to rest for a few
seconds between blocks. The user’s task consisted in count-
ing/pressing a button every time that they detected a target
image during the RSVP. The visualization rates that have
been tested in our experiments are 5Hz and 10Hz, therefore
the duration of the experiment for a single query is 200 and
100 seconds.

Eight volunteers between the ages of 19 and 33 partici-
pated in the experiments: six women and two men. Of the
eight users that participated in the task, two completed the
experiment with a RSVP at 10Hz and four at 5Hz. The last
two users completed the task twice, once at 10Hz and once
at bHz.

The BCI device used was a 32 channel actiCHamp ampli-
fier, which was connected to the user locating the electrodes
according to the 10-20 system.

4. EEG SIGNAL PROCESSING

The signals captured by each one of the 32 sensors were
re-referenced to the average of all the channels. Then, the
sample rate was reduced from the original 1000Hz to 250Hz
and the signals were band-pass filtered from 0.1Hz to 20Hz.
The epochs related to each visual stimulus were extracted,
obtaining 1000 epochs with EEG activity from 1 second be-
fore to 2 seconds after each image. Then, for each of the
32 signals, the period from 200ms to 1s was taken as the
discriminant time region to discern between EEG responses
of targets and distractors (see Figure 1) and with the sam-
ple rate reduced to 20Hz, generating a 16 sample vector per
channel. Each of the 16 samples per channel was the result
of computing the average of 24 samples windows with 50%
of overlap between each other, which we found was a better
strategy than to just decimate the signal. Finally, we build
a single feature vector for the image as the concatenation
of the 32 channels, generating a 512-dimension vector per
image.

We used a linear SVM model with default parameters to
classify the EEG signals. Every user had his/her own mod-
els, i.e. for each user, the data associated to the presentation
of 2 queries (2000 EEG epochs) was used as training exam-
ples, and the remaining query was used for testing. This
procedure was repeated 3 times to obtain a classification
prediction for the images of the three queries.

We used the Area Under the Curve (AUC) of the Receiver
Operating Characteristic space (ROC) to evaluate the per-
formance of the models.

S. OBJECT DETECTION

After generating a relevance score by using the SVM mod-
els, the images were ranked from higher to lower relevance
score. The top row of figure 3 shows a few examples of some
of the correctly classified images for one of the target ob-
jects. In these examples we can see images that have been
correctly detected as relevant despite of the fact that, in
most of them, the object appears to be very small (some-
times even incomplete). Such behavior suggests that users
do not only recognize the object itself, but also its context.

Figure 3: Images with high SVM classifier scores for
user A and and query 2 (top) and images with high
SVM classifier scores (yet not relevant) for user D
and query 1 (bottom).



The bottom row of figure 3 shows some sample images
that obtained high SVM scores for query 1, despite not being
relevant to the query. It is interesting to see that all these
images contain objects that are similar to the queried object.
This also suggests that users respond not only to the general
appearance of the image but also to the object they are
looking for.

5.1 User diversity

Figure 4 shows the ROC curves for all the users who par-
ticipated in the experiment. Due to the the huge diversity
in user’s performance, we define two user profiles:

e The expert user, who is familiar with the presented
images (they have seen the images in advance) and
with the purposes of the experiment.

e The nowvice user, who has had no previous exposure to
the images.
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Figure 4: ROC curves for the 8 users. Users have
as many curves as the number of experiments they
performed.

Following the criteria stated above, 3 of our users were
selected as experts and 5 of them as novice users. We then
average the AUC values of the three queries for expert and
novice users separately, reaching values of 0.758 and 0.642,
respectively. The average AUC achieved by expert users
is significantly higher than the one for novice users (t-test,
p=0.005317, sample size = 9). This is a reasonable result,
since expert users are already familiar with the images look
like prior to the experiment, which gives them an advantage.

5.2 Visualization rates: SHz vs 10Hz

The second experiment explores the impact of different
visualization rates in users’ performance. We compare the
performance achieved by those users who did the experi-
ment at 10Hz with those who did it at 5Hz. We average the
AUC values of the three queries for 5 and 10 Hz experiments
separately, obtaining values of 0.775 and 0.734, respectively.
This difference between the two is, however, not significant
(t-test, p = 0.1397, sample size = 12), which leads us to con-
clude that 10Hz is a reasonable visualization rate for users

to be able to identify objects in complex images and, more
importantly, reduces the length of the experiment by half.

6. EEG VS. MOUSE FOR RETRIEVAL

In order to compare EEG- with mouse-based annotations,
we use the interface from [6] on the same set of images de-
scribed in Section 3. This interface displays the images in a
thumbnail grid in the same order as in the EEG experiment.
The time given to the users to annotate the images with the
mouse interface has been restricted to the same amount of
time that users spend visualizing images in the EEG setup,
i.e. 200 seconds for the 5Hz configuration and 100 seconds
for the 10 Hz one.

6.1 Retrieval within our dataset

The annotations obtained with both EEG and mouse-
based mechanisms were used to sort the 1000 images for
each query and produce a ranking.

The ranking for the mouse setup is constructed as follows:
Given a set of positive annotations and their time stamps,
we define two sets of images p, and n,, where p, are the
positive annotations themselves and n, contains all those
unmarked images presented before the last positive annota-
tion (i.e. we assume that all the observed images that have
not been clicked are negative). Then, the ranking is built
to ensure that the images in p, are always on top and the
images in n, are always at the bottom. The remaining set
of images are placed in between in the same order in which
they were displayed in the mouse interface.

The ranking for EEG is constructed by just sorting all the
images by their SVM score in descending order.
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Figure 5: Mouse vs EEG. On the left, averaged val-
ues for all Users at 5Hz / 200 seconds. On the right,
for 10Hz / 100 seconds.

We can see in Figure 5 that there is an accuracy drop in
both Mouse and EEG when time is reduced from 200 to 100.
Interestingly, this drop in performance is a lot higher for the
Mouse-based mechanism. The same time limitation on the
EEG approach does not seem to significantly affect the final
accuracy, which points out the potential of EEG signals,
specially when the images are displayed at high frequency
rates.

6.2 Retrieval in a larger dataset

This last experiment consists of combining the collected
annotations with visual descriptors to retrieve images from a
bigger dataset. The chosen dataset consists of 23,614 frames



selected from the TRECVid Instance Search dataset from
2013. We extract visual descriptors for all our images from a
Convolutional Neural Network (CNN) pre-trained with Im-
ageNet [7] using the Caffe software [5]. The selected feature
vector is the output of Layer 7 (the second top fully con-
nected layer), which has 4,096 dimensions.

We then train a linear SVM model with default param-
eters for each query from the obtained annotations. This
model is used to score to all images in the larger dataset
and then sorted in descending order.

In order to train the model it is necessary to select positive
and negative examples. For the mouse-based interface, we
consider as positive examples all the images clicked by the
users. Negative examples are those observed images that
the user saw but did not click during the annotation time.
In the EEG case, the annotations are selected according to
the confidence scores given by the EEG models. We sort the
images in descending order and take the top 10 and bottom
100 images as positive and negative examples, respectively.

The mean average precision values considering three queries
and users for the mouse and EEG systems are 0.27 and
0.21 respectively. Results for the mouse configuration are
significantly higher, but these results are averaged across
all the users, and we know that there is a high variability
among them (Section 5.1) and that this variability is espe-
cially present in the EEG case.

To make a comparison that is not subject to user diver-
sity, Figure 6 shows the performance of the best user for
both interfaces, in the two time configurations. As expected,
when the user interaction time is set to 200s (5Hz RSVP),
the mouse-based annotations are more effective than the
EEG ones, obtaining mean AP of 0.49 vs 0.27, respectively.
Nevertheless, when we consider the best users for the the
100s configuration (10Hz RSVP), we obtain a similar per-
formance for the two, with EEG a slightly better on average
with a mAP value of 0.37 against a 0.32 for mouse-based
feedback.
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Figure 6: Average Precision comparison between
mouse and EEG annotations for the best user in
both configurations

7. CONCLUSION

In this paper, we have presented and studied the potential
application of EEG as a mechanism towards relevance feed-
back and compared it to the traditional “click-based” one
for an object retrieval task. We have compared the EEG-
based relevance feedback signal with standard “click-based”

relevance feedback from a mouse and find that comparable
accuracy can be achieved with the EEG-based approach, es-
pecially for those users who are familiar with both the brain
computer interface and the image dataset. We have seen
that there is potential for EEG specially when using higher
RSVP rates, which allow for faster annotation with little
drop in performance.
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