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Abstract

The complexity of modern HVAC systems leads to de-
vice mis-configuration in about 40% of buildings, wasting
upto 40% of the energy consumed. Fault detection methods
generate excessive alarms leading to operator alert fatigue,
faults left unfixed and energy wastage. Sophisticated fault
detection techniques developed in the literature are seldom
used in practice. We investigate this gap by applying vari-
ous fault detection techniques on real data from a 145,000
sqft, five floor building. We first find that none of these al-
gorithms are designed to capture control loop configuration
faults. We develop a novel algorithm, Model, Cluster and
Compare (MCC) that is able to detect anomalies by automat-
ically modeling and clustering similar entities in an HVAC
system, in an unsupervised manner, and comparing them.
We implemented MCC to detect faults in Variable Air Vol-
ume boxes in our building, and demonstrate that it success-
fully detects non-obvious configuration faults. We propose
a two stage approach, where we design intelligent rules (iR-
ules) based on anomaly exemplars from a mix of data driven
algorithms. iRules are successful in capturing a large frac-
tion of faults in our building, with only one false alarm and
78 anomalies detected out of 237 zones. Thus, comparative
data mining is useful in filtering the large amount of data
generated in modern buildings, but that human in the loop
systems are better still.
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H.2.8 [Database Management]: Database Applications-
Data mining
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1 Introduction

Buildings are large and complex systems with thousands
of moving parts including fans, water pumps, dampers and
many more [2]. Improvements in sensing, communication
and control infrastructure offer hope that increased instru-
mentation and fine grained control will improve operational
efficiency [19]. However, this also increases the number of
devices that are a part of the HVAC system and its complex-
ity. This increase in complexity also increases susceptibility
to faults and configuration errors. In total, it is estimated that
40% of buildings have mis-configured devices [20] and that
there is a 40% energy savings potential from fixing building
faults [22]. In addition to energy waste, Heating, Ventilation
and Air Conditioning (HVAC) faults also lead to occupant
discomfort, reduced indoor air quality and equipment dete-
rioration [17]. As a result, Fault Detection and Diagnosis
(FDD) is becoming important.

Modern buildings typically use a supervisory computer
based Building Management System (BMS) system that co-
ordinates its sensing and control infrastructure, primarily for
managing the HVAC system [5]. Most commercial BMSes
already provide fault detection features [7], but use simple
detection techniques such as threshold monitoring of indi-
vidual sensors. In discussions with our campus facility man-
agers we learned that, typically, these BMSes generate more
than a 10000 alarms per day on the UC San Diego campus.
This deluge leads to operator alert fatigue where most alarms
are ignored, and many faults are detected only via occupant
complaints or during a separate, expensive, commissioning
process. Many faults remain undetected for long periods of
time leading to equipment deterioration and energy wastage,
thus motivating automated FDD.

Many algorithms have been proposed in literature to cap-
ture various faults that occur in HVAC systems using avail-
able sensors [14]. These methods include domain knowl-
edge based simple rules [18], physical modeling of HVAC
system [4], data driven models using machine learning tech-
niques [15] and Principal Component Analysis (PCA) [12].
Although there is considerable evidence that these algo-
rithms detect anomalies successfully, they are not used for
our university buildings, nor supported by popular ven-
dors [7]. Our work is motivated by this gap between fault
detection theory and practice, to help identify which tech-
niques actually work in real deployments.

As a first step, we investigate different data driven fault



detection techniques on the sensor data collected from the
HVAC system, focusing on the faults present in the Variable
Air Volume (VAV) boxes. VAV boxes are among the most
numerous components of the HVAC system, but have re-
ceived relatively less attention in the FDD community due to
a focus on the larger Air Handler Units (AHUs). Each VAV
box covers a small physical area within a building, called a
zone (see Section 2 and Figure 1). Our first finding is that
(see Table 2, Section 5) for specific faults, rule based ap-
proaches offer excellent coverage with low false alarm rates
for appropriate thresholds. However, if generic rules are
written to cover many faults, which may not be applicable
to a particular buildings situation, they result in a large num-
ber of false alarms. Writing specific rules for all possible
faults that may occur in a particular building requires con-
siderable knowledge about the building location, equipment
and usage. Since this is often unavailable in practice we turn
to data driven models which offer a reasonable substitute for
expensive expert supervision. In particular we use well es-
tablished subspace methods (PCA) [9] and recent work on
correlation change detection [10] as applied to our set-up.

These data driven algorithms come with their own draw-
backs. PCA flags zones that are extreme in their sensor mea-
surements, such as large zones (Figure 2). Change detec-
tion methods unsuccessful in our deployment since they are
sensitive to changes in confounding parameters like exter-
nal temperature (Section 3.2). In addition, they cannot de-
tect faults which were present from the start of data collec-
tion. Many of the VAV faults we discover are of exactly this
form. To locate long standing faults without labeled anoma-
lies or building models we that argue that comparative data
mining is a useful approach in large commercial buildings.
The intuition behind our algorithm is that in a large build-
ing there will be, for most zones, a reasonable number of
similar zones. If these clusters of zones are identified, au-
tomatically from sensor data, then zones that are dissimilar
from any cluster are probable anomalies. Based on this in-
tuition, we propose Model, Cluster and Compare (MCC) -
an unsupervised algorithm for automated fault detection. In
particular we, (a) develop zone-centric black-box models us-
ing sensor data, (b) use clustering techniques to automati-
cally identify zone categories within a building, and (c) use
data driven methods for comparing zones to flag anomalous
zones while limiting false alarms. We show that (i) each of
these steps is useful in anomaly detection in practical sys-
tems, (ii) the clusters can indeed be learned automatically
from minimal data and (iii) the anomalies detected by this
procedure are meaningful.

We find that, in combination, data driven methods dis-
cover three classes of faults previously unaccounted for in
the standard reference for rules for VAV fault detection[11].
While these are recognizable as faults by experts, and preva-
lent throughout our building, they are not commonly tested
for. Thus, data mining is useful in filtering the large amount
of data generated in modern buildings to generate fault ex-
emplars with minimal human supervision. At the same time,
we find that each algorithm is effective in detecting certain
types of faults, but is unable to detect all the faults that oc-
cur on their own. In addition, none of the data driven algo-

rithms we study group similar faults well. That is, instances
of the same fault (or even the same zone on different days)
appear in different positions on the list of faults depending
on (un-sensed) confounding parameters. There is thus a bal-
ance between the labor required, and specificity of, manual
inspection of anomalies with rules and the different auto-
matic anomaly detection algorithms. To get the best of both
worlds, we propose a two stage approach where these faults
are then presented to users who then come up with a set of
intelligent rules (iRules) based on them.

We validate our algorithms on one year of data from a
modern 145,000 square feet commercial building with over
4000 HVAC related sensors distributed across 237 zones.
Using just one month of data from a single floor of our
building test-bed we locate two new classes of faults with
MCC (alternate heating-cooling cycles and excess airflow
when unoccupied - Section 5) which were not found by rules
or the baseline methods. A third class of faults (short cy-
cling anomaly - Section 5) was discovered through correla-
tion based analysis. Given these fault exemplars, building
and fault specific iRules are then used to detect faults in the
larger data, while limiting false positives. We believe that
this two step process will narrow the gap between theoretical
fault detection methods and their use them in practice. Based
on the exemplar anomalies detected by MCC and other al-
gorithms, we deployed iRules and showed that these faults
are are surprisingly prevalent in our modern building testbed.
We found 78 faults in 237 zones, with one false alarm.

2 Background and Related Work

Building HVAC systems: HVAC systems are designed
to provide a comfortable, safe and productive environment
to building occupants in an energy efficient manner. Central-
ized HVAC system with Variable Air Volume (VAV) have be-
come prevalent since they are easier to maintain and allow in-
dependent control of thermal zones. To understand the scale
of centralized HVAC systems, and the potential for faults we
studied our own test-bed building — the 145,000 sq-ft CSE
building at UCSD which was commissioned in 2004. CSE
is supported by a Johnson Controls Metasys which uses the
BAChnet protocol to connect >4000 sensors acrss 237 HVAC
zones, each served by an individual VAV box.

VAV terminal units: Figure 1 depicts the control in-
puts and sensor data points for one such VAV box. VAV
boxes are zone specific flow control devices, with associated
sensors (temperature and airflow), actuators (dampers, fans),
set-points (cooling, heating, airflow) and control signals (oc-
cupied command, heating command, cooling command). In
total, in our system we have 17 sensor points per zone. Our
VAV box also returns a “Occupied Command”, which is a
setting which can be in Occupied, Standby or Unoccupied
modes. Each level is associated with increasing larger guard
bands around the set-point. The purpose of the VAV box is
to maintain the zone temperature below the cooling set point
and above the heating set-point subject to safety constraints.
These safety constraints are usually in the form of settings of
maximum and minimum airflow, which take different levels
when occupied, not occupied and in standby. The amount of
heating and cooling required is relayed to the central HVAC
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Figure 1: VAV with reheat system used for controlling the
temperature of discharge air in each HVAC zone [3].

through heating and cooling commands.

Faults in VAV units: Faults in the VAV controller can
be divided into the hardware and software faults. Hardware
faults include sensor failure (temperature, airflow, damper
position), broken or stuck damper, or a leaking valve. Soft-
ware mis-configuration cause issues such as over cooling,
wind chill or undercooling in addition to hardware deteriora-
tion, discomfort to occupants and energy wastage. Detecting
these faults automatically from large amounts of VAV sensor
data becomes an important challenge.

Anomaly detection in HVAC systems: Traditionally,
HVAC fault analysis have been focused on degradation of
equipment such as heat exchangers, rusting of fans, mis-
calibration of sensors or misconfiguration of the control sys-
tem itself such as incorrect temperature setpoint, or a forgot-
ten operator override to keep a pump running [13]. We focus
on the faults in the VAV boxes themselves, rather than the
AHUs and other central HVAC components for two reasons.
First, our work shows that VAV systems have a large num-
ber of faults that are not fixed, due to both a historical focus
on AHUs (which constitute of the heavy equipment in the
HVAC system) and due to the large number of false alarms
generated by simple rule based systems when they are ap-
plied to VAVs. Second, there are typically a large number
of VAV units in each building as exemplified by our building
above. These are individually and manually programmed,
leading to errors both in initial deployment and over time as
changes are made based on occupant complaints.

2.1 Prior work in FDD

Anomaly detection, the process of detecting non-
conformal patterns in data, has a rich history [6] and these
can directly be used for Fault Detection and Diagnosis
(FDD). Conventional methods for this are based on physi-
cal models, rules or process history [24, 14]. More broadly,
depending on whether labeled examples of faults are avail-
able, FDD algorithms are supervised or unsupervised.

Model based supervised methods are usually based on
physical model learned in a lab and are not adaptive to

changes in building operation [15, 14]. Models need to be
built to capture all the conditions faced by an operational
building at different locations, e.g., different zones in a build-
ing can have vastly different model behavior. Rule based sys-
tems are among the most widely used supervised FDD meth-
ods in buildings [21, 11]. The 7 alarms from [11] (page 45)
that are applicable to our VAV boxes form the Rules base-
line in our work. We find that rules and thresholds need to
be building specific, as otherwise they lead to many false
alarms. While a rule can be written to catch any anomaly, a
large number of rules is required to cover all possible faults.
Rules that test the dynamics of zone controllers are not com-
mon.

Among unsupervised methods, sub-space based methods,
exemplified by Principle Component Analysis (PCA) [23]
form the basis for most process history based methods [24]
and building systems [25, 9]. PCA, with variable selection,
allows us to localize the directions in the space spanned by
sensor measurements that contains most of the typical vari-
ation. A data point, or group of data points, that conforms
with the normal correlation structure of the data will have
most of its variation in these principle components. The
residue when sensor measurements are projected on to these
directions is then a measure of the a-typicality of those read-
ings. If certain sensors, rooms or days have large residue
then they can be labeled as anomalies.

Process history based methods, which attempt to replace
manual models with learned models require lots of train-
ing data, often require labels of anomalies and are usually
evaluated only on simulated data [12]. Most such methods
largely have the same form and involve comparing a calcu-
lated statistic (like mean or variance) for a current window
with the same statistic on a past window of the data. If these
values don’t agree then the models have changed and this
is flagged as an anomaly. We found that change detection
based methods are heavily affected by changes in confound-
ing parameters such as external temperature and occupancy
(Section 3.1). Recent data driven work of this form for build-
ings is Strip, Bind and Search (SBS) [10] which conducted
a large scale study of anomaly detection in plug loads. SBS
uses the correlation between energy consumption across plug
loads to define features, followed by euclidean distance be-
tween correlation matrices as a measure of dis-similarity. We
extend this to the total correlation between all normalized
sensors in a zone, forming the correlation baseline. These
methods miss faults that have existed since deployment as
well for newly deployed buildings where commissioning ar-
tifacts make a zone mis-configured from the the start - which
form the focus of our work. In contrast to these methods, we
also compare zones with each other and not just zones with
their own historical trends.

3 Analysis

We now discuss the need to exploit similarity between
HVAC components, which lead us to the design of our algo-
rithm MCC. The analysis below of a variety of data driven
FDD algorithms serves to justify both the need for a new al-
gorithm (MCC) and for a combination mechanism (iRules).
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Figure 2: Scatter plot of first two eigen-directions of sensor
data. X axis is essentially room temperature, and y axis is
essentially Supply Flow

3.1 The need for models

Principal Component Analysis (PCA) based FDD is
based on the intuition that anomalous sensor readings are
very different from most normal data. Faults are detected
by finding sensor data that are ‘far away’ from the center
(mean/median) of the principle components of the sensor
data. However, this approach has its shortcomings. In Fig-
ure 2 we show how points are scattered along the first two
eigenvector directions of all 17 sensors we use. This would
correspond to PCA with dimension 2, though the intuition
extends to higher dimensions. The projection is for illustra-
tion and not as conclusive proof. Since among the sensors
the largest variance is in airflow and zone temperature these
essentially correspond to direction 1 and 2 (x and y axis) in
the figures above.

An outlier detection method run on these rooms, flags
three anomalous regions (i) Basement rooms: which are
large rooms and require larger amounts of airflow to maintain
temperature. These are not anomalous in configuration, but
in size and location. (ii) Server Room: This is a zone that
must be maintained at a lower temperature consistently. This
is not a fault, but a design choice. (iii) Hot Kitchen: This
is a kitchen which is open and consistently reaches tempera-
tures beyond 85 degrees. The hot kitchen anomaly is flagged
by all the algorithms. Investigation revealed that in this room
the water cooler/heater was placed next to the thermostat. As
a result, it always read as hot leading to constant cooling and
energy wastage. Moving the water cooler provided an im-
mediate fix. In conclusion, sensor readings directly are not
good features for anomaly detection. We use models of sen-
sor readings (Section 4) and show that the model parameters
are more suitable for FDD (Figure 5). We see that looking at
only the process history of a single zone, raises many alarms.

3.2 The need for comparisons

The intuition behind process history based methods (PCA
and Strip-Bind-Search (SBS) for example) is that anomalies
represent changes in process history. In SBS the ‘typical’
correlation structure between sensors is learned and sensors
that deviate substantially from their historical correlations
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Figure 4: Difference between zone temperatures of east fac-
ing and west facing zones on different floors.

are flagged as anomalous. We extend this basic algorithm
to multiple sensors (as described in Section 5). When run
on our data, the top anomaly classes discovered (based on
changes in correlation structure) are shown in Figure 3.

Figure 3a is a DR event which effected the entire building,
and Figure 3b is a time interval when the sensor data collec-
tion was briefly offline. Figure 3c, a particularly hot day,
indicates the sensitivity of these algorithms to confounding
parameters (in this case external temperature). All these are
anomalies when compared to historical sensor traces for the
same zones, but not as anomalous when compared to sensor
traces of other zones. Thus, comparing zones before flag-
ging anomalies may be useful. The anomaly in Figure 3d is
important, and not tested for in our rules, showing the benefit
of change detection methods.

3.3 The need for clustering

In Figure 4 we see that west facing facing zones tend to
get hotter faster and at different times when compared to east
facing zones - naturally leading to different models and sen-
sor readings. Thus, a direct application of anomaly detec-
tion methods (without clustering) would flag certain room
types as anomalies because their models will be very dif-
ferent from a ‘typical’ room. As another example, consider
again Figure 3c. Setting a single threshold (i.e. assuming all
zones are the same) labeled rooms like Figure 3c as anoma-
lies when used with correlation or PCA based algorithms. If
multiple clusters are allowed, then it is likely that west facing
rooms would form a single separate cluster, and such zones
will not be flagged as anomalous.

3.4 The need for intelligent rules

One problem with data driven methods, that we have not
seen emphasized in the literature is one of grouping. Most
FDD algorithms we use come with an associated Figure Of
Merit (FoM) which measures how anomalous a measure-
ment is. For PCA this is the residue after the selected princi-
ple components are removed and for correlation based clus-
tering this is how far the correlation matrix for a zone-day
is from the average. Faults are sorted based on this FoM
and presented to the user. However, we found that the same
kinds of faults (all the DR event rooms like Figure 3a, all the
dynamic anomalies like Figure 7 or all rooms with large set-
point violations with rules) do not have similar FoOMs. As a
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(c) Hot day

(d) Short Cycling Anomaly

Figure 3: Anomalies detected by correlation based model with process history comparison. (3a) Due to a Demand Response
event HVAC systems in the entire building were turned down. Each room was flagged as an anomaly. (3b) Due to problems
with data collection engine, data for all sensors is missing for a period. Each room was flagged as an anomaly. (3c) On a hot
evening all the west facing rooms heated up, though not much beyond their set-points. Not anomalous behavior, but all rooms
were flagged. (3d) Rapid increases and decreases in air-flow near the set-point, with damper position cycling. This is a fault

that reduces hardware life.

result, they are not grouped together. In addition, if the same
zone is anomalous on different days (typically due to con-
founding parameters of external temperature or occupancy)
these are not grouped together. Grouping is particularly use-
ful (and in fact necessary) for building managers to identify
classes of faults, their impacts and potential fixes. For ex-
ample, in our larger experiments on 237, zones which are
instances of Figure 7, when sorted by FoM, appear in posi-
tions 2 through 140 and the DR anomaly Figure 3a detected
by correlation based methods, appears in positions 1 through
300). Not all were declared anomalous by the respective al-
gorithms and thresholds.

This is related to but distinct from the problems of blame
assignment or root cause detection [24]. While these are im-
portant directions of research, they are unsolved. We fol-
low an alternative route. Presented with the anomalies de-
tected by different data driven algorithms a user can quite
easily write rules to find other similarly anomalous zones.
Since FoMs are more meaningful for a single anomaly class
rather than when comparing different anomalies, these can
be sorted and fixed in order if severity.

4 Our Approach

Based on this intuition, we develop our MCC algorithm
that models the inter-relationship of sensors in a VAV box,
clusters these model parameters and compares them to iden-
tify anomalies. Based on the outputs of MCC (and other
algorithms) we write intelligent rules (iRules) capable of de-
tecting a specific class of anomalies in the entire data set.

The primary objective of MCC is to determine clusters of
zones in a buildings and use these clusters to determine mis-

configured, anomalous or faulty zone controller configura-
tion automatically. A single zone in a building has multiple
sensors and actuators (temperature, air-flow, damper position
etc.). These sensors and actuators observe and act upon the
same spatio-temporal space. As a result they will have an-
alytical redundancy [24]. We use black-box statistical mod-
els to learn the relationship structure induced by this redun-
dancy, directly from sensor data. The structure and strengths
of these relationships will be a function of both observed
sensor values and confounding parameters including sensor
noise and room usage, size and orientation.

While the confounding parameters are unobserved, MCC
is based on the intuition that they will be similar for subsets
of rooms in a building. For example, some rooms in a large
building will be of approximately the same size and some
sub-sets will have the same orientation and usage patterns.
We show that these groupings or sub-sets can be automat-
ically determined by clustering in an unsupervised setting
with only unlabeled data. Zones whose learned models, by
comparison, do not lie in any cluster consistently, are identi-
fied as faulty. From our initial analysis (Figure 2), we found
that using measured sensor readings directly does not detect
faults accurately because the properties are dominated by the
highest variance sensors. This holds even when sensor data
is normalized. This problem can be avoided if the sensor
data are used to predict (or forecast) a common quantity. The
quantity of interest that is predicted may be one of the sensor
readings at one time step into the future or the energy con-
sumption of the zone (1). The parameters of this model will
naturally normalize different sensor readings based on their



predictive power of a quantity of interest.

Given sensor readings ¥ € R* from s sensors for room i
at time step ¢, the outline of our approach is then (i) Build
a model x{_ | = f(8!_,,, A.X_y.) -+ ni, parameterized by
6!_A,. for a window W and a horizon A and with error

(due to confounding parameters) of nj (i1) Cluster the pa-
rameters Bﬁ_ Av+a IDtO Kk clusters, (iii) Identify anomalies as
points that are not well represented by clustersm (iv) Based
on the identified anomalies, write rules that can detect simi-
lar anomalies.

Model: Given sensor readings over a horizon (in our ex-
periments we naturally use 1 day horizons) we construct, for
each day n and room i a linear model of the form (1). We
comment here that in prior work [10] occupancy was con-
sidered a confounding variable requiring careful signal pro-
cessing, filtering and feature selection. However, in our VAV
system Occupied Command is available as a sensor read-
ing and this complication is largely eliminated. In addition,
they were concerned with only power consumption sensors,
whereas we have 17 complementary sensors per zone requir-
ing some extension of their methods.

In our experiments we use a horizon of 1 day and window
of 1 sample point. We choose f() to be linear, thus

X =0x +n (1)

We use a more restricted choice, which works well in prac-
tice, which is to use the physical sensor and actuator readings
to forecast a virtual sensor that corresponds to energy con-
sumption of that particular zone. While HVAC energy con-
sumption dis-aggregation is a hard problem, we use ZonePac
[3] which estimates the heating, cooling and electrical power
consumption of each zone in a Variable Air Volume (VAV)
type system using existing infrastructure sensors installed as
part of the Building Management System (BMS). In particu-
lar, the cooling thermal power Qooling < 4 * (Trone — Tsupply)
where ¢ is the airflow and T,y is the supply water temper-
ature. Similarly, Opearing < h Where h is a PID signal called
Heating Command. Thus, we learn a function that forecasts
energy consumption given the sensor readings. Since we use
a linear model, we add a virtual sensor that is the product
q* (Tyone — Tguppiy)- The parameters of this function are then
used to detect anomalies.

In order to visualize the model parameters, we plot the
projection of the model parameters into the first two dimen-
sions of their eigenvector space in Figure 5, essentially doing
PCA on the model parameters instead of the sensor space as
was done in Figure 2. First of all we see a clearer separa-
tion of different kinds of rooms. Namely, kitchens, halls and
restrooms which have very different PID settings than other
rooms. Again, while this is not proof, in Sections 5.1 and
5.2, we discuss that the outliers (or anomalies) in this space
are interesting faults. We will show that such a model is able
to uncover more configuration anomalies, beyond those that
are extreme in temperature or air-flow.Dynamical models for
fault detection are not commonly applied to VAV systems,
particularly in the comparative form we use here.

Cluster: We cluster the points using the k-means++ algo-
rithm [1] and 4 clusters. A problem with vanilla k-means is
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Figure 5: Scatter plot of first two eigen-directions of model
parameters, for model built on daily data. Axis are un-
interpretable, but clustering and separation are clearer

that different runs with different initializations lead to differ-
ent clusters and anomalies. This is addressed by k-means++.
Each cluster is expected to capture zones with similar con-
founding parameters.

Compare: Define r as the mean of radius r; around each
point i that has k = 4 neighbors. Based on the stability of
good clusters intuition (above and Section 4.1), and prior
work on anomaly detection, we define a point as anoma-
lous if (i) there are no normal points within a radius r or
(ii) the zone changes cluster membership often in consecu-
tive days or (iii) whose points on different days have large
span (we use greater than 3 times the variance in span as a
threshold throughout). Here span is defined as the maximum
(euclidean) distance between the model parameters. Thus,
according to (i) anomalous points are ‘far away’ from nor-
mal points and according to (ii) and (iii) ‘behave’ differently.
The motivation for (ii) is discussed in Section 4.1.

4.1 The stability of good clusters

In Figure 5 we have the projection of 30 days for 237
zones (7110 points). We see that most of the points are
tightly clustered, with a small number forming outliers. We
provide some justification for the spread of data points for
rooms that are more heavily influenced by (correlated) con-
founding parameters. Consider the effect of confounding
variables on the model in (1). Suppose the true model is

X, =0% +Bd +i )

where (Z’ represent confounding variables. If we fit the true
model (2) with the assumed model (1), the estimated param-
eters O, will be of the form

Al =@ +11(d))B}, 3)

where I1,(d;) is the projection of d, into the space spanned
by the x;s. i.e., our estimate of the model parameters, will
be shifted from the true ®, linearly by a quantity which de-
pends on correlation between the sensors and the confound-
ing parameters. This is seen clearly in Figure 5, where we
see that the parameters corresponding to rooms that are heav-



ily effected by confounding parameters, zones like hallways
and kitchens where usage and occupancy can be very differ-
ent from day to day, form lines in 2D space. This indicates
that these special zones are probably where additional sens-
ing (e.g., occupancy detection) would be the most valuable -
an observation requiring further exploration. While a linear
shift is indicative of confounding parameters, a large spread
is still a possible ‘anomaly’ or ‘non-traditional’ room.

5 Evaluation

We evaluate MCC and contrast it with PCA, correlation
based change detection and rule based methods on data from
our VAV boxes in our building test bed. We obtain ground-
truth information by manual inspection of sensor data by an
expert, verified by the building manager, together with phys-
ical verification for some faults. There are two properties of
anomaly detection algorithms that are of interest - the num-
ber of missed faults and number of false alarms. For PCA we
computed the first 4 principle components of the 17 sensor
data readings for the entire data. The Figure Of Merit (FoM)
of a data point was the Root Mean Square of the residue
(i.e. projection into the remaining 13 directions). For the
correlation based method, we computed the total correlation
between all 17 sensors (after magnitude normalization) be-
tween each pair of days, resulting in a correlation matrix of
size nZones X nZones for each day. nZones was 54 for the
fourth floor and 237 for the entire building. Following [10]
we defined the FoM for a room-day to be the euclidean dis-
tance between the median correlation matrix and the corre-
lation matrix for a day. For all algorithms, zones where the
Figure Of Merit (FoM) was greater than the median + 3 times
the variance were flagged as anomalies.

For correlation based methods, we found that in our 30
day sample, a direct application of the algorithm generated
many false or uninteresting alarms (as described in Section
3.2). To compensate for this, we ran the algorithm separately
depending on whether the VAV box was in occupied mode
(based on the Occupied Command sensor) and for weekdays
and weekends after removing the missing data and DR event.
As illustrated in Figure 2, PCA is biased toward rooms with
high air-flow and temperature extremes so in addition to this
we removed basement rooms, the hot-kitchen and the server
rooms before generating the results below.

Based on prior work in the literature [11], and the rules
currently in place in our system we derived an initial rule
set. The rules we used test for the faults described in Table
1. These rules compare various combinations of set points
(temperature and airflow) with their corresponding sensor
readings. The rules were run on each zone for each day.
The magnitude times the duration of rule violation was used
as the FoM. The SFE, HCA and SCA faults were catego-
rized after analysis of the results, as it was not clear a-priori
that they may be present. i.e. while to building managers
they are a-posteriori obvious classes of faults, and easy to
identify manually, they are not commonly tested for. Since
classifying and finding signatures of (and rules for) all possi-
ble fault types is difficult enough to be infeasible in practice,
data mining is a critical tool in identifying and filtering fault
exemplars for which rules can then be created.

5.1 Quantitative Evaluation of MCC

We first discuss some representative anomalies, that we
found interesting or prevalent. The examples in Figure 6 also
serve to exemplify the kinds of anomalies detected by MCC.
While some of these anomalies are identifiable from a single
days worth of data, since we have 237 zones to compare, we
report on anomalies identified during a 30 day period. This
is because the conditions for an anomaly to manifest itself do
not always arise (e.g. room not occupied, external tempera-
ture too high). In the zone depicted in Figure 6a the actual
supply flow and set points follow a complemented behavior
where comfortable conditions are maintained when the zone
is in unoccupied mode. This fault wastes excessive amount
of energy, and existed from the time the building was opera-
tional. Rule based methods did not detect this anomaly, since
the temperature and airflow is typically within set-points.
This fault is missed by process history based algorithms,
since there is no change from normal to faulty. However,
since only a single room in our data set has this control struc-
ture it is flagged by MCC.

In Figure 6¢, the zone temperature is not outside the set-
points. So it is not flagged by rules. However, at fixed times
the airflow increases, as verified by the decreasing temper-
ature despite sunlight hours, cooling the room even when it
is within set-points. In addition, we see that the set points
never change. In Figure 6b the air flow is higher than similar
rooms, though the difference when occupied and unoccupied
is small, causing temperature to decrease below the cooling
set-point causing discomfort. These anomalies (possibly ob-
vious in hindsight) were found to be prevalent in our building
and are a large energy waste.

The anomaly in Figure 6d was detected by MCC as well
by rule and PCA based methods and is the ‘most’ anoma-
lous zone in our dataset. This is the ‘Hot Kitchen’ exam-
ple discussed in Section 3.1. Despite maximum airflow the
zone temperature is measured as too high due to the place-
ment of a water cooler near the thermostat. This is an exam-
ple of a real, large and continuous energy waste not detected
by change detection methods. The anomaly in Figure 6e is
one where the Supply Flow set point does not change with
the occupied command. While the room functions properly
when unoccupied and the zone temperature is within limits,
the non zero Supply Flow when unoccupied results in en-
ergy waste and over-cooling. This anomaly was also preva-
lent in many zones in our building. Finally, we turn to the
anomaly in Figure 6f. This is actually the same day as the
false alarm raised by the correlation based method in Figure
3c (observe the sudden raise in zone temperature at approxi-
mately 14 : 30). But we see that this room is actually anoma-
lous since its temperature is below the heating set point for
most of the day, but the fault lost in the false alarms. MCC
detected this anomaly but did not mark the other zones on
the same day as the correlation based methods did, thus, re-
ducing false alarms and alert fatigue.

5.2 Dynamic anomaly detected by MCC

Rule based systems are simpler to set up for domain ex-
perts and catch a number of faults that are commonly seen
in practice. However, rules based systems are also not ex-
plicitly comparative, and as a result require deep domain



Fault

Explanation

Heating or Cooling is Ineffective (HCI)

Large airflow not sufficient to bring temperature back to setpoint (Figure 6d)

Supply Flow Excess (SFE)

High flow when temperature between set-points and unoccupied (Figure 6¢)

Heating-Cooling Anomaly (HCA)

Excessive cooling causes heating requirement (Section 5.2)

Temperature and Air Flow not within set points (SP)

Self-explanatory, (most Figures in 6 particularly Figure 6f)

Simultaneous Heating and Cooling (SHC)

self-explanatory

Too Many Mode Switches (MS)

Set-points switching rapidly between levels

Short Cycling Anomaly (SCA)

Rapid and unnecessary changes in air flow (Figure 3d and 6e)

Table 1: Fault classes of interest. SFE, HCA and SCA are based on the faults discovered by the data driven algorithms described

here, the remaining 4 are from [11].

120 8 270
[ == Occupied Command = Zone Temperature] 280 | === Cooling SetPoint = Zone Temperaturel === Cooling SetPoint = Zone Temperature|
75 - .99 | == Heating SetPoint Jqo0 7 — Heating SetPoint 260
< : v v 270 E o T { J
~ SRS et b P S~ ~< s
¢ 74 L 'I~‘r" s, 2002 ¢ (i .ﬂ_ﬁ,\ zes !\VAVf/\W/vvn 2502
= 5 4 ..l.\ A n'_'n_,.-.--.-.-—ﬂ—\ 1 -
g bev SR T M R / 284 [ |y
g heeeenaes ] E Kl \ L“zao; R S . Aol 28 SR . 2403
[F: ittt | | oo b = = il 40 & £ .. e, [
] h 230 079 ST T—— @ 72 teangd
= WA = oo 20 © / 30— 230
— Supply Flow 220 J | — Supply Flow] 700V — Supply Flow \Z
88:00 6:00 12:00 18:00 210 68:00 6:00 12:00 18:00 0 00:00 6:00 12:00 18:00 220
(a) Actuation and sensing not in sync (b) Flow high resulting in overcooling (c) Set-points not changing.
340 1100 350
95| = Cooling SetPoint = Zone Temperature| 90 == Cooling SetPoint = Zone Temperature| 1000 90 == Cooling SetPoint = Zone Temperature|
=90 — .. Heating SetPoint 30 o —Heating SetPoint —~ ~~"Heating SetPoint 300
= &85 900 &89 250
ge : Z s Z veo s
M 3205 £ 800 & £ 2005
g < &7 700 3 875 3
S 7o) 3103 § 5 s 8 aees 1308
g - E 600 & £oof teeerandfn & gpttteesses 2
5 5ol 5 6 5 100
& 300 F 500 F
65| 65 50
— Supply Flow 400 — Supply Flow
00:00 6:00 12:00 1800 290 03:00 5:00 12100 T8:00 68:00 6:00 12:00 1800

(d) Hot Kitchen

(e) Flow higher when unoccupied

(f) Flow is high, temp low when occupied

Figure 6: Selected anomalies discovered by MCC.

knowledge to set rules and thresholds. Rules are often not
dynamic in that they usually compare sensor and actuator
values to set points but may miss dynamics or proportional-
integral-derivative (PID) controller anomalies. An interest-
ing example of the kinds of dynamic faults that are present
and detected by MCC and models is shown in Figure 7.
Unnecessary cooling, caused because of large airflow set
point, caused the temperature to fall below heating set point
though external temperature was high and rising. This trig-
gered heating (as seen by the heating command). Heating
is a large waste in our building since it is local. We located
5 other rooms in just one floor of our building, and more
than 15 overall, with this problem. The cause for this fault
is that the designed air-flow specifications are based on the
maximum occupancy of a zone. When these zones are not
fully occupied, the minimum airflow is too high. The heat-
ing and cooling (in both summer and winter) cause this to
be a large energy waste. However, this is by design and can
violate safety and comfort requirements at maximum occu-
pancy. This indicates the need for occupancy count based
control. We are in the process of deploying occupancy sen-
sors in zones where this type of fault was found.

5.3 Testing coverage

Testing coverage requires that we locate all rooms with
anomalies. This is difficult in the case of all 237 zones, so we
focus on only the fourth floor, where we manually inspected
all zones. This floor has 54 zones in which we located 14
as anomalous. The performance of different algorithms is
shown in Table 2, indicating the types of faults detected, and
the number of false alarms. When rooms have two or more
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Figure 7: Example of a dynamic anomaly detected by MCC.
Unnecessary cooling, caused the temperature to fall below
heating set point though external temperature was increas-
ing. This triggered heating which is a much larger waste.

faults we assign them to one of the categories based on which
anomaly is more fundamental. For our purposes we do not
consider the loss of data for all rooms and Demand Response
events as anomalies, since detecting them is of limited prac-
tical value - this is of course a point for discussion.

We make some observations. The correlation based
method raises a large number of false alarms because, de-
spite removing and separating the data, they are sensitive to
external conditions - in this case particularly to changes in
external temperature. One possibility is that the threshold
was set too liberally. However, the detected anomalies were
in position 2 and 10 when sorted by FoM, so a lower thresh-
old would also have decreased coverage.This implies that
the problem is more fundamental than setting the appropri-
ate thresholds. MCC on its own cannot detect SP violations



Method [ Data

[ Ineffective | Excess Flow | Heating-Cooling | Set-Point [ Cycling | False Alarms |

Manual Fourth floor, 30 days 7 1 3 2 1 0
Rules Fourth floor, 30 days 4 1 2 2 0 2
Correlation Fourth floor, 30 days 1 1 0 0 1 8
PCA Fourth floor, 30 days 1 0 1 2 1 5
MCC Fourth floor, 30 days 5 1 3 1 0 2
Rules (top 10 verified) All Floors, 1 year 0 0 0 10 0 0
Correlation (top 10 verified) All Floors, 1 year 0 1 0 1 0 8
PCA (top 10 verified) All Floors, 1 year 1 0 0 1 0 8
MCC (top 10 verified) All Floors, 1 year 0 2 6 1 0 1

[ iRules [ AllFloors, 1 year | 18 [ 12 [ 14 [ 27 [ 7 [ 1 |

Table 2: Coverage and Specificity of different algorithms. The top half of the table shows all anomalies found and verified for
only the fourth floor, while the bottom half considers the top ten faults from each algorithm for the entire building. We see that
Rules gives higher FoMs to set-point anomalies, while MCC gives higher FoM to dynamic anomalies. The only false alarm
for iRules was a cycling anomaly due to user initiated changes in set-points, and is likely normal. Thus, specific rules with

conservative thresholds have almost no false alarms.

directly as a linear model cannot learn that the ‘temperature
should not be outside set points’. However, the one SP viola-
tion it did detect was also a heating-cooling anomaly, and as
a result it was detected. The rule based algorithms miss the
heating-cooling anomalies, since the zone temperatures are
in a relatively small region around the set point (see Figure
7) - thus they have low FoM. This highlights two important
issues. The fact that multiple faults occur per zone indicates
that some of these fault classes (or algorithms) do not get to
the root cause of the problem in the PID controller. Thus,
identifying and fixing these faults still requires manual inter-
pretation. This, together with the fact that even basic rules
that are not captured by linear (or simple non linear models)
indicates that better ensemble models are required.

5.4 Testing specificity

We run the algorithms on all 237 zones for one year of
data. Since evaluating all zones as anomalous or not is in-
feasible, we looked at the top 10 faults detected by each
of the algorithms and classified them as true anomalies or
false alarms. The results are in the lower half of Table 2.
These results also allow us to study what are the kinds of
anomalies each kind of algorithm favors i.e. which faults are
given higher FoMs. Most of the top faults detected by MCC
are of the Heating Cooling type - which is a large energy
waste as well. All top 10 faults that had the largest FoM with
the rules were of the ‘temperature should not be outside set
points’ - these were clear faults and thus these rules have no
FAs in the top 10 results. MCC finds many instances of the
Heating-Cooling Anomaly and Supply Flow Excess that are
not detected by the other methods. One interesting and prac-
tically important anomaly found only by correlation based
methods is shown in Figure 3d. We call this a Short Cycling
Anomaly (SCA) where the airflow changes rapidly due to
faults in the PID controller. This thrashing is a particularly
important fault since it can lead to damage of dampers and
other equipment. Finally, we see PCA has a large number
of false alarms. These were caused by rooms where occu-
pants frequently changed set-points. This causes variation in
temperature and airflow resulting in high FoMs from PCA.
This also supports the insight behind models in MCC, that
the relationship between sensor readings is as critical as (if

not more than) the absolute values.

5.5 Designing Rules

While data driven algorithms are able to find new faults,
(HCA, SCA and SFE), they suffer from false alarms. Rules
with a conservative threshold have low false alarm rates for
specific faults. To get the best of both worlds, we suggest
a two stage system where exemplar anomalies from differ-
ent algorithms are presented to a user, who suggests rules for
them. This allows us to obtain the coverage that is possi-
ble by the coverage of an ensemble of different algorithms
and the low false alarms possible with very specific rules.
This leads to the design of intelligent rules (iRules) to detect
specific fault classes based on the output of the data min-
ing algorithms. We continue to use a threshold of median
value + thrice the variance for all our experiments. We wrote
simple rules to detect heating-cooling, excess flow and short
cycling faults for all 237 zones on the entire one year data.
We manually inspected the detected faults of these iRules.
The results in the last row of Table 2 show that we detect 78
anomalies with one false alarm in 237 zones. This illustrates
the value of intelligent rules, showing that specific rules raise
few false alarms. The live results of iRules for our test-bed
are available and being used by our building managers.

6 Discussion

Conclusions: We motivate data driven FDD for VAVs
in large commercial buildings. We study a selection of
FDD methods, namely PCA, correlation based methods and
rules. We develop a new comparative data mining algorithm,
Model Cluster and Compare (MCC), which overcomes spe-
cific challenges of these methods. Unlike model-based meth-
ods it does not require detailed physical models of the build-
ing. In contrast to process history based methods it does not
require large amounts of historical data (in-situ or in a lab)
of either faulty and non-faulty operation. Finally, in an im-
provement over both these classes of methods, MCC does
not use any deployment specific knowledge. While there
is no perfect anomaly detection algorithm, we show that in
addition to model, rule and process history based methods,
MCC provides an alternate view that can localize an inter-
esting set of faults in practical deployments. iRules based on
these exemplars, find many faults with few false alarms.



Observations: We find that many faults occur in special
purpose zones like common areas (kitchens and conference
rooms). We suspect that this is because they are rare and pro-
cedures used for determining settings are not well developed,
along with complex safety regulations. This parallels find-
ings in software and embedded systems [16]. These zones
also tend to be large consumers of energy. This suggests an
iterative method where faults are detected and then settings
are changed on the fly, i.e. continuous building commission-
ing. Situations where safety requirements cause faults (like
the heating-cooling anomaly, Section 5.2) indicate the need
for occupancy count based control.

Automatic rule generation: An alternative to the man-
ual iRules is to learn classifiers based on anomaly exemplars.
However, when we tried to learn a Support Vector Machine
(SVM) based on exemplar anomalies, even for simple sit-
uations like temperature not within set-point the end result
classified all rooms as not anomalous. This is because, even
within an anomalous day, there are many normal samples
and learning algorithms are not robust to this kind of noisy
data. Thus, we require a higher level of supervision, where
anomalous samples are marked and not just anomalous days.

Future Work: Finding the balance between automation
and human intervention is of primary importance. A unified
framework is required that can (i) support a large class of
algorithms on live data, (ii) provide information to building
mangers that will allow them to diagnose faults and easily
determine a fix and (iii) provide estimates of the energy sav-
ings if a fault or class of faults is fixed. None of the choices
we make are perfect. We use k = 4 clusters, with the in-
tuition that they may correspond to West, not-West, interior
and common areas but setting the number of clusters auto-
matically is required. Non-linear, higher (> 1) order models
are often preferred for buildings [8]. Once the model param-
eters have been estimated, a number of sensible definitions of
anomalous exist [6]. Finally, even though our dataset is large,
these and other methods must be evaluated in more detail in
different parts of the HVAC system, with different HVAC
systems and in different buildings in different climates.

We thank the UC San Diego Facilities team, particularly
Anna Levitt, for their immense help. We thank the reviewers
and apologize for the fact that a lack of space limited our
inclusion of their detailed and insightful suggestions in full.
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