Performance Evaluation of Dynamic Circuit Specialization
on Xilinx FPGAs

Amit Kulkarni, Karel Heyse, Tom Davidson, and Dirk Stroobandt
ELIS department, Computer Systems Lab, Ghent University
Sint-Pietersnieuwstraat 41, Ghent B-9000, Belgium
{ Amit.Kulkarni, Karel.Heyse, Tom.Davidson, Dirk.Stroobandt }@UGent.be

ABSTRACT

Dynamic Circuit Specialization (DCS) is a technique used to
optimize FPGA applications when some of the inputs, called
parameters, are infrequently changing compared to other in-
puts. For every change of parameter input values, a special-
ized FPGA configuration is generated during run time and
the FPGA is reconfigured with a specialized bitstream. We
examine how the performance of the DCS technique evolves
with the advent of newer Xilinx FPGA architectures. The
performance of the DCS technique is evaluated on three dif-
ferent Xilinx FPGA architectures: Virtex-II Pro, Virtex-5
and Zynq SoC. We have used a 16-tap, 8-bit FIR filter as
a parameterized design, with the filter coefficients as the
parameters of the FIR design.

Categories and Subject Descriptors

B.5 [EMBEDDED PLATFORM ARCHITECTURES]:
Reconfigurable architectures

General Terms

Design, Experimentation, Measurement, Performance

Keywords

Partial Reconfiguration, Micro-reconfiguration, TLUT, TCON,

PPC memory size, Reconfiguration time, Evaluation time

1. INTRODUCTION

Partial Reconfiguration is the ability to dynamically mod-
ify a part of the FPGA while the rest remains active. The
modification process can be achieved by downloading par-
tial bitstreams. The partial bitstreams represent the Partial
Reconfigurable Modules (PRM), which are swapped in and
out of their corresponding regions during run time [3]. The
configuration manager loads the appropriate PRM into the
Partially Reconfigurable Regions (PRR) during run time,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

FPGAWorld *14, September 9-11, Stockholm and Copenhagen.

Copyright (©2014 ACM 978-1-4503-3130-2 ...$15.00.

depending on the set of conditions at hand. The configu-
ration manager can be realized on an embedded processor
which can be configured in FPGAs. Modern FPGAs con-
tain hard-core processors such as the PowerPC in case of
the Virtex-II Pro and the Virtex-5, while the Zynq SoC con-
tains an advanced RISC processor: dual-core ARM Cortex-
A9. The Partial Reconfiguration (PR) technique provides
more flexibility to dynamically modify the logic without re-
configuring the entire FPGA. However, this flexibility comes
at the cost of reconfiguration time and of the memory size
needed to store partial bitstreams.

Dynamic Circuit Specialization (DCS) somewhat resem-
bles Partial Reconfiguration and can be applied to those
applications that have infrequently changing inputs and are
parameterized. For every set of parameter values, the cir-
cuit can be specialized for these specific values and each pa-
rameter value change results in a reconfiguration to a new
specialized circuit. There is a significant reduction in the
resources utilized by the specialized circuit at the cost of re-
configuration overhead. In this technique there is no need to
synthesize or store the PRM offline, the circuit is specialized
at run time according to the parameterized inputs.

We implemented a 16-tap, 8-bit FIR filter using DCS with
the filter coefficients as the parameter inputs. In the DCS
approach the filter coefficient values (parameters) are imple-
mented as constants and the design is optimized for these
constants. When the coefficient values change, the design is
re-optimized for the new constant values by run-time recon-
figuring the FPGA.

In this article we evaluate the performance of DCS on
three different Xilinx FPGA architectures: Virtex-II Pro,
Virtex-5 and Zynq SoC. Each of these architectures has their
own pros and cons. Our attempt is to see how DCS will per-
form under the new Xilinx FPGA architectures. We evalu-
ate the reconfiguration time, the specialization time and the
size of the memory occupied by the design while using DCS
on the three Xilinx FPGA architectures and compare them
accordingly.

In Section 2, we present an overview of the DCS technique.
Section 3 provides a brief explanation of how DCS is being
implemented on commercial Xilinx FPGAs. In Section 4,
we provide the architecture details of three different Xilinx
FPGAs that we used for our experiments. Section 5 de-
scribes the parameterized FIR filter design which is used as
a benchmark to evaluate DCS. The results of the evaluation
are tabulated in Section 6, followed by discussion, interpre-
tation and comparison of results and finally we conclude in
Section 7.

Parameterized
HDL Design

Generic " Technology)
Stage Synthesis > Mapping | Placement — = Routing

(TMAP)

Partial Tempelate
Parameten‘zed Configuration
Configuration (1C)
(PPC)
T
Specialization | Parameter EBvaIIuate
Stage Values ol
Function

Specialized
Configuration

Figure 1: Tool flow for parameterized Configuration

2. DYNAMIC CIRCUIT SPECIALIZATION

In most cases, an application needs to undergo data ma-
nipulations in their subsequent stages of execution. These
data manipulations often differ only by a small set of pa-
rameter values, which are inputs to the application form-
ing a parameterized design [2]. During run time, for every
change in a parameter value, a specialized circuit can be
generated for this parameter value and the design can be
reconfigured with the specialized circuit. This technique is
called Dynamic Circuit Specialization. The specialized cir-
cuits are faster and smaller than their generic counterparts.
Authors in [2] have shown that DCS significantly reduces
the number of LUTSs used and increases the speed of the de-
sign for various examples as compared to the conventional
implementation. The process of specialization and reconfig-
uration results in a large overhead when conventional tools
are used and these overheads nullify the advantages of using
specialized circuits.

In [2], the authors propose a novel approach to accomplish
DCS. The tool flow consists of two stages: a generic stage
and a specialization stage as depicted in Figure 1.

In the generic stage, a HDL design with parameterized
inputs (annotated by -PARAM in VHDL) is further pro-
cessed to yield a partial parameterized configuration. A
Partial Parameterized Configuration (PPC) is a part of a
FPGA configuration that contains bitstreams expressed as
boolean functions of parameters. In the specialization stage,
these boolean functions are evaluated for specific parameter
values to generate a specialized configuration. The following
tool flow steps explains the generic stage and are adapted
from the conventional tool flow.

2.1 Synthesis

In this step, the HDL design is converted into a network
of logic gates. The parameter inputs described in the HDL
are annotated parameter inputs and this annotation makes
the difference between parameter inputs and regular inputs.
The parameter inputs are also a part of the boolean network
of logic gates produced after synthesis.

2.2 Technology Mapping

During the mapping stage, the synthesized boolean net-
work is mapped onto the available resources of the target
FPGA architecture such as LookUp Tables (LUTs), DSP
blocks and BRAMs while optimization of circuit area and
speed are being taken into consideration. The conventional
mapping tool would map to the static LUTs and hence it
would result in the conventional bitstreams after place and
route. To generate a parameterized bitstream, authors in [2]
change the conventional mapping tool to a tunable version,
TMAP, so that the boolean functions of parameter inputs
are mapped to Tunable LookUp Tables (TLUTSs). These are
virtual LUTs that differ from conventional LUTs in the fact
that their lookup entries are defined as the boolean functions
of the parameter inputs instead of static ones and zeros. The
truth table entries will be reconfigured upon every change
in parameter values.

Presently, the parameterization of BRAM and DSP blocks
is not yet possible but parameterization of the routing switches
called TCONSs is established at the virtual FPGA level. How-
ever, the practical implementation in commercial FPGAs is
yet to be done [6]. The TMAP mapping algorithm is de-
scribed in [2] and can be integrated with the conventional
Xilinx tool flow which is explained in [1]. We will limit the
evaluation in this paper to the use of parameterization in
TLUTs.

2.3 Placement and Routing

In the placement step, the mapped resources are placed
or associated to specific blocks of the target FPGA archi-
tecture. Extensive optimization is considered so that inter-
connect wire length and interconnect delay is minimized.
The router configures the physical switch blocks to achieve
the required interconnect according to the circuit. Since the
placement and routing does not depend on parameter inputs
or TLUTSs, a conventional placer and router can be used.

The final output of the generic stage is the Template
Configuration (TC) and Partial Parameterized Configura-
tion (PPC). TC is a static bitstream which contains static
ones and zeros, which are used for configuring during the
start of the FPGA. The PPC contains sets of multi-output
boolean functions of the parameter inputs. The PPC needs
to undergo the specialization stage, along with parameter
values to produce an efficient specialized configuration.

The specialization stage consists of a Specialized Config-
uration Generator (SCG). The SCG takes the PPC and
the parameter values as inputs and evaluates the boolean
functions of parameter inputs for given parameter values to
produce a specialized configuration and all the TLUTSs are
reconfigured by downloading the specialized configuration
during run time and thus accomplishing run time recon-
figuration. The SCG can be implemented on a hard-core
embedded processor in the FPGA such as a PowerPC, on a
soft-core processor such as a MicroBlaze or on a custom pro-
cessor (CP) which is more specifically designed to evaluate
boolean functions only. Different types of SCG implemen-
tations and its details are described in [4].

3. IMPLEMENTATION OF DCS ON XILINX
FPGAS

In this section, the implementation of the DCS tool flow
on commercial FPGAs such as Xilinx Virtex-II Pro, is briefly

described. We used Xilinx Platform Studio (XPS) to target
Xilinx FPGAs. The TMAP algorithm is integrated with
Xilinx tools and we build a self reconfigurable platform [1].
During the TMAP stage, the parameterization of TLUTSs
is performed and a unique name is assigned to individual
TLUTS so that they can be identified and reconfigured with
proper specialized truth table values. After the Place and
Route step a PPC is generated which contains boolean func-
tions of the parameter inputs, forming a parameterized bit-
stream. For every change in parameter input values the
SCG generates a specialized configuration by evaluating the
boolean functions. A new specialized truth table for each
TLUT is generated. We make use of the Internal Configura-
tion Access Port (ICAP) of the FPGA device to reconfigure
TLUTs. The reconfiguration using ICAP is performed by
modifying the truth table values of a TLUT, whose bits are
located at certain locations within a frame. The complete
truth table entries of a single TLUT are spread in multi-
ple frames. A frame of an FPGA is a smallest addressable
element in a bitstream. Hence it is required to modify ap-
propriate locations of multiple frames during the reconfig-
uration. Each frame has a frame address which is used for
identification of a particular frame. This is done as follows.

3.1 “XHwlcap_SetClbBits” function:

This is a HWICAP driver [1], used to reconfigure the
TLUTSs. The procedure takes the truth table values (special-
ized bits) and the location co-ordinates of a TLUT as inputs.
It first generates the frame address from a given TLUT loca-
tion, which is required to target a CLB that contains specific
TLUTSs to be reconfigured. The reconfiguration occurs in 3
steps:

1. Read frames: Using the frame address, the function
reads the current truth table entries of a specific TLUT
by fetching multiple frames from the configuration mem-
ory.

2. Modify frames: Once the current truth table values
are read, they are overwritten by the specialized bits.
Now the frames contain specialized bitstreams.

3. Write frames: Using the same frame address, the mod-
ified truth table entries are written back to the TLUT
by swapping in multiple frames into FPGA configura-
tion memory thus accomplishing micro-reconfiguration.
Micro-reconfiguration is a fine-grain form of reconfig-
uration used for DCS.

3.2 Cost of micro-reconfiguration:

The micro-reconfiguration comes at the cost of:

e PPC memory size: memory space required to store the
PPC functions.

e Evaluation time (Specialization time): time taken by
SCG to evaluate the boolean functions.

e Reconfiguration time: time taken to update the con-
figuration of all TLUTs

Figure 2 shows the principle of a DCS implementation
on a commercial FPGA. The XPS Hardware ICAP (HW-
ICAP) is used as configuration interface and the SCG is
implemented on a hard coded processor which is a part of

Parameter
Values

PPC
Memory

Specialized
IConfiguration
Generator
(SCG)

e

]
[
[
H

Configuration
Interface

LOOOOOOEeE
HEEEEEEEEEEE
HEEEEEEEEEEN
OO0 OOo000d
OO0

COoCOe e
HREERNN
Cooooos
EERRENEN

Figure 2: DCS for FIR filter implemented on an
FPGA

the FPGA fabric. If a soft-core processor is used then a pro-
cessor will be mapped onto a set of CLBs. We evaluate the
performance of DCS on different Xilinx FPGAs by compar-
ing the above three micro-reconfiguration cost parameters
for each FPGA and illustrate how the DCS tool flow evolves
with the evolution of Xilinx FPGA architectures.

4. XILINX FPGA ARCHITECTURES

In our experiment, we have used Virtex-II Pro, Virtex-5
and Zynq 7000 family SoC architectures. We compare the
device resources and the configurations that are related to
DCS.

Table 1 shows the device names and the corresponding
boards we used for our experiments. The number of inputs
to a LUT for the corresponding FPGAs is also present in the
same table. The number of inputs will influence the memory
size of the PPC functions and the time taken to evaluate the
boolean functions within the LUT entries.

The embedded processors of both type (soft-core and hard-
core) and their respective clock configurations, that are used
in the Xilinx FPGAs are tabulated in Table 1. These pro-
cessors are used to generate specialized configurations by
evaluating the boolean functions. To describe the special-
ization procedure, we use a standard C program with Xilinx
SDK.

The ARM Cortex-A9 processor within the Zyng SoC is
a dual core processor but we use only a single core. It has
instruction and data caches each of size 32kB [14]. The
PowerPC processor for both Virtex-II Pro and Virtex-5 was
configured with instruction and data caches each of size
32kB [10] [12]. The MicroBlaze can also be configured to
enable instruction and data caches. However, these caches
in a softcore processor are just a reserved memory space in
BRAMSs and are not an actual or physical silicon. Since the
PPC functions already reside in BRAMs we did not enable
caches for the MicroBlaze.

The HWICAP is used as a configuration interface and is
responsible for loading the specialized bitstreams into the
FPGA configuration memory. Table 1 shows the configura-
tions for the HWICAP that we used for our experiments.
The HWICAP throughput is also tabulated and it shows
the rate at which the frames are read from the configuration
memory and the rate at which the frames are written into
the configuration memory.

The size of one frame for an individual FPGA and the
bus that we used to connect our parameterized design on a

Table 1: Xilinx FPGA device details

Virtex-II Pro .
(XC2VP30) Virtex-5 Zynq SoC
Device XC2VP30 XC5VFX70T XCT7Z020
name -FF896-7C -FFG1136 -CLG484-1
Board XUPV2P ML507 ZedBoard
name Development System | Evaluation Platform edboar
LUT N .
inputs (k) 4 6 6
LUT 16 64 64
entries
Hard-core PowerPC PowerPC ARM
Processor 405 Core 440 Core Cortex-A9
Soft-core MicroBlaze MicroBlaze MicroBlaze
Processor (6.00.b) (8.20.b) (8.40.a)
Hard-core
CPU 300 400 667
clock (MHz)
Soft-core
CPU 100 100 100
clock (MHz)
HWICAP OPB HWICAP XPS HWICAP AXI HWICAP
type (1.00.b) (5.01.a) (2.03.a)
HWICAP o
clock (MHy) 66.67 100 100
HWICAP
throughput o
(non-DMA) 10 19 9
(MB/s)
HWICAP port . .
width (bits) 8 32 32
Frame size
(32-bit words) 206 a1 101
Bus OPB + PLB PLB AXI
type
Bus clock
(MHz) 66.67 100 100

self reconfigurable platform, are tabulated in Table 1. The
size of a frame describes the minimum number of words (1
word = 32 bits) in a bitstream that needs to be replaced
for each reconfiguration process and has direct influence on
the reconfiguration time. For the Virtex-II Pro family, the
frame size is not the same for the entire family and varies
for different FPGA devices [13]. The specification of the bus
can be seen in [11] [8] [9] and the bus interconnections in a
typical embedded design are described in [1].

S. PARAMETERIZED DESIGN

We used a 16-tap FIR filter of 8-bit data width as a pa-
rameterized design for showing the benefits of DCS. The
general benefits of using DCS for FIR filter implementation
are discussed in [5]. All coefficients are the parameterized
inputs and hence for each infrequent change in the coefficient
value, a specialized bitstream is generated and the filter taps
containing multipications are reconfigured accordingly.

The multiplications for the FIR filter are designed for a
(T)LUT implementation keeping in mind that they should
suit for all three FPGAs. Since Virtex-II Pro has a LUT
input size of 4, we make use of 4-bit multiplications only.
The filter requires 16 8-bit multiplications. Two 4-bit mul-
tiplications are combined to form one 8-bit multiplier and
therefore, a total of 32 4-bit multiplications were used to
build a complete FIR filter design [5]. It is known that a
4-bit multiplier is mapped onto 12 TLUTs, therefore 1-tap
of the FIR filter contains 24 TLUTs.

6. RESULTS

In this section, the results of our experiments are tab-
ulated and compared. Table 2 shows the time taken by
the processors to evaluate the boolean functions during the

Table 2: PPC evaluation time in microseconds

[Virtex-IT Pro [Virtex-5 | Zynq SoC |

Hard-core Processor 6.6 4.6 1.7
Soft-core Processor 18.7 28.3 28.9

Table 3: Reconfiguration time in milliseconds
[[Virtex-IT Pro [Virtex-5 | Zynq SoC |
Hard-core Processor 0.5 1 2.8
Soft-core Processor 1.89 1.4 4.0

Table 4: PPC memory size in KB
[[Virtex-IT Pro [Virtex-5 | Zynq SoC |
Hard-core Processor 7 10 11
Soft-core Processor 8 11 12

Evaluation time for hardcore processors

120

—#— ARM Cortex A9
100 [—©— PowerPC of Virtex-5 i
—+— PowerPC of Virtex-Il Pro

80

60

401

Time in microseconds

20

o I I I
0 1 4 8 12 16
Number of Coefficients

Figure 3: Evaluation time comparison of Hard-core
processors

specialization phase. Table 3 shows the time spent during
reconfiguring one multiplier of the FIR filter which is com-
posed of 12 TLUTS. Table 4 shows the PPC memory size
values. These values are the size of PPC functions only.
They are compiled with “-O2” optimization and without de-
bug option.

6.1 Evaluation time - Hard-core Processors

We compare the performance of evaluating boolean func-
tions on all 3 hard-core processors - PowerPC of Virtex-II
Pro, PowerPC of Virtex-5 and ARM Cortex-A9 of the Zynq
SoC. Figure 3 shows the plots and it is clear that ARM
Cortex-A9 takes the least amount of time compared to both
PowerPCs and hence it can claim to be very efficient. The
PowerPC in a Virtex-5 is more efficient than the PowerPC
in a Virtex-II Pro, showing the improvements in the newer
processor architectures with higher clock frequency support.
It is to be noted that the number of boolean functions that
needs to be evaluated increases for the Zynq SoC and the
Virtex-5 compared to the Virtex-II Pro because of an in-
crease in LUT inputs and corresponding LUT entries.

6.2 Evaluation time - Soft-core Processors

We also compare the performance of evaluating boolean
functions on all 3 soft-core processors - MicroBlaze of Virtex-
II Pro, MicroBlaze of Virtex-5 and MicroBalze of Zynq SoC.
Figure 4 shows that the efficiency of the MicroBlaze of both

Evaluation time for softcore processors

500
—4#— MicroBlaze of Zynq
400 —©— MicroBlaze of Virtex-5 : N
—+— MicroBlaze of Virtex-Il Pro
kel
e
8
S 300 +
0
o
S
£
£ 1
3 200
E
=
100 1
| I I I
01 4 8 12 16

Number of Coefficients

Figure 4: Evaluation time comparison of Soft-core
processors

the Virtex-5 and the Zyngq SoC are almost the same. Inter-
estingly, the MicroBlaze in the Virtex-II Pro consumes less
time and hence proves to be a very efficient soft-core proces-
sor. However, the main reason for this behaviour is that the
number of LUT entries for the Virtex-II Pro (16) is smaller
than for the Virtex-5 and Zyng SoC (64).

Comparing the hard-core processor with the soft-core pro-
cessor in each FPGA shows that hard-core processor is al-
ways more efficient than the soft-core. The main advan-
tage of using the hard-core processors is that they support a
very high clock frequency which influences the evaluation of
boolean functions and also slightly the reconfiguration time.
However, in some FPGAs it is inevitable to use soft-core
processors due to lack of availability of hard-core processors
in their FPGA architecture.

6.3 Reconfiguration time

Reconfiguration time is defined as the time required to up-
date the configuration of all TLUTs using new specialized
bitstreams. The updating process involves read, modify and
write steps as explained in section 3. Figure 5 shows the bar
graph of the reconfiguration time for the 3 different FPGAs
using respectively hard-core and soft-core processors. The
normalized values are tabulated in Table 5, the normaliza-
tion is with respect to FPGAs mentioned in the parenthesis.
It is clear that the reconfiguration time overhead is not same
for Virtex-II Pro and Virtex-5. The resources that influence
the reconfiguration time overhead are the frame size, in-
terconnect bus speed, HWICAP port width and HWICAP
clock. The Virtex-II Pro has a lower capacity of these re-
sources compared to the Virtex-5. However, the number of
frames to be reconfigured for a TLUT also has a direct influ-
ence on the reconfiguration time and should be considered
during the comparison. Clearly, the number of frames to be
reconfigured in the Virtex-5 is higher than for the Virtex-II
Pro and therefore it consumes more amount of time during
reconfiguration.

The reconfiguration time overhead of the Zynq SoC is al-
most double the overhead of the Virtex-5. The main reason
for the increase in reconfiguration time is the increase in the
number of words per frame for the Zynq SoC compared to
the Virtex-5. It is to be noted that the interconnect bus
speed, HWICAP port width and HWICAP clock frequency
are same for the Virtex-5 and the Zynq SoC. The same note

FReconfiguration time for 1 multiplier (12 TLUTs)

: .
|]l|]]| Wirtex-1l Pro Power P C :
21| = virtesell Pro MiraBiaze | : J
I o5 Fovere : :
| | EEEE virten-s miroBieae

Zyng ARM Cortex-49

[zyna MicroBlaze :

n
T

=
T
i

©
T

Feconfiguration time in mili seconds

]
T

VarFC W2ME WEFFC VSMB ZACAR ZME
Frocessors

o

Figure 5: Reconfiguration time comparison

Table 5: Normalized Reconfiguration time
‘ ‘ Virtex-II Pro ‘ Virtex-5 ‘ Zynq SoC ‘

Hard-core Processor(Virtex-II Pro) 1 2 5.6
Soft-core Processor (Virtex-II Pro) 1 0.7 2.1
Hard-core Processor (Virtex-5) 0.5 1 2.8
Soft-core Processor (Virtex-5) 1.35 1 2.8

Table 6: Normalized Reconfiguration time
[[Virtex-IT Pro [Virtex-5 | Zynq SoC |
Hard-core Processor 1 1 1
Soft-core Processor 3.5 1.4 14

applies to the MicroBlaze results in all 3 FPGAs. The maxi-
mum clock frequency of the HWICAP that can be used for a
reliable implementation is shown in Table 1. The HWICAP
proves to be the bottleneck for the reconfiguration process.
The hard-core processor clock speed is much higher than for
the HWICAP, so obviously the HWICAP cannot process
and synchronize directly with the processor. The processor
will stall some clock cycles until the frames are swapped in
and out of the configuration memory at the speed of the
HWICAP clock.

Observing these results, we see that the DCS tool flow
encounters a higher reconfiguration time overhead for the
newer Xilinx FPGA architectures. In order to reduce the
reconfiguration time overhead, one would have to improve
the bus architecture and the HWICAP speed. The hard-core
processors are fast enough to reduce the evaluation time and
processing the frames during read, modify and write-back
operation during reconfiguration, even when considering the
increase in the LUT entries size. The Virtex-II Pro has
a reconfiguration time overhead that is relatively smaller
compared to the Virtex-5 and the Zyngq SoC but it has a
lower number of LUT entries compared to the newer FPGAs.

Normalizing the reconfiguration time with respect to the
respective hard-core processors in all 3 FPGAs, shows that
the use of hard-core processors is more efficient in reconfig-
uration than using the respective soft-cores. Table 6 shows
the normalized values of the reconfiguration time with re-
spect to their hard-core processors.

PPC memoary size

T T
|]]]]]| Wirtex-11 Pro PowerPC : :
18 1|] uirtes-ll Fro MicroBlsze | : : : 1
Wirtex-5 FowerPC : : :
rtex-5 MicroBlaze
yng ARM Cortex-29
Zynigg MictoBlaze

FPC memaory size in KB

WaFFC V2ME WESFFC WEME ZACAR ZME
Processors

Figure 6: PPC memory size comparison

Table 7: Normalized PPC memory size
‘ ‘ Virtex-II Pro ‘ Virtex-5 ‘ Zynq SoC ‘

Hard-core Processor(Virtex-I1 Pro) 1 1.4 1.6
Soft-core Processor (Virtex-II Pro) 1 14 1.5
Hard-core Processor (Virtex-5) 0.7 1 1.1
Soft-core Processor (Virtex-5) 0.7 1 1.1

Table 8: Normalized PPC memory size
[[Virtex-II Pro [Virtex-5 [Zynq SoC]
Hard-core Processor 1 1 1
Soft-core Processor 1.1 1.1 1.1

6.4 PPC memory size

Figure 6 shows the bar graph of the memory size of the
PPC functions. The normalized values with respect to the
corresponding FPGAs shown in parenthesis are tabulated
in the Table 7. We believe that the increase in PPC mem-
ory size of the Virtex-5 and the Zynq SoC compared to the
Virtex-II Pro is caused by the increase in number of LUT
entries from 16 to 64 for individual LUTSs. It is also observed
that the code density of the PowerPC is almost the same as
that of the ARM Cortex-A9.

Normalized PPC memory size with respect to the hard-
core processor is tabulated in Table 8. It reveals that the
code density of the hard-core processors is a little bit higher
than that of the soft-core processor which is in agreement
with [7]. It can be seen that the increase in LUT entries
affects the PPC memory size, reconfiguration time and the
evaluation time. This affect can be negated by using an
efficient bus structure, high speed HWICAP and highly so-
phisticated processor architecture.

7. CONCLUSION

The DCS tool was implemented on three different Xilinx
FPGAs: Virtex-1I Pro, Virtex-5 and Zynq SoC. Their corre-
sponding resources related to run time reconfiguration were
described. A 16-tap, 8-bit FIR filter was used as a parame-
terized design to evaluate the performance of DCS on three
different FPGAs. The evaluation time, reconfiguration time
and the PPC memory size were the three metrics used to
measure the overhead and the performance of DCS. It is
clear that newer FPGA architectures tend to include more

LUT resources and features. The added features increase
the size of the LUT entries and the frame size. This creates
the overhead on reconfiguration time, evaluation time and
the PPC memory size. The MicroBlaze soft-core proces-
sor proves to be inefficient in newer FPGA architectures for
DCS because the processor clock speed, memory and ISA are
limited and do not compete with those of hard-core proces-
sors. However for the edge cases, MicroBlaze in old FPGA
architecture such as Virtex-II pro would be more suitable to
implement the DCS.

8. REFERENCES

[1] K. Bruneel, F. Abouelella, and D. Stroobandt.
Automatically mapping applications to a
self-reconfiguring platform. In Design, Automation
Test in Europe Conference Ezhibition, 2009. DATE
09., pages 964-969, April 2009.

[2] K. Bruneel, W. Heirman, and D. Stroobandt.
Dynamic data folding with parameterizable
configurations. ACM Transactions on Design
Automation of Electronic Systems, 16(4), 2011.

[3] P. Lysaght, B. Blodget, J. Mason, J. Young, and
B. Bridgford. Invited paper: Enhanced Architectures,
Design Methodologies and CAD Tools for Dynamic
Reconfiguration of Xilinx FPGAS. In Field
Programmable Logic and Applications, 2006. FPL ’06.
International Conference on, pages 1-6, Aug 2006.

[4] F. Mostafa Mohamed Ahmed Abouelella, K. Bruneel,
and D. Stroobandt. Efficiently generating fpga
configurations through a stack machine. In Field
Programmable Logic and Applications, 20th
International conference, Abstracts, Milano, Italy,
2010.

[5] F. Mostafa Mohamed Ahmed Abouelella,

T. Davidson, W. Meeus, K. Bruneel, and

D. Stroobandt. How to efficiently implement dynamic
circuit specialization systems. ACM
TRANSACTIONS ON DESIGN AUTOMATION OF
ELECTRONIC SYSTEMS, page 38, 2013.

[6] E. Vansteenkiste, K. Bruneel, and D. Stroobandt. A
connection router for the dynamic reconfiguration of
fpgas. In Proceedings of the 8th International
Conference on Reconfigurable Computing:
Architectures, Tools and Applications, ARC’12, pages
357-364, Berlin, Heidelberg, 2012. Springer-Verlag.

[7] V. Weaver and S. McKee. Code density concerns for
new architectures. In Computer Design, 2009. ICCD
2009. IEEE International Conference on, pages
459-464, Oct 2009.

[8] LogiCORE ip Processor Local Bus (PLB) v4.6
(v1.05a).

[9] LogiCORE IP On-Chip Peripheral Bus V2.0 with
OPB Arbiter (v1.00d).

[10] PowerPC Processor Reference Guide (ug011).

[11] AXI Reference Guide (ug761).

[12] Virtex-5 Family Overview (ds100).

[13] Virtex-II Pro and Virtex-II Pro X FPGA User Guide
(ug012).

[14] Zyng-7000 All Programmable SoC Overview (ds190).

