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Abstract 

We investigate the value of labels in a simple ver- 
sion of the standard on-line prediction model (the 
“experts” setting). We present algorithms and ad- 

versary arguments defining tradeoffs between the 

number of mistakes made and the number of labels 
that the learner requests. One version of this ques- 
tion can be viewed as a family of games whose 
value is given by a complicated recurrence. Al- 
though our attempts to tind a closed form for this 
recurrence have been unsuccessful, we show how 
an algorithm can efficiently compute its value, en- 
abling it to perform optimally. 

1 INTRODUCTION 

Everyone knows that a picture is worth a thousand words, but 
how much is a label worth to a learning algorithm? We inves- 
tigate this question in a simple version of the standard on-line 
prediction model (the “experts” setting). We present algo- 
rithms and adversary arguments that define interesting trade- 
offs between the number of mistakes made and the number 

of labels that the learner requests. One version of this ques- 
tion turns into a family of games whose value is given by 
a complicated recurrence. Although our attempts to find a 
closed form for this recurrence have been unsuccessful, we 
show how an algorithm can efficiently compute its value, en- 
abling it to perform optimally. 

In the on-line prediction model the learner (or pre- 
dictor) must predict, one by one, the labels yi, . . . , yT 

of an unknown sequence of instance/label pairs s = 

h,Yl),... , (ZT, yT). Each instance zt of the sequence s 
can be interpreted as a set of features to which the label yt is 
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associated. For example, in a text classification problem zt 
might indicate those key phrases occuring in a particular doc- 
ument the learner is asked to classify and yt E (0, 1) is “1” if 
the document belongs to the class of relevant documents and 
“0” otherwise. Formally, the learning process consists of a 

series of trials numbered from 1 to T. At the beginning of 

each trial t the learner receives the instance xt and, based on 
xt and on the past instanceilabel pairs, produces a prediction 
& E (0, 1) for yt. In the standard on-line model the label yt 
is received at the end of the trial and is used by the learner 
to update its internal state, and (hopefully) improve its future 
predictions. 

The learner’s goal is usually to minimize the number of 

prediction mistakes made over all T trials on an adversar- 
ially generated sequence of instance/label pairs. Although 
this problem is difficult in general, if the learner is given a 

(finite) set of models and the sequence is close to that gener- 
ated by one of the models, then certain performance bounds 
can be achieved [Vov90, LW94, CBFH+94]. This is some- 
times referred to as the “experts” setting, since the models 
can be viewed as “experts” providing “advice” to the algo- 
rithm. 

In this setting, the learner (or “master algorithm”) gives 
the current instance xi to all of the experts. Each expert J!$ 
(i = 1,. . . N) informs the master algorithm of its prediction 
on the current instance. The algorithm then combines the ex- 
perts’ advice to produce its own prediction &t. At the end of 
the trial, the label yt is shared with all the experts and both 
the experts and the master algorithm are scored based on the 
accuracy of their predictions. The master’s goal is to perform 
nearly as well as the best expert on the particular sequence 

that was actually observed. For example, one simple case 
occurs when one of the experts perfectly predicts all of the 
labels in the sequence s, and the learner must quickly learn 
to follow the predictions of the good expert in order to min- 
imize the number of prediction mistakes. One solution for 
this simple case is the well-known Halving algorithm that, 
on each trial, simply predicts the same way as the majority 
of those experts that have never made a mistake. 

In the standard on-line prediction model, the complexity 
of a learning problem is measured in terms of the number 
of prediction mistakes made by the best (not necessarily effi- 
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cient) on-line prediction algorithm, and the goal is to develop 
efficient master algorithms whose complexity is “close” to 
that of the optimal algorithm. However the successful de- 
sign of practical algorithms often requires the conservation 

of critical resources in addition to minimizing the number 

of prediction mistakes made. In many applications, such as 

speech recognition or text categorization, the labels used by 
the master algorithm can be a scarce resource. Although 
many instances may be available (such as documents from 
the web or speech samples from broadcast radio or TV), ob- 
taining the correct classification can be difficult and/or ex- 
pensive. It is often the case that collecting unlabeled in- 
stances can be easily automated, while determining the cor- 
rect labeling of the instances requires expensive human ex- 

pertise. 

Thus it is desirable to study on-line prediction algorithms 
that make few mistakes while asking for few labels during 
the learning process. In this framework, learning becomes an 
interactive process in which the algorithm chooses on each 
trial whether or not to request the label, instead of automati- 
cally receiving every label. 

Note that if the learner does not request a label then it 
is receiving less information than it would in the standard 

on-line model, and thus can be expected to make poorer pre- 
dictions in the future. This leads to an explicit trade-off be- 
tween the number of mistakes made and the number of labels 
requested. Furthermore, if an algorithm hopes to optimize 
this tradeoff, then its strategy for requesting labels must be 
chosen carefully. 

The purpose of this work is to explore the trade-offs be- 
tween the numbers of labels requested and mistakes made, 

and to tind appropriate strategies for requesting labels within 

the worst case framework adopted by the standard on-line 

prediction model. In doing so, we present a natural vari- 
ant of the on-line prediction model, which we call the label- 

efficient prediction model. In this model the learner, at the 
end of each trial, chooses whether or not to receive the cor- 
rect classification of the instance. The performance of a 
learning algorithm now includes both the number of labels 
requested by the algorithm as well as the number of predic- 
tion mistakes made. Since the trade-off between the number 
of labels asked and the number of mistakes made is explicit 

in the label-efficient model, different prediction problems 
can be defined depending on how the trade-off is weighted. 
For some of these problems we present, through a game the- 
oretic analysis, an optimal yet efficient prediction strategy. 

We concentrate on the simple setting where the predic- 
tions and outcomes are boolean and the master algorithm 
knows in advance that one of the experts predicts perfectly 
on the sequence s. The binomial weighting technique de- 
scribed by Cesa-Bianchi et al. [CBFHW96] is an efficient 
way to build a perfect expert whenever some expert makes 
a small number of mistakes. Even in this simple setting the 
tradeoff between mistakes made and labels requested is quite 
subtle. Furthermore, a thorough understanding of this simple 

setting is required before one can hope to prove interesting 
results in more complex or realistic settings, such as when 
the predictions or outcomes are continuous and/or the target 
is a convex combination of the experts. 

Although much work has been done in the on-line learn- 
ing model, the most closely related work to that presented 

here is the Apple Tasting model presented by Helmbold, Lit- 
tlestone, and Long [HLL92]. In this Apple Tasting model 
the learner receives the correct label for the current instance 
if and only if it makes the prediction it = 1. Intuitively, the 
model represents the situation where the learner is attempt- 
ing to identify (and eat) good apples, while avoiding the bad 
ones. A prediction & = 1 is associated with eating the ap- 

ple (and thus obtaining confirmation of its goodness or bad- 

ness), and a prediction & = 0 represents avoiding the cur- 
rent apple (whose goodness or badness remains unknown). 
The measure of performance is simply the number of pre- 
diction mistakes made, or the number of tasty apples passed 
up plus bad apples eaten. Depending on the concept class 
involved, the number of mistakes made by an optimal ap- 
ple tasting algorithm typically grows as fi, where T is the 
number of predictions made. This model involves an implicit 
exploration/exploitation tradeoff - good learners must occa- 
sionally predict “I” to gain information even when the label 

is likely to be “0”. In contrast to the apple tasting model, 
the label-efficient prediction model studied here makes the 
exploration/exploitation tradeoff explicit by counting the la- 
bels requested separately from the number of mistakes made 
by the algorithm. 

Atlas et al. [ACL+90] consider selective sampling, a 
closely related model to ours where the learner (in their case 

a neural network) requests the labels only of those points 

in its region of uncertainty. They present a method for de- 

tecting this region of uncertainty as well as experimental 
results. One very interesting selective sampling algorithm 
is the “query by committee” algorithm (SOS92, FSST93], 
which ensures that the average information provided by each 
requested label is bounded from below by a constant. This 
allows the generalization error to decrease exponentially in 
the number of labels, as opposed to the slower inverse-power 
law that applies when the labeled examples are selected at 

random. The query by committee algorithm works by filter- 
ing randomly drawn examples using a committee of Gibbs 

algorithms, and only those examples on which the commit- 
tee has maximum disagreement are passed through the filter. 

There are two main differences between the selective 
sampling model and the label efficient prediction model 
presented here. First, in the selective sampling model the 
instances are drawn randomly from a fixed distribution, 

whereas the instances are generated adversarially in our la- 
bel efficient model. Second, the label efficient model is an 
on-line model where the algorithm must make predictions 
(and run the risk of mistakes) on those instance where the 
label is not requested. In contrast, the selective sampling 
models are concerned with the generalization error rather 
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than the performance of the algorithm on the sequences of 

instances. Although there are conversions between on-line 
and batch algorithms [Lit89, CBFH+93, HW95], the selec- 
tive sampling/query by committee algorithms can often wait 
for a more “perfectly informative” example than algorithms 
in the label efficient prediction model. 

Since the label efficient prediction model requests the la- 
bels of instances, it (and the selective sampling model) may 
appear similar to learning models with membership queries 

(such as [Va184, Ang881). There is, however, a very impor- 

tant difference - the membership query models usually al- 
low the algorithm to construct the instances for their queries, 
whereas the label efficient prediction model (as well as se- 
lective sampling) are allowed to request the labels only of 
those instances appearing in their input. 

In the next section we describe the label-efficient predic- 
tion model in more detail and Section 3 describes and ana- 

lyzes some simple adversaries and algorithms. In Section 4 
we give a game theoretic interpretation of the label efficient 

prediction model and describe how analyzing the game leads 
to an efficient optimal algorithm. 

2 NOTATION AND MODEL 

As stated above, learning in the label-efficient prediction 
model proceeds in a series of trials numbered from 1 to T. 

In a 

1. 

2. 

little more detail, on each trial t: 

the adversary chooses the pair (xt , yt) 

the learner obtains the predictions or advice of the N 
experts on xt 

3. 

4. 

the learner formulates its own prediction $1 

the learner then decides whether or not to ask for the 
label, and the value yt is given to the learner only when 
it is asked for. 

The idea1 behavior of the algorithm is to always form 
correct predictions & = yt while not asking for any la- 

bels. However, this ideal behavior is rarely achievable. In 
the standard on-line setting it is natural to charge the algo- 
rithm one mistake for each trial where fit # yt. However, 
in the label-efficient prediction mode1 it may be reasonable 
for the algorithm to delay acting until the requested label is 
available (and the appropriate action is known). In this case, 
one should only charge the algorithm a mistake when it both 
predicts incorrectly and fails to ask for the label. 

In this paper we define the total error as the number of 

trials on which yt # &, and the number of mistakes as the 
number of trials on which both yt # & and the learner fails 
to ask for the label. Thus the mistakes made by the algorithm 
will not include the “bad guesses” when the algorithm also 
requests the label, but the total error does include these bad 
guesses. These quantities are trivially related by the follow- 
ing inequalities: 

mistakes < total error < mistakes + labels requested. 

Although our analysis emphasizes mistakes, our results can 

be phrased in terms of total error using the above inequal- 
ities. The important point is that the number of labels re- 
quested and number of mistakes (or total error) charged to 
the algorithm form a two-dimensional loss. The goal of the 
algorithm is to minimize this two-dimensional loss and a dif- 
ferent version of the label-efficient prediction problem re- 
sults when a different emphasis is placed on the numbers of 
labels requested and mistakes made. 

We will consider only adversaries that produce se- 

quences of pairs ((zt , yt)) 1 ct<T where at least one of the -- 
N experts predicts correctly on every trial. We call these 
perfectly predicting experts consistent. As mentioned in the 
introduction, standard techniques can be used to create a con- 
sistent expert whenever at least one of the experts makes only 
a small number of mistakes. At each trial, the current version 
space is the set of experts that have predicted perfectly on the 

previous trials where the algorithm has asked for the label. If 

every expert in the version space makes the same prediction, 
then the outcome is known to be that value. Thus if only a 
single expert remains in the version space then the algorithm 
has learned the rule labeling the instances and need not make 
any further mistakes nor ask any further labels. 

This basic setting is parameterized by the number of ex- 
perts (N) and number of trials (7’). For each N, T pair, we 
are interested in the pairs (L, M) such that there is an algo- 
rithm which on every sequence of length T and any set of N 
experts (where at least one of the experts is consistent) the 

algorithm requests at most L labels and makes at most M 
mistakes. 

In general, the algorithm’s decision whether or not to ask 
for the label and the choice of prediction can be randomized. 
However, we will often find it convenient to restrict the al- 
gorithm so that it predicts in the same way as the majority 
of the experts in the current version space. We call such al- 
gorithms sensible. Note that sensible algorithms produce the 
same predictions as those generated by the well-known halv- 
ing algorithm. 

One intriguing property of our model is that sensible al- 
gorithms are optimal. In most other on-line settings, it is 
beneficial to predict with a little randomness unless the vast 
majority of the version space gives the same advice. How- 
ever, we show in Section 4.5 that an algorithm that predicts 
randomly only when the version space is evenly split (or it is 

out of labels) has the optimal (expected) mistake bound. 

3 PROPERTIES OF THE LABEL 
EFFICIENT PREDICTION MODEL 

There are several trivial performance bounds which one can 
show for the label-efficient prediction model. The halving 
algorithm in this setting works as follows: predict with ma- 

jority of the version space and request the label unless the 
entire version space gives the same advice. Although this 
algorithm never makes a mistake (by our definition) since it 
requests the label whenever the outcome is unknown, it can 
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have total error as large as log N. Furthermore, the halv- 
ing algorithm requests as many as N - 1 labels. In fact, an 
adversary can postpone the halving algorithm’s errors to the 

end (when the version space is smaller) to create sequences 
of trials where the halving algorithm both has total error m 

and requests N + m - 2”’ labels. 

This halving algorithm is essentially optimal in the fol- 
lowing sense: any algorithm whose expected number of mis- 
takes is bounded must request a number of labels approach- 
ing N. This can be seen by considering an adversary which 
on every trial has one expert from the version space predict 
“I” and the rest predict “0”. The adversary will repeat this 
set of expert predictions until the algorithm requests the la- 

bel. If the algorithm eventually requests the label with prob- 

ability one, then the adversary uses the outcome “0” so that 

only one expert is eliminated from the version space. By 
repeating this process on the reduced version space, the al- 
gorithm eventually requests N - 1 labels. On the other hand, 
if there is some positive probability that the algorithm never 
requests the label then the adversary uses the label “1” and 
the expected number of mistakes made by the algorithm be- 
comes unbounded. Thus this adversary forces any sensible 
algorithm to either make an expected number of mistakes 

that is unbounded or to eventually request N - 1 labels. 

This indicates that interesting bounds in the label- 
efficient prediction model must depend on T, the length of 
the sequence to be predicted. Note that a similar dependency 
occurs in the apple tasting model, where the mistake bounds 
typically grow as fi. The following theorem quantifies this 
intuition. 

Theorem 1 If the expected number of labels requested by a 
sensible algorithm is bounded by L 5 N/3, then the algo- 

rithm can be forced to make an expected number of mistakes 
that is at least 2T/(9L). 

Proof. We prove the Theorem by presenting an adversary 
strategy forcing 2T/(9L) expected mistakes on any sensible 
algorithm. To avoid floors and ceilings in notation, we will 
assume that T is a multiple of 3L. The adversary strategy 
focuses on the first 3L of the N experts which we call the 
relevant experts. The adversary divides the T trials into 3L 

groups of T/(3L) trials each. The predictions of the experts 
depend only on which group the trial is in: in group i ex- 
pert E, (i = 1, . ,3L) always predicts “1” while all other 
experts predict “0”. Thus on the first T/(3L) trials, the first 
expert, El, predicts “I” while all other experts predict “0”. 
On the next T/(3L) trials, expert E2 predicts “I” while all 
other experts predict “0”. and so on, with expert Est. pre- 
dicting “1” on the last T/(3L) trials. 

At the beginning of the learning process the adversary 

chooses (uniformly at random) one of the relevant experts 
to be the consistent expert. The labels for the sequence of 
trials are then set to the same value as the predictions of the 
chosen expert. Thus the chosen expert remains consistent 
throughout the process. 

Since the expected number of labels requested by the al- 
gorithm is at most L, there is at most a l/3 chance that the 
algorithm asks for a label on any of the 5”/(3L) trials where 
the consistent expert predicts 1. Since the majority of cur- 

rent version space predicts “0” on these trials, so will the 
algorithm. Thus the expected number of mistakes made by 
the sensible algorithm is at least $T/(3L) = 2T/(9L). 0 

This lower bound gives us our first estimate on the value 
of a label. As the number of labels used by the algorithm in- 
creases, the lower bound goes down harmonically (as l/L). 

The lower bound of Theorem I is tight to within a 1gN 
factor. Consider the simple algorithm which requests a la- 
bel with probability p = L/T whenever the predictions of 

the version space are not unanimous. The following version 

space argument shows that this algorithm expects to make 

at most (T - L)(lg N)/L mistakes. The version space ini- 
tially contains all N experts. The size of the version space is 
reduced by at least a factor of two on each trial where the 
algorithm both predicts incorrectly and requests the label. 
Therefore, the version space will shrink by (at least) a fac- 
tor of two after an expected l/p - 1 mistakes (recall that no 
mistakes are charged on trials where the algorithm requests 

the label). Since the version space can shrink at most lg N 

times in this way before it is reduced to a single expert, the al- 
gorithm makes an expected number of mistakes A4 bounded 

by 
M 5 (lg N)/p - lg N = (T - L)(lg N)/L (1) 

mistakes. Observe that the expected number of labels re- 
quested by this algorithm is trivially bounded by pT = L. 

We can fix the number of mistakes rather then the number 
of labels requested. When p = (lg N)/( M + lg N), the 
expected number of mistakes made by the algorithm is at 

most M while the expected number of labels requested is at 

most T(lgiV)/(M + IgN). 
The following theorem shows that one can do slightly 

better by asking for the label with a probability that depends 
on how evenly the predictions of the version space are split 
between “0”and “1”. Intuitively, if most of the version space 
predicts in the same way, then the algorithm should only 
rarely ask for the label. On the other hand, if the experts 
predicting “I” and the experts predicting “0” split the ver- 

sion space evenly then the algorithm should ask for the label 

more aggressively. 

Theorem 2 For all M 2 0. there is an algorithm which 

expects to make at most M mistakes and expects to ask for 
at most L = M ,gCy/f.y+,R N labels, where T* is the solution 

to N(l - r)T = r”. 

Proof Sketch. The al 
IgJ 

orithm asks for the label with proba- 

bility p(r) = 
Ig N+M Ig(l/r)’ 

where 0 5 r 5 l/2 is the frac- 

tion of the version space predicting in the minority. This is 
the smallest p guaranteeing that, when the minority is always 
correct, the version space shrinks rapidly enough so that the 
expected number of mistakes is bounded by M. It turns out 
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that the best adversary strategy is to use the same split T on 

every trial. Thus the expected number of labels requested is 
bounded by both TV = a and the number 

of labels required to exhaust the version space when the ma- 
jority of the version space is always correct. This number of 
labels re 

19 
uired to reduce the version space to a single expert 

is &. These two bounds are equal (and thus their 

minimum is maximized) when N(l - T)~ = r”. Calling 
the solution of this equation T*, and substituting it into the 

first bound completes the proof. 0 

We can relate Theorem 2 to the previous bounds as fol- 
lows. By solving the equation in Theorem 2 for M, we 
see that when the expected number of labels is bounded by 
L, the algorithm makes an expected number of mistakes M 
bounded by 

M i CT - LNgWI(Lk(ll~*)), (2) 

and thus shaves a factor of lg( l/r*) off the earlier bound (1). 

Furthermore, if r* M l/N, then mistake bound (2) grows as 
T/L, just like the lower bound in Theorem 1. A little algebra 
showsthatr’ = l/Nwhen(M+l)/T = (lg&)/lgN M 
l/(NlnN), or T x (M + l)NlnN. Under these con- 
ditions, the lower bound of Theorem 1 is within a constant 
factor of the upper bound (2). 

4 ON-LINE PREDICTION USING A 
BOUNDED NUMBER OF LABELS 

This section contains the main result of the paper, a game 
theoretic analysis yielding an optimal learning algorithm 
when the number of requests for labels is limited by a fixed 
bound. As before, we restrict our analysis to the simple case 
when all the predictions are Boolean and the learning algo- 
rithm knows in advance that one of the experts will be con- 
sistent with the sequence s (i.e. it predicts perfectly on the 

sequence). 

In this section we extend our definition of “sensible.” 
Whereas before we insisted that sensible algorithms always 
predict in the same way as the majority of the version space, 
we now allow sensible algorithms to predict with unbiased 
coin flips in two special situations. First, our earlier defini- 
tion of sensible did not specify how the algorithm predicted 
when the predictions of the current version space are evenly 
split. We adopt the natural convention that the algorithm pre- 
dicts with an unbiased coin flip in this case. Second, the re- 
striction that the algorithm never request more than a fixed 
number of labels leads to a degenerate situation where the 
algorithm is at the mercy of the adversary. Consider what 
happens when the algorithm is no longer able to ask for la- 

bels and three (or more) experts remain in the version space. 
Now the adversary can easily force a mistake on every trial 

when the algorithm must blindly predict as the majority of 
the version space. To counter this, we also allow sensible al- 
gorithms to predict with an unbiased coin flip once the quota 
of label requests has been exhausted. 

Surprisingly, this very limited randomization of predic- 

tions coupled with the randomized choice of when to ask 
for a label is sufficient to construct an optimal algorithm (as 
will be shown in Section 4.5). This is in marked contrast 
to most other on-line settings where the best expected mis- 
take bounds are achieved by algorithms that randomize their 
predictions on most trials. 

Throughout this section we view the label-efficient pre- 

diction model as a game in which the learner plays against an 

opponent or adversary who dynamically generates both the 
(binary) experts’ advice and the (binary) outcomes to be pre- 
dicted. The game is parameterized by the number N of ex- 
perts, the number T of trials played, and the number L of la- 
bels the algorithm is allowed to request during the game. We 
use “G(N, T, L)” to denote the game with parameters N, T, 
and L. Formally, given the triple (N, T, L), the G(N, T, L) 
game consists of T time steps or trials. On each trial the 
protocol of Section 2 is used, and the value of the game is 

the (expected) number of mistakes made by the learner. The 
goal of the learner in this game is to minimize the number 
of mistakes charged to him/her over the T trials, while the 
adversary’s goal is to maximize it. Recall that the learner is 
not charged a mistake when the label is requested. 

During any G( N, T, L) game, we say that the state of the 
game at the beginning of a trial is the triple (n, t, e) where 

n is the size of the current version space, t is the number of 
remaining trials and I is the remaining number of labels that 

the algorithm can request. 

Since we are interested in a worst-case setting where the 
experts’ advice and outcomes can be thought of as being 
generated by an adversary, any deterministic strategy for re- 
questing the labels would fail very badly against an adver- 
sary who assigns the wrong classification to the majority of 
the current experts when the label is not requested by the 
algorithm and the correct classification otherwise. Thus, in 
order to achieve good performances the learning algorithm 

must use a randomized selection strategy. In particular we 
consider the learning algorithm that uses a probability func- 
tion p for deciding, on each trial, whether or not to ask for 
the label. That is, we assume that on each trial the learner 
Rips a coin with some bias p E [0, 11 and then requests the 
label if and only if the outcome of the coin toss is “heads.” 
Note that the algorithms in the previous section uses either a 

fixed bias, or a bias that depended on the fraction of the ver- 
sion space predicting “1.” In this section we will examine an 
algorithm whose probability of requesting the label depends 
not only on the current predictions of the version space, but 
also on the state of the game. 

4.1 VALUE OF THE G(N, T, L) GAME 

Recall that for any N > 1, L 2 0 and T 2 0, the goal 

of the adversary in the G(N, T, L) game is to maximize the 
expected number of mistakes made by the prediction algo- 
rithm. In this context, we will show that the minimax value 
of the G(N, T, L) game is the function w(N, T, L) defined 
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Boundary Conditions 

Bl : r,(l,t.P) = 0; B2 : 71(71, t,O) = % Vn 2 2; 

B3 : u(n, t, 4) = 0 when t 5 1. 

Recursive Formulation 

For any 11 > 2, for any t 2 2, and for any B > 1 

where if i < n/2, 

Wi(n, t. P) = i;f max{ 

pw(n - i,t - 1,f - I) + (1 - p)w(n,fA - I,[), 

pv(i,t - 1,4 - 1) + (1 -p)[l +v(n,t - l,e)]} (4) 

and when i = n/2, 

lJi(l2, t, f) = inf{ 
P 

p7J+ - l,li- 1) + (1 -p)[i +w(n,t - l,!)]}(5) 

Figure 1: Value of the G(n, t, P) Game. 

recursively in Figure I. An efficient method for computing 
v(N, T, L) is given in Section 4.2. 

The parameters of the function 11 are interpreted as fol- 
lows. The integer n denotes the size of the current version 
space (i.e. the number of experts that have predicted perfectly 

on those previous trials where the algorithm requested the la- 

bel), the integer t is the number of remaining trials, and the 
integer I; is the remaining number of labels that can be re- 
quested by the algorithm. We now justify that the recurrence 
for 71(n, t. E) given in Figure I correctly represents the value 
of the G(n, t, P) game. 

We start with the boundary conditions. For condition B 1, 
it is easy to see that when only a single expert remains in the 
version space, the algorithm has learned which expert is con- 
sistent, and thus won’t make any further mistakes. Boundary 

condition B2 follows immediately by observing that when 
n 1 2 and the algorithm is left with 0 labels the best strategy 
for the algorithm is to predict with an unbiased bit, and thus 
it expects to make l/2 of a mistake on each of the t remain- 
ing trials. Finally, B3 follows by noting that if t 5 ! then 
the algorithm can request the label on all of the remaining 
trials. Because mistakes are not charged when the algorithm 
requests the label, the algorithm will make no mistakes and 
the value of the game is 0. 

We need some additional notation before justifying the 
recursion. On each trial the experts’ advice partitions the cur- 
rent version space v into r/;, and VI where V,, is the subset 
of 1’ predicting y’ on the current trial. If the current version 

space contains n > 2 experts then we say that the experts’ 
adviceproducean(i,n-i)spfitwherei = min{]l/b], ]r/;]}. 
Since the experts’ advice is selected by the adversary, the 
choice of (i, n - i) split, for i E { 1,2, , ]sJ } is also con- 
trolled by the adversary. In this respect, z)~(R, t, t) given in 
figure 1 denotes the value of the G(n, t, P) game when the 

adversary selects an (i, 71 - i) split on the first trial. 
When n is odd the recursion in figure 1 simplifies to 

w(n,t,e) = max inf max{ 
{tEN:i<$} P 

prJ(n-i,t-l,P-l)+(l-p)ll(n,t-l.C). 

pv(i,t-1,f.-1)+(1-p)[1+~(n,t-l,4)]}(6) 

To explain equation (6), two cases must be considered: when 
the majority of the experts in the current version space pre- 

dict the correct value of the label, and when the majority of 
the experts predict the wrong value. For the sake of expla- 
nation, let us assume that an (i, 71 - i) split is selected by 
the adversary for the first trial, where i E { 1,2, . , ]FJ }. 
When the majority of the experts (and thus the algorithm) 
predict correctly on the first trial, no mistake will be charged 
to the algorithm. The state of the game after this trial be- 
comes either (n - i, t - 1, e - 1) if the algorithm asks for 
the label, or (n, t - 1, e) if the algorithm does not request the 

label. Since the algorithm asks for the label with probability 
p, the expected value is 

pw(n - i, t - 1, e - 1) + (1 - p) ff(n, t - 1, e). 

When the majority of the experts, and thus the algorithm, 
predict incorrectly on the first trial, the algorithm will be 
charged a mistake only when the label is not requested. In 
this case the expected value of the game is 

pw(i, t - I, e - I) + (I - p) [i + 11(7L, t - I, e)]. 

Now, (6) immediately follows by observing that the adver- 
sary, in order to maximize the loss of the algorithm, has to 
choose the value i E { 1,2, . , L:J } maximizing the right- 
hand-side of (6). 

The n even case differs only in that on an (:, z) split 

the learning algorithm should always predict randomly, thus 
incurring an expected number of mistakes of l/2 rather than 

1 on each trial where the label is not requested. This is taken 
into account by the expansion for u,i2 (n, t, P) in equation (5) 
of figure 1. 

4.2 SOME EXPLOITABLE STRUCTURE OF THE 
GAME 

Before presenting an optimal prediction strategy for the 

G(N, T, L) game, some results about the value v(N, T, L) 
of the game are needed, These results enables us to simplify 

the recursion equation presented in figure 1. Furthermore, 
they provide the theoretical justification for an efficient algo- 
rithm solving this game. 
We first give two simple technical Lemmas. 
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Lemma 3 For any number n > 1 of experts and for any 
numbere 2 Ooflabels, rhevaluev(n,C+l,I)oftheG(n,!+ 
1, e) game is bounded by 

w(n,e+ 1,C) 5 t. (7) 

Proof. Consider the algorithm which requests the label on 
the first e trials and predicts with a random bit on the last trial. 
This algorithm makes an expected number of mistakes equal 

to l/2 (since no mistakes are charged when the algorithm 

requests the label), proving the lemma. i-J 

Lemma 4 For any n 2 1, for any C > 0 andfor any t 2 0, 
the following inequality holds, 

v(n,t+l,e) 5 a+u(n,t,e). 

Proof. The thesis follows by considering the algorithm that 
plays the G(n, t, P) game for the first t trials, and then either 

requests the label or predicts with a random bit on the last 
trial. 0 

Next we provide two Lemmas which compute the best 
choice for the probability p used by the algorithm for re- 
questing the label, as a function of the split used by the ad- 
versary on the first trial. 

Lemma 5 For any n 1 2, d 1 1, t 2 e + 1 and for any 
integer i < $, the minimizing p of vi(n, t, e) is either p = 1 
orp = l/(v(n - i, t - 1, e - 1) - v(i, t - 1, e - 1) f 1). In 
other wards, for i < 5 

vi(n, t, e) = min{ v(n - i, t - 1, e - l), 

(~(n - i, t - 1, e - 1) - u(i, t - 1,e - l))v(n, t - l,e) 
v(n-i,t-l,e-l)-v(i,t-l,e-1)+1 + 

+ 
w(n-i,t- i,e- 1) 

w(n - i, t - 1, e - 1) - ~(i, t - 1, e - 1) + 1 1. 
(8) 

Proof Sketch. By analyzing the derivatives with respect top 
of the two terms in the max. 0 

Note that Lemma 5 does not apply when the adversary 
chooses a (n/2, n/2) split. However, for even splits the best 
strategy for the algorithm is to request the label. This makes 
intuitive sense since this is the only case where the requested 
label is guaranteed to provide a full bit of information. 

Lemma 6 For any n 2 1, for any number of labels t! > 1 
andfor any d 2 1, 

v,(2n,e+d,e) =v(n,e+d- l,!-1) (9) 

Proof By induction on d. For completeness, the proof is 
provided in the appendix. 0 

An interesting Corollary of Lemma 6 which enables us to 
simplify the recursion presented in figure 1, is the following. 

Corollary 7 For any n > 2, for any t 2 2, and for any 
e 1 1, we have 

where 

wi(n, t, e) = irjf max{ 

pv(n-i,t-l,e-l)+(l-p)v(n,t-l,e), 

pu(i,t-I,e-l)+(i-p)[l+v(n,t-I,e)]) 

is the value of the G(n, t, .!) game when the adversary makes 
an (i, n - i) split on theJirst trial. 

Proof. The proof follows directly by noting that when n is 
even and i = s is substituted in equation (4) of figure 1 we 
obtainthetermpv(F,t-l,e--l)+(l-p)(l+v(n,t-1,6)) 
which is minimized for p = 1. Moreover, for i = n/2 

the probability functions defined in Lemma 5 both reduce 
to 1. By Lemma 6, this implies that for n even the value 

IJ$ (n, t, !) (equation (5)) is equal to the value given by equa- 
tion (4) after setting i = n/2. This concludes the proof. [1 
Intuitively, Corollary 7 says that if there are labels remaining 
and the adversary uses a (n/2,n/2) split, then an optimal 
algorithm can predict either randomly or deterministically 
on that trial. This is because the optimal algorithm will re- 
quest the label, and in our model the learner is not charged 

a mistake when the label is requested. Since the recursion 
in figure 1 and in Corollary 7 are equivalent (i.e. they both 

compute the same function), in the following we will use the 
simpler definition given in Corollary 7. 

Remark: 
It is not difficult to see that when the value of the game 
is computed as in Corollary 7, the probabilities given in 
Lemma 5 are also the minimizing p for the value ~i(n, t, e) 
of the game. An important special case is when t = e + 1. 

In this case we have that for any integer i 5 [n/2J, 

w:(n,t+ I,!) = 
w(n - i,e,e - 1) 

(w(n - i, e, e - 1) - ~(i, e, e - I) + 1). 
(11) 

Although, our attempts to find a closed form for the value 
of the game have been unsuccessful, the next Theorem in- 
dicates that the game has exploitable structure allowing the 
z)(n, t, &?) values to be computed efficiently. 

Theorem8 Foranyn 2 1,foranye 2 Oandd 2 1, we 
have 

v(n,e+d,e) =du(n,L+l,e). (12) 

Proof. The theorem is proved by using a double induction 
on d and C. The proof is provided in the appendix. 0 
The important feature of Theorem 8 is that it removes the 
time parameter t from the recurrence. By pre-computing the 

values v(n, C + 1, .!), an algorithm can easily obtain the prob- 
ability p from Lemma 5 that minimizes the expected number 
of mistakes made. This is the basis for the algorithm pre- 
sented in section 4.4 
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4.3 A LOWER BOUND ON THE VALUE OF THE 
GAME 

We next prove a lower bound on the value V(R, t, f?) of the 

G(n, t,e) game in the label efficient prediction model we 

have been considering. We begin with the following defi- 
nition. 

Definition 9 For any n 2 2 andfor any t _> 1, we define 
f(n, t) to he the function 

{ 

l/2 if n 2 2’ 

f(n,Q = l/3, if 2”-’ < n < 2t 

so+3 if ?I _< 21-1 

where s(n, t) is the smallest s satisfying 2’-‘-l - (t - s) < 

n- t < 2t-S - (t - s). 

We now present the main result of this section. 

Theorem 10 For any n _> 1, for any t 2 0 andfor any C 2 

0, the value v(n, t, f) of the G(n, t, f) game can be bounded 

by 

v(n, t, f) > Lcm(n, f, f) 

where 

{ 

0 if t 5 Corn = 1 

Low(n, t, f) = w if P=Oandn> 1 
(t - P)f(n, I + 1) otherwise 

and f(n, f + 1) is the,function given in definition 9. 

Note that, when t < 0 or 72 = 1 or (e = 0 and n > l), 

the lower bound given in Theorem 10 trivially holds since in 
these cases ~(n, t, e) = Low(n, t, E). Thus, the bound need 
only be proved for n 2 2, t > P and P > 1. Lemma 11 
below shows that for the special case t = I + 1 the function 
f(n, I + 1) is a lower bound on the value v(n, I + 1, P) of the 
G(n, d + I, c) game. The bound of Theorem IO then follows 
immediately since by Theorem 8 of section 4.2, fort > P we 
have ~(72, t, E) = (t - 8) V(TA, P + 1.8). 

Lemma 11 For any n > 2 andfor any P > 1 

v(n,f+ l,!!) >_ f(n,!!+ 1). (13) 

Proof. By definition (see Corollary 7 of section 4.2) we have 

u(n,!+ l:P) = max(i~N:*ll~J){1I:(n,e+l,~)}where 

,((n, e + 1, I) (14) 

= i;fmax{pv(7l - i,f.e - 1) + (1 -p) v(n,e,e), 

pv(i, e, f - 1) + (1 - p)(l + v(n, I, t))} 

= i;fmax{pl,(n - 1:,P,l- l),p(v(i,p,f - 1) - 1) + 1) 

v(71- i,f,f - 1) 

=v(n-i,&,e-l)-v(i,I,P-l)+l’ 
(15) 

where the second equality follows from the fact that 
u(n, f, 4) = c) and the last equality by noting that the best 

choiceforpisp= l/(v(n-i,e,li-l)-v(i.P.P-l)+l). 

Using the fact that for any j 5 [n/2] 

v(n,f + l,e) > v(,(72,t+ l,e), (16) 

different lower bounds on the value v(n, e + 1, a) of the game 
can be derived by assuming different splits on the first trial. 
NOW, to prove ( 13) three cases must be considered depending 
on the relationship between n and P. 

We start by analyzing the case n 1 2’+‘_ Since 71 2 

2’+’ and only C labels can be asked during the whole game, 

the best strategy for the algorithm is to always ask for the 
label, hence incurring no mistakes during the first P trials. 

On the last trial, where no further label can be asked, the 
algorithm incurs no mistakes if the version space contains 
only a single expert, and an expected number of mistakes 
equal to l/2 if the version space contains at least two experts. 
The best strategy for the adversary is to choose a sequence of 
splits such that the version space on the last trial contains at 
least two experts. It is easy to see that if the adversary uses 

(roughly) even splits on all of the trials when n > 2’+’ then 
v(n,C+ 1,P) = l/2 = f(n,P+ 1). 

Next, we consider the case 2’ < n < 2’+‘. Using in- 
equality (16) with j = n - 2’ we obtain 

v(n,e+ 1,C) > v,-2c (?l> F + 1, P) 

11(2C, e, e - 1) 

= 21(2ye,e - 1) - v(n, - 29,~ - 1) + i 

1 

where the first equality follows from equation ( l5), and the 
last equality from the fact that ~(2’. P. I - 1) = l/2 (see the 
analysis for n > 2[+‘). Then, the lower bound f(nl 8+ 1) = 
l/3 immediately follows by noting that v(n - 2’. P. P - 1) > 
0. 

Finally, we consider n < 2’. Proceeding similarly to the 
previous case but with j = 1, we obtain 

v(n,f+ i,e) > vl(n,B+ 1,P) 

?I{71 - 1, e, e - I) 

= 7i(n-l,e.p-l)-v(l,P.P-l)+l 

1 
ZZ 

1+ ’ 
(17) 

7r(n-l,E.f-1) 

where equality (17) follows by noting that v( 1, t, P - 1) = 0. 
Now, for any pair of integer (n? t) where n 5 2’- ’ con- 

sider the succession rule whose ith term is (n - %: t - i) for 

i =O,l,...,min{n-l,t-l}anddefinea(n,t) = i’where 

i* = argmini,o,l$., ,rninl,~-l,t~l~{21-2-1 < 71-1 < 2L--1}. 
By setting A = 72 - t the succession can be written con- 
veniently as (A + i, i) for i. = t. t - 1,. ,O. where now 
s(n,t) = t - i’ and i* = argmax,=t,t-1, ,r,{2i-’ - i < 
A < 2’ - i}. It is not difficult to see that s(n. t) is the small- 
est s satisfying 2t-S-’ - (t - s) < 71 - t < 2’~” - (f - s). 

Since for the first s(n,P + 1) trials we have that n’ 5 

2e’-1 where n’ denotes the size of the version space on the 
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trial been played and .f? the number of remaining trials, by re- 
cursively applying the lower bound (17) to each of the values 
occuring in the right hand side of (17) we obtain 

w(n,C + l,!) 2 
1 

4% 1 + 1) + u(n”,J:+l,(“) 

1 
> 
- s(n,C+ 1) +3 

(18) 

where (18) follows by observing that 2”’ < n” < 2”‘+l 
and that, from the analysis of the previous case, ~(n”, !” + 
1, P’) 2 l/3. This concludes the proof of the Lemma. 0 

Although upper bounding ~(n, t, t?) has proven difficult, 

we believe that the lower bound given in Theorem 10 is quite 
tight, and conjecture that for n and t greater than I, the value 

v(rz, t, a) is at most a factor of two greater than our lower 

bound. 

4.4 AN OPTIMAL PREDICTION STRATEGY 

We now give the optimal prediction strategy for the 
g(N, T, L) game described above, where N is the number 
of experts in the pool, T is the number of trials, and L is a 
bound on the number of labels that can be requested by the 
learner during the game. Recall that the state of the game at 
the beginning of a trial is the triple (n, t, e) where n is the 

size of the current version space, t is the number of remain- 
ing trials, and e is the remaining number of labels that the 
algorithm can request. 

Prediction Strategy PS. 

- Upon receiving the advice of the N experts the PS strategy 
predicts the same way as the experts if the version space is 
unanimous. Otherwise, it predicts with an unbiased random 

bit in the special cases when either C = 0 and n > 1 (no 
further labels can be asked) or the experts’ advice splits the 
version space into two sets of exactly equal size. Normally, 
the PS strategy predicts in the same way as the majority of 
the experts in the current version space. 
- If either e = 0 or the version space is unanimous then the 
PS strategy does not request the label, else it uses the values 

~(n, t, e) of the G(n, t, e) to compute a probability of asking 
for the label as described below. 

l The algorithm asks for the label with probability p = 1 
whenever t < e, n 2 2t, or when the predictions of 
the experts in the current version space are evenly split, 
otherwise 

l the algorithm exploits Lemma 5 by computing the prob- 
ability function 

1 

p=v(n-i,t-l,e-l)-v(i,t-l,e-l)+l’ 

and asks for the label with probability p. 
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We introduce some notation before analyzing the perfor- 
mance of the prediction strategy PS. Given an adversary 
A for the G’(n, t,e) game, we define Mps,~(n, t,e) to be 
the expected number of mistakes made by PS when it plays 
against adversary A in the G(n, t, e) game. We also define 
M,yy(n,t,e) tob e th e supremum over all possible adversary 

strategies A of the expected number of mistakes incurred by 
the prediction strategy PS during the G(n, t, e) game, that is 

&Sht,e) = ~UPwh,A(7#)). 
A 

The main Theorem concerning the prediction strategy 
PS is the following. 

Theorem 12 For any N 2 1, for any T 2 0 and for any 
L 2 0, for the PS strategy we have 

MP.s(N, T, L) = 0, T, L), 

where v( N, T, L) is the function satisfying the recurrence 
given in figure 1, or equivalently, in Corollary 7. 

Proof. The Theorem is proved by induction on T. When 
T = 0 both sides are zero and the thesis holds. Now assume 
that the assertion is true for some T - 1 2 0, i.e. for any 

N 1 1 and L 2 0 we have MPS(N,T - 1, L) = v(N,T - 
1, L). We will now show that Mps (N, T, L) = V( N, T, L) 
is also true. Assume that an (i, N - i) split is chosen by the 
adversary on the first trial. Since PS asks for the label with 
probabilityp= l/(w(N-i,T-1,L-1)-w(i,T-1,L- 
1) + 1)) the maximum expected number of mistakes made by 
PS during the game is equal to fi (N, T, L) where 

h(N, T, L) = m=4 

pMps(N - i,T - 1,L - 1) 

+(I- P)MPs(N>T - 1, L), 

pMps(i,T - 1, L - 1) 

+(I - P)[MPs(N,T - 1, L) + 11). 

Since we have Mps(N - i, T - 1, L - 1) = v(N - i, T - 
1, L - l), Mps(i,T - 1, L - 1) = v(i,T - 1, L - l), and 
Mps(N, T - 1, L) = v(N, T - 1, L) by the inductive hy- 
pothesis, we can substitute in the value used for p by PS and 

rewrite fi (N, T, L) as 

(v(N - i, T - 1, L - 1) - w(i, T - 1, L - l))v(N, T - 1, L) 

v(N-i,T-l,L- l)-v(i,T-l,L-l)+l 

v(N-i,T-l,L-1) 

+v(N-i,T-l,L-l)-o(i,T-l,L-l)+l’ 

The same techniques used to prove Theorem 8 (see Ap- 
pendix) can be used to show that the maximum over i 5 
[N/2] of the above expression is equal to (T - L)v(N, L + 
1, L). Thus, 

MPS(N, T, L) = ,i<~~2,piwJH 

= (F- L)V(N, L + 1, L) 

= 4N, T, L), 



concluding the proof of the Theorem. 0 

Note that an improved prediction strategy can be obtained if 
the strategy PS asks for the label with a probability p = 1 

when 1 is the minimizing p of ~i(n, t, P) and its usual p other- 
wise. Although this does not change the worst case expected 

mistake bound, it will slightly improve PS’s performance 
against weak adversaries. 

Theorem 12 shows that PS is an optimal strategy for 
the G( N. T. L) game. However, we have not yet shown that 
PS can be implemented efficiently. A straightforward im- 
plementation takes O(TLN”) time per prediction to com- 
pute the required ~(71, t, I) values (say, using dynamic pro- 
gramming to build a table of all v(n, t, I) with n < N, 

t 5 T. and f < L). Although we can assume L < N 

(else v(N, T, L) = 0, and the PS strategy will always ask 
for the label when the version space disagrees), the value of 
T need not be polynomial in N. Fortunately, Theorem 8 
of section 4.2 shows that ~(71, t, !) = (t - f)v(n, !! + 1, e). 
Therefore the algorithm need only compute a size N2 table 
of ~(11, J! + 1,8) values using dynamic programming. Since 
we know the best value of p, each entry can be computed in 

O(N) time by maximizing over the split. and the entire ta- 
hle can be built in 0()X’“) time. Note that this table need be 

computed only once, and using the table the algorithm can 
compute its probability of asking for the label in constant 
time. 

4.5 RANDOMIZED PREDICTION IN THE 
C(iV. T. L) GAME 

Up until now we have considered sensible learners that pre- 
dict in the same way as the majority of the experts in the cur- 

rent version space unless either the version space is evenly 
split or no more labels can be asked by the algorithm. In this 
section WC show that learners which randomize their predic- 
tions are no better than the sensible PS learner of the previ- 
ous section. 

In the standard expert setting, it is well known that the 
expected number of mistakes when the learning algorithm is 
allowed to make randomized predictions is exactly half of 

the mistake bound when the learner is forced to make deter- 
ministic predictions. Thus, it is natural to ask whether ran- 

domized predictions also lead to improved prediction strate- 
gies in our more general label efficient model. Surprisingly, 
it turns out that randomization is not beneticial in our set- 
ting and that algorithms which predict randomly only when 
the version space is evenly split (or the algorithm is out of 
labels) have the optimal expected mistake bound. 

We introduce some definitions before presenting this sec- 
tion’s main result. We define G~(rr, t, a) to be the game de- 
scribed in section 4 when the prediction strategy is allowed to 

make randomized predictions during the game. This means 
that in the protocol of section 2, the learner may flip a biased 
coin to determine its prediction 9. We use the subscript R in 
the notation of the game to emphasize the use of randomized 
predictions. As with the G(n. t, J!) game, the value ~~(72, t, P) 

of the GR(~z, t, P) game is defined inductively as in figure 1 
except that now the value IJH, (n., t, e) of the SR(?L, t, e) game 
when an (i, R. - i) split is used by the adversary on the first 
trial must also account for the randomized prediction. In par- 

ticular, for any i 5 In/a], 

WR; (n, t, a) = ‘b”,‘ma{ 

p2r47L-ii,t-l,P-l) 

+(I - P)[(l - ‘1) + uR(n, t - 1. e)], 

pVR(i,t - 1,t - 1) 

+(I - p)[q + 7IR(? t - l,!)]}. (19) 

Here q represents the probability that the algorithm predicts 

in the same way as the majority of the current version space. 
Since in our model the algorithm is not charged a mistake 
when the label is requested, randomized predictions only 
matter when the algorithm doesn’t ask for the label. In this 
case, equation (19) can be easily justified by noting that the 
algorithm incurs a mistake either when the majority is cor- 
rect and the algorithm, with probability 1 - q, predicts with 
the minority, or when the majority is wrong and with prob- 

ability q the algorithm predicts with the majority. We now 

present the main result of this section. 

Theorem 13 For any n > 1, t > 0. and t! > 0, we have 

?1(72, t, f) = WR(R, t, C) Gw 

where v(n, t,e) und uR(n, t, P) are the values of the 

G(n, t, e) and the GR(ri, t, e) games respectively. 

As a simple first Corollary, we see that the prediction 

strategy PS presented in section 4.4 has the optimal (ex- 
pected) mistake bound in the label efficient randomized pre- 
diction model considered in this section. 

Corollary 14 For uny N 2 1, for any T 2 0 und.for an} 
L 2 0, for the PS strutegy of section 4.4 we hove 

Mps(N, T, L) = u(N, T, L) = VR(N, T, L) 

where u(N, T, L) and VR(N, T, L) are the v&es of the 

G( N, T, L) and GR (N, T, L) gumes respectively. 

To prove Theorem 13 we need the following technical 
Lemma. 

Lemma 15 For uny 71 > 2, I 2 1, f 2 P + 1, und for uny 

integer i 5 171/21, the minimizing (p,q) of ?!R,(n, t,@) is 

q = landeitherp= lorp= ~/(IIR(~ - i.t - l,f- 1) - 

VR(i,t--l,f-l)+l). 

Proof. It is not difficult to see that the minimizing p of the 

max in the right hand side of (19) is either p = 1 or p = 
p(q) = (2q - 1)/(uR(7% - i, t - 1, f - 1) - w~(i, t - 1, f - 
1) + 2q - 1). Since the algorithm is not charged a mistake 
when the label is requested, it follows that when 11 = 1 is 

the minimizing p of the right hand side of (19) then any q, 
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in particular q = 1, can be used. Now we consider the case 

P = p(q). 
For ease of notation, we let a = v~(n - i, t - l,! - l), 

b = YR(~, t - l,e - 1) and c = v~(n,t - 1,C). When 
p = p(q) is substituted in the right hand side of (19) we 
obtain the function f(a, b, c, q) where 

f(a, b, c, 4) = 
aq + ac - bc - b + bq 

a-1+29-b 

Now finding the q minimizing YRi (n, t, c) (and thus min- 
imizing the expected number of mistakes) is equivalent to 
minimizing the function f(a, b, c, q). Computing the deriva- 
tive of f(a, b, c, q) with respect to q we obtain 

af(a,b,c,q) = a2 - a + b - b2 - 2ac + 2bc 

89 (a-l+2q-b)2 ’ (21) 

Since the sign of the derivative is independent of q, the min- 

imizing q of f(a, b, c, q) is at the boundary, either q = 0 or 

cl= 1 depending on whether the derivative is positive or neg- 
ative. Now we show that af(a, b, c, q)/(aq) 5 0 which in 
turn implies that q = 1 is the desired solution. 

Since the denominator in the right hand side of (21) is 
always positive, it follows that af(u, b, c, q)/(aq) 5 0 iff 
g(a, b, c) 2 0 where 

g(a, b, c) = a2 - a + b - b2 - 2ac + 2bc. 

Note that a, 6, and c are all non-negative, and that a 2 b. If 
we set a = b + d, we can rewrite g(a, b, c) conveniently as 
g(a, b, c) = d(2b + d - 1 - 2~). It is now sufficient to show 
that 2b + d - 1 - 2c <_ 0, or equivalently, that 

2?,R(n,t-I,[)+1 > vR(n-i,t-l,C-l)+wR(i,t--l,e--1). 

(22) 
To show that (22) holds we argue as follows. Since Lemma 4 
of section 4.2 holds also for 2)R(n, t, e), we obtain 2 VR(n, t- 
1, e) + 1 1 2 ~n(n,t,e). Furthermore, since for any i 5 

b/2] 9 uR(% 6 e) 1 wRi (n, t, e) it fdhvs that 2 vR(n, t - 
1, e) + 1 >_ 2 vni (n, t, e). Now to simplify the proof, we 
define 

TMc(P,q) = pvR(n--i,t-he--1) 

+(l-P)[(l-q)+21R(n,t-l,C)]; 

TMw(Prq) = Pvz(irt - I,!- 1) 

+(I - P)[q + vR(%t - l,e)]. 

Using the fact that inf,,,r max{A(p, q), B(p,q)} 2 
inf,,,[(A(p, q) + B(p, q))/2] the following chain of inequal- 
ities can be derived. 

2 vR(?Z, t - 1, t) + 1 2 247%, t, e) 2 22)& (n, t, e) 

= 2 kgf m=@h4,@, 91, Ti5h b, q)) 

2 Z$af{(ThfC(PA + TA4W(P>9))/2) 

(23) 
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Since the right hand side of (23) is a linear function in p and 
q, the integers (p, q) minimizing (23) are in the set p, q E 
(0, 1). Noting that the right hand side of (23) is minimized 
when p = 1 and q = 0 or q = 1, which in both cases yields 
2~~(n,t-1,!)+1 1 v~(n-i,t-l,e-l)+~~(i,t-l,b- 
l), showing (22). This concludes the proof of the Lemma. 0 

Proof of Theorem 13. 
To simplify the proof we define 

f(p,q,i) = max{pwR(n-i,t-l,e-1)+(1-p) 

[(I - 9) + vRi(%t - 1, e)], 

pVR(i,t - l,e - 1) + (1 -p) 

[q + vR(% t - 1, [)I) 

The Theorem is proved by induction on t. The thesis trivially 
holds for t = 0. Now assume that the assertion holds for 

some t - 1 2 0, i.e. for any n 2 1 and e >_ 0 we have ‘u(n, t - 

14 = VR(n,t - l,!!). We need to show that w(n, t,e) = 
‘uR(n, t, .!) is also true. Using Lemma 15 we have that 

= m,v{vi(n, t, e)} = ~(72, t, !) 

where the third equality follows by the inductive hypothesis. 

This conclude the proof of the Theorem. 0 

5 CONCLUSIONS 

In this paper we have presented a new on-line prediction 
model that explicitly represents labels as an important re- 
source. Our results are phrased in the expert model, and we 
make the assumption that one of the experts makes perfect 
predictions. Since there are many settings in which the cost 

of labels is higher than that of (unlabeled) instances, it is im- 
portant to understand how to do label-efficient learning. 

Our first results show that if the sequence of trials is un- 

bounded then an adversary can force any algorithm to either 
make an expected number of mistakes that is unbounded, or 
request a number of labels equal to the number of experts 
minus one. Despite this rather negative result, one can prove 
interesting bounds on the expected number of mistakes and 
expected label requests when there is a known bound T on 
the number of trials. We present a simple adversary showing 
that if L is the expected number of labels requested by the 
algorithm and L is at most one-third the number of experts, 
then the expected number of mistakes grows at least as fast 
as T/L. In a complementary result we give an algorithm 
showing that this lower bound is tight to within a log factor 
in general, and tight to within a constant in many cases. 

Our main result is the analysis of the game that results 
when there is a fixed bound on the number of labels that the 
learner requests. The value of this game has an extremely 
complicated behavior. Although we currently have a lower 



bound, we have been unable to prove a suitable upper bound 
on it. However the game does have structure that allows its 
value to be efficiently computed. This structure is exploited 
hy our PS algorithm. The PS algorithm usually predicts 

deterministically, but does make random predictions when 
the version space is evenly split or it has run out of labels. 

Interestingly, this basically deterministic predictor is optimal 

even when randomized predictions are allowed in general. 

One of the strengths of this model is that it separates the 
prediction from the label requests. In other on-line models 
the predictions of optimal algorithms must be randomized 
as a “hedge” against the adversary. In the label efficient 
model, the algorithm uses the probability of requesting the 
label as the hedge against the minority being correct. This 

allows an optimal algorithm to make (essentially) determin- 
istic predictions, and seems a more appropriate way of ran- 

domizing against the adversary. It would be interesting to 
see if divorcing the label requests from the predictions has 
a similar effect in different settings. Examination of these 
problems could generate additional insight into crucial ex- 
ploration/exploitation tradeoff issues. 

Several interesting issues remain unresolved. Although a 
simple closed form for the value of the fixed-label game may 

not exist, it would be interesting to get an upper bound that 
approximately matches our (or an improved) lower bound. 

Would variations of the game (such as charging mistakes 
when a label is requested) be easier to evaluate? 

Although worst-case bounds can be very illuminating, 
they are often overly pessimistic and the random generation 
of instances can give more realistic learning bounds. One 
important open problem is to define and analyzing a simi- 
lar label efficient model when the instances are generated at 

random instead of adversarially. 

On the other hand, we make the strong assumption that 

some expert always predicts the correct outcome. Another 
important way to generalize the model is to deal explicitly 
with inaccurate experts. The generalization to experts mak- 
ing real-valued predictions is a natural second step in that 
direction, as it gives the experts a way to express their con- 
fidence in their predictions. Work in this direction is under- 
way. 
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APPENDICES 

A Proof of Lemma 6 

The Lemma is proved by induction on d. We first show that 
the statement is true for d = 1. In this case, upon expanding 
the value 21,(2n, C + 1, e) for the G(2n, P + 1, e) game (see 
figure 1), we find 

v,(2n,e + i,e) = 

i;f{pv(n,e,e- 1) + (1 -p)(i +~(2n,U))} 

= i;f{1/2 + p(rr(n, e, P - 1) - l/2)}, (24) 
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where (24) follows by noting that v(2n, C, a) = 0. The thesis 

then follows from the fact that, by Lemma 4, ~(71, !, ! - 1) - 
f 5 0 and thus that p = 1 minimizes (24). 

Now, let d - 1 > 0 and assume that the thesis holds for 
the G(2n, &! + d - 1, 1) game, i.e. for any n 1 1 and for any 
t> l,v,(2n,e+d-l,e) =v(n,C+d-2,C-1). Weneed 

to show that the assertion is also true for the G(2n, f? + d, l) 
game. As with the case d = 1, upon expanding the value 

21,(2n, C + d, i?) we find 

v,(2n, .! + d, l) = inpf{l/2 + v(Sn,C + d - 1, e) + 

p[u(n,!+d-1,&-1)-l/2 

-v(2n, .! + d - 1, a)]}. (25) 

If we can show that the term multiplying p is non-positive 
then (25) is minimized when p = 1. To show that this term 
is non-positive we use the following: 

1/2+v(2n,C+d-1,I) 2 1/2+~~,(2n,e+d-1,C) 

= 1/2+v(n,C+d-2,t- 1) 

2 v(n,e+d- l,C- l), 

concluding the proof. [I 

B Proof of Theorem 8 

Throughout the proof we use the recursion presented in 
Corollary 7 for computing the value of the game. The Theo- 
rem is proved by using a double induction on d and e. Since 

when only a single expert is left in the version space the value 
of the game is zero, throughout the proof we will assume 
71 _> 2. We first show that the statement is true when either 
d = 1 or e = 0 (base of the induction). The case d = 1 is 
trivial. When t = 0, i.e. the algorithm is left with 0 labels, 
the best strategy for the algorithm is to predict randomly thus 
v(~z, d, 0) = $ and u(n, 1,0) = f and the claim holds. 

Now, let d - 1 and C - 1 be two arbitrary non negative 
integers and assume that for all rz > 2, 

1. Vt>O,v(n,e+d-l,C)=(d-l)v(n,e+l,C), 

2. Vd>l,v(n,e-l+d,e-l)=dv(n,&C-1). 

We need to show that w(n, f! + d, e) = d v(n, e + 1, e) is also 
true. We first prove that v(n,e + d,e) 5 dv(n,e + 1,e). 
Using the Remark of section 4.2 we can upper bound the 
value u(n, e + d, e) of the G(n, e + d, e) game by 

max { 
lJ(n-i,t-1,t-1) 

{i<lFJ} W(?I-i,t-l,fZ-l)-V(i,t-l,!?-l)+l+ 

+ (v(n - i, t - 1, e - 1) - V(i, t - 1, e - l))v(n, t - 1, e) ) 

v(n-i,t-l,I-l)-zJ(i,t-&C-1)+1 
(26) 

where in the above t = C + d. Noting that by the inductive 

hypothesis v(n - i, .!! - 1 + d, e - 1) = dv(n - i, e, e - l), 
v(i,e-l+d,e-1) =dv(i,e,e-l)andv(n,e+d-i,e) = 
(d - i)t+,e+ i,e), we can write equation (26) simply as 

v(n,e+d,e) 5 max {- 
d(d - 1) v(i) v(n, e + 1, e) 

tillSJ1 d(v(n - i) - v(i)) + 1 

+dv(n - i)(l + (d - l)~(n, L + 1, a)) 

d(v(n - i) - v(i)) + 1 ’ 

(27) 

where, for ease of notation, we have denoted v(x,P - 

L4 by 4~). Substituting the expansion v(n,e + 
1,t) = v(n - i*)/(v(n - i*) - v(P) + 1) where i* = 
argma{ieN: i<LT)){V:(n,l + l,e)} (see the Remark of 
section 4.2), into (27) we obtain 

v(n,e+ d,e) 5 
dv(n - j) 

d(v(n - j) - v(j)) + 1+ 

d(d - 1) v(n - i*)(v(n - j) - u(j)) 

+ (d(v(n - j) - v(j)) + l)(v(n - i*) - v(i*) + 1) ’ (28) 

where j < [?J maximizes the right hand side of (27). It 
is now sufficient to show that the right hand side of (28) is 
upper bounded by d ~(n, e + 1, e). This is equivalent to prove 
that f(i*,j) > 0 where 

d(v(n - i*)(l - v(j)) - w(n - j)(l - I)) 

f(i*7j) = (d(v(n - j) - v(j)) + l)(v(n - i*) - w(i’)~;9:)’ 

Since the denominator in (29) is always positive, it follows 
thatf(i*,j) 1 Oifandonlyifg(i*,j) >Owhere 

g(i*,j) = v(n - i’)(?J(n - j) - v(j) + 1) 

-?J(n - j)(w(n -i’) - v(i”) + 1). (30) 

Now, by definition of i’ , we have for any j 5 15 ] 

v(n - i*) f~(n -A 
v(n - i*) - u(i*) + 1 > 7J(n - j) - V(j) + 1 

which implies g(i*, j) 2 0 and thus ~(rz, e + d, 1) 5 
dv(n,e + l,f!). Finally, we prove that v(n,e + d,e) > 
dv(n,l + l,e) also holds by applying the following chain 
of inequalities 

+e+d,e) = ~,~13g+,e+d,e)} 2 qn,e+d,e) 
t- 2 

v(n- j,!+d- i,e- i)+,e+d- i,e) 
=v(n-j,e+d-i,e-i)-~~(j,e+d--l,e-i)+l 

v(j,e+d-i,e-i)tf(n,e+d-l,e) 
-+--j,e+d-i,e-i)-v(j,e+d-i,e-I)+1 

+-j,e+d-i,e-1) 
+v(n-j,e+d-l,e--l)-u(j,e+d-l,e-l)+l 

= d+,e+i,e), 

wherej = argm={iEN: ills)~{u:(rz,e+l,e)}. Thiscon- 
&de the proof. 0 
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