
Some Label Efficient Learning Results

David Helmbold
Computer Science Department

UC Santa Cruz
Santa Cruz, CA 95064

dph@cse.ucsc.edu

Abstract

We investigate the value of labels in a simple ver-
sion of the standard on-line prediction model (the
“experts” setting). We present algorithms and ad-

versary arguments defining tradeoffs between the

number of mistakes made and the number of labels
that the learner requests. One version of this ques-
tion can be viewed as a family of games whose
value is given by a complicated recurrence. Al-
though our attempts to tind a closed form for this
recurrence have been unsuccessful, we show how
an algorithm can efficiently compute its value, en-
abling it to perform optimally.

1 INTRODUCTION

Everyone knows that a picture is worth a thousand words, but
how much is a label worth to a learning algorithm? We inves-
tigate this question in a simple version of the standard on-line
prediction model (the “experts” setting). We present algo-
rithms and adversary arguments that define interesting trade-
offs between the number of mistakes made and the number

of labels that the learner requests. One version of this ques-
tion turns into a family of games whose value is given by
a complicated recurrence. Although our attempts to find a
closed form for this recurrence have been unsuccessful, we
show how an algorithm can efficiently compute its value, en-
abling it to perform optimally.

In the on-line prediction model the learner (or pre-
dictor) must predict, one by one, the labels yi, . . . , yT

of an unknown sequence of instance/label pairs s =

h,Yl),... , (ZT, yT). Each instance zt of the sequence s
can be interpreted as a set of features to which the label yt is

*Supported by a foreign study fellowship from the University of
Milan.

Permission to make digital/hard copies of all or pnfl of this material for
personal or classroom U.W is gmnted without fee provided that the copies
are no1 made or distributed for profit or commercial advantage. the copy

right notice, the title of the publication and it% date appear. and notice is

given that copyright is hy permission of the AChf. Inc. 7’0 copy otherwise.
IO republish, to posq on servers or to redistrihutc IO lists. requires specitic
pennisGon nndlor fee

COLT 97 Nashville. Tennesee. USA
CopyrigJlt 1997 ACM O-R979 I-89 I -6i97/7..$3 30

Sandra Panizza*
Computer Science Department

UC Santa Cruz

Santa Cruz, CA 95064

panizza@cse.ucsc.edu

associated. For example, in a text classification problem zt
might indicate those key phrases occuring in a particular doc-
ument the learner is asked to classify and yt E (0, 1) is “1” if
the document belongs to the class of relevant documents and
“0” otherwise. Formally, the learning process consists of a

series of trials numbered from 1 to T. At the beginning of

each trial t the learner receives the instance xt and, based on
xt and on the past instanceilabel pairs, produces a prediction
& E (0, 1) for yt. In the standard on-line model the label yt
is received at the end of the trial and is used by the learner
to update its internal state, and (hopefully) improve its future
predictions.

The learner’s goal is usually to minimize the number of

prediction mistakes made over all T trials on an adversar-
ially generated sequence of instance/label pairs. Although
this problem is difficult in general, if the learner is given a

(finite) set of models and the sequence is close to that gener-
ated by one of the models, then certain performance bounds
can be achieved [Vov90, LW94, CBFH+94]. This is some-
times referred to as the “experts” setting, since the models
can be viewed as “experts” providing “advice” to the algo-
rithm.

In this setting, the learner (or “master algorithm”) gives
the current instance xi to all of the experts. Each expert J!$
(i = 1,. . . N) informs the master algorithm of its prediction
on the current instance. The algorithm then combines the ex-
perts’ advice to produce its own prediction &t. At the end of
the trial, the label yt is shared with all the experts and both
the experts and the master algorithm are scored based on the
accuracy of their predictions. The master’s goal is to perform
nearly as well as the best expert on the particular sequence

that was actually observed. For example, one simple case
occurs when one of the experts perfectly predicts all of the
labels in the sequence s, and the learner must quickly learn
to follow the predictions of the good expert in order to min-
imize the number of prediction mistakes. One solution for
this simple case is the well-known Halving algorithm that,
on each trial, simply predicts the same way as the majority
of those experts that have never made a mistake.

In the standard on-line prediction model, the complexity
of a learning problem is measured in terms of the number
of prediction mistakes made by the best (not necessarily effi-

218

cient) on-line prediction algorithm, and the goal is to develop
efficient master algorithms whose complexity is “close” to
that of the optimal algorithm. However the successful de-
sign of practical algorithms often requires the conservation

of critical resources in addition to minimizing the number

of prediction mistakes made. In many applications, such as

speech recognition or text categorization, the labels used by
the master algorithm can be a scarce resource. Although
many instances may be available (such as documents from
the web or speech samples from broadcast radio or TV), ob-
taining the correct classification can be difficult and/or ex-
pensive. It is often the case that collecting unlabeled in-
stances can be easily automated, while determining the cor-
rect labeling of the instances requires expensive human ex-

pertise.

Thus it is desirable to study on-line prediction algorithms
that make few mistakes while asking for few labels during
the learning process. In this framework, learning becomes an
interactive process in which the algorithm chooses on each
trial whether or not to request the label, instead of automati-
cally receiving every label.

Note that if the learner does not request a label then it
is receiving less information than it would in the standard

on-line model, and thus can be expected to make poorer pre-
dictions in the future. This leads to an explicit trade-off be-
tween the number of mistakes made and the number of labels
requested. Furthermore, if an algorithm hopes to optimize
this tradeoff, then its strategy for requesting labels must be
chosen carefully.

The purpose of this work is to explore the trade-offs be-
tween the numbers of labels requested and mistakes made,

and to tind appropriate strategies for requesting labels within

the worst case framework adopted by the standard on-line

prediction model. In doing so, we present a natural vari-
ant of the on-line prediction model, which we call the label-

efficient prediction model. In this model the learner, at the
end of each trial, chooses whether or not to receive the cor-
rect classification of the instance. The performance of a
learning algorithm now includes both the number of labels
requested by the algorithm as well as the number of predic-
tion mistakes made. Since the trade-off between the number
of labels asked and the number of mistakes made is explicit

in the label-efficient model, different prediction problems
can be defined depending on how the trade-off is weighted.
For some of these problems we present, through a game the-
oretic analysis, an optimal yet efficient prediction strategy.

We concentrate on the simple setting where the predic-
tions and outcomes are boolean and the master algorithm
knows in advance that one of the experts predicts perfectly
on the sequence s. The binomial weighting technique de-
scribed by Cesa-Bianchi et al. [CBFHW96] is an efficient
way to build a perfect expert whenever some expert makes
a small number of mistakes. Even in this simple setting the
tradeoff between mistakes made and labels requested is quite
subtle. Furthermore, a thorough understanding of this simple

setting is required before one can hope to prove interesting
results in more complex or realistic settings, such as when
the predictions or outcomes are continuous and/or the target
is a convex combination of the experts.

Although much work has been done in the on-line learn-
ing model, the most closely related work to that presented

here is the Apple Tasting model presented by Helmbold, Lit-
tlestone, and Long [HLL92]. In this Apple Tasting model
the learner receives the correct label for the current instance
if and only if it makes the prediction it = 1. Intuitively, the
model represents the situation where the learner is attempt-
ing to identify (and eat) good apples, while avoiding the bad
ones. A prediction & = 1 is associated with eating the ap-

ple (and thus obtaining confirmation of its goodness or bad-

ness), and a prediction & = 0 represents avoiding the cur-
rent apple (whose goodness or badness remains unknown).
The measure of performance is simply the number of pre-
diction mistakes made, or the number of tasty apples passed
up plus bad apples eaten. Depending on the concept class
involved, the number of mistakes made by an optimal ap-
ple tasting algorithm typically grows as fi, where T is the
number of predictions made. This model involves an implicit
exploration/exploitation tradeoff - good learners must occa-
sionally predict “I” to gain information even when the label

is likely to be “0”. In contrast to the apple tasting model,
the label-efficient prediction model studied here makes the
exploration/exploitation tradeoff explicit by counting the la-
bels requested separately from the number of mistakes made
by the algorithm.

Atlas et al. [ACL+90] consider selective sampling, a
closely related model to ours where the learner (in their case

a neural network) requests the labels only of those points

in its region of uncertainty. They present a method for de-

tecting this region of uncertainty as well as experimental
results. One very interesting selective sampling algorithm
is the “query by committee” algorithm (SOS92, FSST93],
which ensures that the average information provided by each
requested label is bounded from below by a constant. This
allows the generalization error to decrease exponentially in
the number of labels, as opposed to the slower inverse-power
law that applies when the labeled examples are selected at

random. The query by committee algorithm works by filter-
ing randomly drawn examples using a committee of Gibbs

algorithms, and only those examples on which the commit-
tee has maximum disagreement are passed through the filter.

There are two main differences between the selective
sampling model and the label efficient prediction model
presented here. First, in the selective sampling model the
instances are drawn randomly from a fixed distribution,

whereas the instances are generated adversarially in our la-
bel efficient model. Second, the label efficient model is an
on-line model where the algorithm must make predictions
(and run the risk of mistakes) on those instance where the
label is not requested. In contrast, the selective sampling
models are concerned with the generalization error rather

219

than the performance of the algorithm on the sequences of

instances. Although there are conversions between on-line
and batch algorithms [Lit89, CBFH+93, HW95], the selec-
tive sampling/query by committee algorithms can often wait
for a more “perfectly informative” example than algorithms
in the label efficient prediction model.

Since the label efficient prediction model requests the la-
bels of instances, it (and the selective sampling model) may
appear similar to learning models with membership queries

(such as [Va184, Ang881). There is, however, a very impor-

tant difference - the membership query models usually al-
low the algorithm to construct the instances for their queries,
whereas the label efficient prediction model (as well as se-
lective sampling) are allowed to request the labels only of
those instances appearing in their input.

In the next section we describe the label-efficient predic-
tion model in more detail and Section 3 describes and ana-

lyzes some simple adversaries and algorithms. In Section 4
we give a game theoretic interpretation of the label efficient

prediction model and describe how analyzing the game leads
to an efficient optimal algorithm.

2 NOTATION AND MODEL

As stated above, learning in the label-efficient prediction
model proceeds in a series of trials numbered from 1 to T.

In a

1.

2.

little more detail, on each trial t:

the adversary chooses the pair (xt , yt)

the learner obtains the predictions or advice of the N
experts on xt

3.

4.

the learner formulates its own prediction $1

the learner then decides whether or not to ask for the
label, and the value yt is given to the learner only when
it is asked for.

The idea1 behavior of the algorithm is to always form
correct predictions & = yt while not asking for any la-

bels. However, this ideal behavior is rarely achievable. In
the standard on-line setting it is natural to charge the algo-
rithm one mistake for each trial where fit # yt. However,
in the label-efficient prediction mode1 it may be reasonable
for the algorithm to delay acting until the requested label is
available (and the appropriate action is known). In this case,
one should only charge the algorithm a mistake when it both
predicts incorrectly and fails to ask for the label.

In this paper we define the total error as the number of

trials on which yt # &, and the number of mistakes as the
number of trials on which both yt # & and the learner fails
to ask for the label. Thus the mistakes made by the algorithm
will not include the “bad guesses” when the algorithm also
requests the label, but the total error does include these bad
guesses. These quantities are trivially related by the follow-
ing inequalities:

mistakes < total error < mistakes + labels requested.

Although our analysis emphasizes mistakes, our results can

be phrased in terms of total error using the above inequal-
ities. The important point is that the number of labels re-
quested and number of mistakes (or total error) charged to
the algorithm form a two-dimensional loss. The goal of the
algorithm is to minimize this two-dimensional loss and a dif-
ferent version of the label-efficient prediction problem re-
sults when a different emphasis is placed on the numbers of
labels requested and mistakes made.

We will consider only adversaries that produce se-

quences of pairs ((zt , yt)) 1 ct<T where at least one of the --
N experts predicts correctly on every trial. We call these
perfectly predicting experts consistent. As mentioned in the
introduction, standard techniques can be used to create a con-
sistent expert whenever at least one of the experts makes only
a small number of mistakes. At each trial, the current version
space is the set of experts that have predicted perfectly on the

previous trials where the algorithm has asked for the label. If

every expert in the version space makes the same prediction,
then the outcome is known to be that value. Thus if only a
single expert remains in the version space then the algorithm
has learned the rule labeling the instances and need not make
any further mistakes nor ask any further labels.

This basic setting is parameterized by the number of ex-
perts (N) and number of trials (7’). For each N, T pair, we
are interested in the pairs (L, M) such that there is an algo-
rithm which on every sequence of length T and any set of N
experts (where at least one of the experts is consistent) the

algorithm requests at most L labels and makes at most M
mistakes.

In general, the algorithm’s decision whether or not to ask
for the label and the choice of prediction can be randomized.
However, we will often find it convenient to restrict the al-
gorithm so that it predicts in the same way as the majority
of the experts in the current version space. We call such al-
gorithms sensible. Note that sensible algorithms produce the
same predictions as those generated by the well-known halv-
ing algorithm.

One intriguing property of our model is that sensible al-
gorithms are optimal. In most other on-line settings, it is
beneficial to predict with a little randomness unless the vast
majority of the version space gives the same advice. How-
ever, we show in Section 4.5 that an algorithm that predicts
randomly only when the version space is evenly split (or it is

out of labels) has the optimal (expected) mistake bound.

3 PROPERTIES OF THE LABEL
EFFICIENT PREDICTION MODEL

There are several trivial performance bounds which one can
show for the label-efficient prediction model. The halving
algorithm in this setting works as follows: predict with ma-

jority of the version space and request the label unless the
entire version space gives the same advice. Although this
algorithm never makes a mistake (by our definition) since it
requests the label whenever the outcome is unknown, it can

220

have total error as large as log N. Furthermore, the halv-
ing algorithm requests as many as N - 1 labels. In fact, an
adversary can postpone the halving algorithm’s errors to the

end (when the version space is smaller) to create sequences
of trials where the halving algorithm both has total error m

and requests N + m - 2”’ labels.

This halving algorithm is essentially optimal in the fol-
lowing sense: any algorithm whose expected number of mis-
takes is bounded must request a number of labels approach-
ing N. This can be seen by considering an adversary which
on every trial has one expert from the version space predict
“I” and the rest predict “0”. The adversary will repeat this
set of expert predictions until the algorithm requests the la-

bel. If the algorithm eventually requests the label with prob-

ability one, then the adversary uses the outcome “0” so that

only one expert is eliminated from the version space. By
repeating this process on the reduced version space, the al-
gorithm eventually requests N - 1 labels. On the other hand,
if there is some positive probability that the algorithm never
requests the label then the adversary uses the label “1” and
the expected number of mistakes made by the algorithm be-
comes unbounded. Thus this adversary forces any sensible
algorithm to either make an expected number of mistakes

that is unbounded or to eventually request N - 1 labels.

This indicates that interesting bounds in the label-
efficient prediction model must depend on T, the length of
the sequence to be predicted. Note that a similar dependency
occurs in the apple tasting model, where the mistake bounds
typically grow as fi. The following theorem quantifies this
intuition.

Theorem 1 If the expected number of labels requested by a
sensible algorithm is bounded by L 5 N/3, then the algo-

rithm can be forced to make an expected number of mistakes
that is at least 2T/(9L).

Proof. We prove the Theorem by presenting an adversary
strategy forcing 2T/(9L) expected mistakes on any sensible
algorithm. To avoid floors and ceilings in notation, we will
assume that T is a multiple of 3L. The adversary strategy
focuses on the first 3L of the N experts which we call the
relevant experts. The adversary divides the T trials into 3L

groups of T/(3L) trials each. The predictions of the experts
depend only on which group the trial is in: in group i ex-
pert E, (i = 1, . ,3L) always predicts “1” while all other
experts predict “0”. Thus on the first T/(3L) trials, the first
expert, El, predicts “I” while all other experts predict “0”.
On the next T/(3L) trials, expert E2 predicts “I” while all
other experts predict “0”. and so on, with expert Est. pre-
dicting “1” on the last T/(3L) trials.

At the beginning of the learning process the adversary

chooses (uniformly at random) one of the relevant experts
to be the consistent expert. The labels for the sequence of
trials are then set to the same value as the predictions of the
chosen expert. Thus the chosen expert remains consistent
throughout the process.

Since the expected number of labels requested by the al-
gorithm is at most L, there is at most a l/3 chance that the
algorithm asks for a label on any of the 5”/(3L) trials where
the consistent expert predicts 1. Since the majority of cur-

rent version space predicts “0” on these trials, so will the
algorithm. Thus the expected number of mistakes made by
the sensible algorithm is at least $T/(3L) = 2T/(9L). 0

This lower bound gives us our first estimate on the value
of a label. As the number of labels used by the algorithm in-
creases, the lower bound goes down harmonically (as l/L).

The lower bound of Theorem I is tight to within a 1gN
factor. Consider the simple algorithm which requests a la-
bel with probability p = L/T whenever the predictions of

the version space are not unanimous. The following version

space argument shows that this algorithm expects to make

at most (T - L)(lg N)/L mistakes. The version space ini-
tially contains all N experts. The size of the version space is
reduced by at least a factor of two on each trial where the
algorithm both predicts incorrectly and requests the label.
Therefore, the version space will shrink by (at least) a fac-
tor of two after an expected l/p - 1 mistakes (recall that no
mistakes are charged on trials where the algorithm requests

the label). Since the version space can shrink at most lg N

times in this way before it is reduced to a single expert, the al-
gorithm makes an expected number of mistakes A4 bounded

by
M 5 (lg N)/p - lg N = (T - L)(lg N)/L (1)

mistakes. Observe that the expected number of labels re-
quested by this algorithm is trivially bounded by pT = L.

We can fix the number of mistakes rather then the number
of labels requested. When p = (lg N)/(M + lg N), the
expected number of mistakes made by the algorithm is at

most M while the expected number of labels requested is at

most T(lgiV)/(M + IgN).
The following theorem shows that one can do slightly

better by asking for the label with a probability that depends
on how evenly the predictions of the version space are split
between “0”and “1”. Intuitively, if most of the version space
predicts in the same way, then the algorithm should only
rarely ask for the label. On the other hand, if the experts
predicting “I” and the experts predicting “0” split the ver-

sion space evenly then the algorithm should ask for the label

more aggressively.

Theorem 2 For all M 2 0. there is an algorithm which

expects to make at most M mistakes and expects to ask for
at most L = M ,gCy/f.y+,R N labels, where T* is the solution

to N(l - r)T = r”.

Proof Sketch. The al
IgJ

orithm asks for the label with proba-

bility p(r) =
Ig N+M Ig(l/r)’

where 0 5 r 5 l/2 is the frac-

tion of the version space predicting in the minority. This is
the smallest p guaranteeing that, when the minority is always
correct, the version space shrinks rapidly enough so that the
expected number of mistakes is bounded by M. It turns out

221

that the best adversary strategy is to use the same split T on

every trial. Thus the expected number of labels requested is
bounded by both TV = a and the number

of labels required to exhaust the version space when the ma-
jority of the version space is always correct. This number of
labels re

19
uired to reduce the version space to a single expert

is &. These two bounds are equal (and thus their

minimum is maximized) when N(l - T)~ = r”. Calling
the solution of this equation T*, and substituting it into the

first bound completes the proof. 0

We can relate Theorem 2 to the previous bounds as fol-
lows. By solving the equation in Theorem 2 for M, we
see that when the expected number of labels is bounded by
L, the algorithm makes an expected number of mistakes M
bounded by

M i CT - LNgWI(Lk(ll~*)), (2)

and thus shaves a factor of lg(l/r*) off the earlier bound (1).

Furthermore, if r* M l/N, then mistake bound (2) grows as
T/L, just like the lower bound in Theorem 1. A little algebra
showsthatr’ = l/Nwhen(M+l)/T = (lg&)/lgN M
l/(NlnN), or T x (M + l)NlnN. Under these con-
ditions, the lower bound of Theorem 1 is within a constant
factor of the upper bound (2).

4 ON-LINE PREDICTION USING A
BOUNDED NUMBER OF LABELS

This section contains the main result of the paper, a game
theoretic analysis yielding an optimal learning algorithm
when the number of requests for labels is limited by a fixed
bound. As before, we restrict our analysis to the simple case
when all the predictions are Boolean and the learning algo-
rithm knows in advance that one of the experts will be con-
sistent with the sequence s (i.e. it predicts perfectly on the

sequence).

In this section we extend our definition of “sensible.”
Whereas before we insisted that sensible algorithms always
predict in the same way as the majority of the version space,
we now allow sensible algorithms to predict with unbiased
coin flips in two special situations. First, our earlier defini-
tion of sensible did not specify how the algorithm predicted
when the predictions of the current version space are evenly
split. We adopt the natural convention that the algorithm pre-
dicts with an unbiased coin flip in this case. Second, the re-
striction that the algorithm never request more than a fixed
number of labels leads to a degenerate situation where the
algorithm is at the mercy of the adversary. Consider what
happens when the algorithm is no longer able to ask for la-

bels and three (or more) experts remain in the version space.
Now the adversary can easily force a mistake on every trial

when the algorithm must blindly predict as the majority of
the version space. To counter this, we also allow sensible al-
gorithms to predict with an unbiased coin flip once the quota
of label requests has been exhausted.

Surprisingly, this very limited randomization of predic-

tions coupled with the randomized choice of when to ask
for a label is sufficient to construct an optimal algorithm (as
will be shown in Section 4.5). This is in marked contrast
to most other on-line settings where the best expected mis-
take bounds are achieved by algorithms that randomize their
predictions on most trials.

Throughout this section we view the label-efficient pre-

diction model as a game in which the learner plays against an

opponent or adversary who dynamically generates both the
(binary) experts’ advice and the (binary) outcomes to be pre-
dicted. The game is parameterized by the number N of ex-
perts, the number T of trials played, and the number L of la-
bels the algorithm is allowed to request during the game. We
use “G(N, T, L)” to denote the game with parameters N, T,
and L. Formally, given the triple (N, T, L), the G(N, T, L)
game consists of T time steps or trials. On each trial the
protocol of Section 2 is used, and the value of the game is

the (expected) number of mistakes made by the learner. The
goal of the learner in this game is to minimize the number
of mistakes charged to him/her over the T trials, while the
adversary’s goal is to maximize it. Recall that the learner is
not charged a mistake when the label is requested.

During any G(N, T, L) game, we say that the state of the
game at the beginning of a trial is the triple (n, t, e) where

n is the size of the current version space, t is the number of
remaining trials and I is the remaining number of labels that

the algorithm can request.

Since we are interested in a worst-case setting where the
experts’ advice and outcomes can be thought of as being
generated by an adversary, any deterministic strategy for re-
questing the labels would fail very badly against an adver-
sary who assigns the wrong classification to the majority of
the current experts when the label is not requested by the
algorithm and the correct classification otherwise. Thus, in
order to achieve good performances the learning algorithm

must use a randomized selection strategy. In particular we
consider the learning algorithm that uses a probability func-
tion p for deciding, on each trial, whether or not to ask for
the label. That is, we assume that on each trial the learner
Rips a coin with some bias p E [0, 11 and then requests the
label if and only if the outcome of the coin toss is “heads.”
Note that the algorithms in the previous section uses either a

fixed bias, or a bias that depended on the fraction of the ver-
sion space predicting “1.” In this section we will examine an
algorithm whose probability of requesting the label depends
not only on the current predictions of the version space, but
also on the state of the game.

4.1 VALUE OF THE G(N, T, L) GAME

Recall that for any N > 1, L 2 0 and T 2 0, the goal

of the adversary in the G(N, T, L) game is to maximize the
expected number of mistakes made by the prediction algo-
rithm. In this context, we will show that the minimax value
of the G(N, T, L) game is the function w(N, T, L) defined

222

Boundary Conditions

Bl : r,(l,t.P) = 0; B2 : 71(71, t,O) = % Vn 2 2;

B3 : u(n, t, 4) = 0 when t 5 1.

Recursive Formulation

For any 11 > 2, for any t 2 2, and for any B > 1

where if i < n/2,

Wi(n, t. P) = i;f max{

pw(n - i,t - 1,f - I) + (1 - p)w(n,fA - I,[),

pv(i,t - 1,4 - 1) + (1 -p)[l +v(n,t - l,e)]} (4)

and when i = n/2,

lJi(l2, t, f) = inf{
P

p7J+ - l,li- 1) + (1 -p)[i +w(n,t - l,!)]}(5)

Figure 1: Value of the G(n, t, P) Game.

recursively in Figure I. An efficient method for computing
v(N, T, L) is given in Section 4.2.

The parameters of the function 11 are interpreted as fol-
lows. The integer n denotes the size of the current version
space (i.e. the number of experts that have predicted perfectly

on those previous trials where the algorithm requested the la-

bel), the integer t is the number of remaining trials, and the
integer I; is the remaining number of labels that can be re-
quested by the algorithm. We now justify that the recurrence
for 71(n, t. E) given in Figure I correctly represents the value
of the G(n, t, P) game.

We start with the boundary conditions. For condition B 1,
it is easy to see that when only a single expert remains in the
version space, the algorithm has learned which expert is con-
sistent, and thus won’t make any further mistakes. Boundary

condition B2 follows immediately by observing that when
n 1 2 and the algorithm is left with 0 labels the best strategy
for the algorithm is to predict with an unbiased bit, and thus
it expects to make l/2 of a mistake on each of the t remain-
ing trials. Finally, B3 follows by noting that if t 5 ! then
the algorithm can request the label on all of the remaining
trials. Because mistakes are not charged when the algorithm
requests the label, the algorithm will make no mistakes and
the value of the game is 0.

We need some additional notation before justifying the
recursion. On each trial the experts’ advice partitions the cur-
rent version space v into r/;, and VI where V,, is the subset
of 1’ predicting y’ on the current trial. If the current version

space contains n > 2 experts then we say that the experts’
adviceproducean(i,n-i)spfitwherei = min{]l/b],]r/;]}.
Since the experts’ advice is selected by the adversary, the
choice of (i, n - i) split, for i E { 1,2, ,]sJ } is also con-
trolled by the adversary. In this respect, z)~(R, t, t) given in
figure 1 denotes the value of the G(n, t, P) game when the

adversary selects an (i, 71 - i) split on the first trial.
When n is odd the recursion in figure 1 simplifies to

w(n,t,e) = max inf max{
{tEN:i<$} P

prJ(n-i,t-l,P-l)+(l-p)ll(n,t-l.C).

pv(i,t-1,f.-1)+(1-p)[1+~(n,t-l,4)]}(6)

To explain equation (6), two cases must be considered: when
the majority of the experts in the current version space pre-

dict the correct value of the label, and when the majority of
the experts predict the wrong value. For the sake of expla-
nation, let us assume that an (i, 71 - i) split is selected by
the adversary for the first trial, where i E { 1,2, . ,]FJ }.
When the majority of the experts (and thus the algorithm)
predict correctly on the first trial, no mistake will be charged
to the algorithm. The state of the game after this trial be-
comes either (n - i, t - 1, e - 1) if the algorithm asks for
the label, or (n, t - 1, e) if the algorithm does not request the

label. Since the algorithm asks for the label with probability
p, the expected value is

pw(n - i, t - 1, e - 1) + (1 - p) ff(n, t - 1, e).

When the majority of the experts, and thus the algorithm,
predict incorrectly on the first trial, the algorithm will be
charged a mistake only when the label is not requested. In
this case the expected value of the game is

pw(i, t - I, e - I) + (I - p) [i + 11(7L, t - I, e)].

Now, (6) immediately follows by observing that the adver-
sary, in order to maximize the loss of the algorithm, has to
choose the value i E { 1,2, . , L:J } maximizing the right-
hand-side of (6).

The n even case differs only in that on an (:, z) split

the learning algorithm should always predict randomly, thus
incurring an expected number of mistakes of l/2 rather than

1 on each trial where the label is not requested. This is taken
into account by the expansion for u,i2 (n, t, P) in equation (5)
of figure 1.

4.2 SOME EXPLOITABLE STRUCTURE OF THE
GAME

Before presenting an optimal prediction strategy for the

G(N, T, L) game, some results about the value v(N, T, L)
of the game are needed, These results enables us to simplify

the recursion equation presented in figure 1. Furthermore,
they provide the theoretical justification for an efficient algo-
rithm solving this game.
We first give two simple technical Lemmas.

223

Lemma 3 For any number n > 1 of experts and for any
numbere 2 Ooflabels, rhevaluev(n,C+l,I)oftheG(n,!+
1, e) game is bounded by

w(n,e+ 1,C) 5 t. (7)

Proof. Consider the algorithm which requests the label on
the first e trials and predicts with a random bit on the last trial.
This algorithm makes an expected number of mistakes equal

to l/2 (since no mistakes are charged when the algorithm

requests the label), proving the lemma. i-J

Lemma 4 For any n 2 1, for any C > 0 andfor any t 2 0,
the following inequality holds,

v(n,t+l,e) 5 a+u(n,t,e).

Proof. The thesis follows by considering the algorithm that
plays the G(n, t, P) game for the first t trials, and then either

requests the label or predicts with a random bit on the last
trial. 0

Next we provide two Lemmas which compute the best
choice for the probability p used by the algorithm for re-
questing the label, as a function of the split used by the ad-
versary on the first trial.

Lemma 5 For any n 1 2, d 1 1, t 2 e + 1 and for any
integer i < $, the minimizing p of vi(n, t, e) is either p = 1
orp = l/(v(n - i, t - 1, e - 1) - v(i, t - 1, e - 1) f 1). In
other wards, for i < 5

vi(n, t, e) = min{ v(n - i, t - 1, e - l),

(~(n - i, t - 1, e - 1) - u(i, t - 1,e - l))v(n, t - l,e)
v(n-i,t-l,e-l)-v(i,t-l,e-1)+1 +

+
w(n-i,t- i,e- 1)

w(n - i, t - 1, e - 1) - ~(i, t - 1, e - 1) + 1 1.
(8)

Proof Sketch. By analyzing the derivatives with respect top
of the two terms in the max. 0

Note that Lemma 5 does not apply when the adversary
chooses a (n/2, n/2) split. However, for even splits the best
strategy for the algorithm is to request the label. This makes
intuitive sense since this is the only case where the requested
label is guaranteed to provide a full bit of information.

Lemma 6 For any n 2 1, for any number of labels t! > 1
andfor any d 2 1,

v,(2n,e+d,e) =v(n,e+d- l,!-1) (9)

Proof By induction on d. For completeness, the proof is
provided in the appendix. 0

An interesting Corollary of Lemma 6 which enables us to
simplify the recursion presented in figure 1, is the following.

Corollary 7 For any n > 2, for any t 2 2, and for any
e 1 1, we have

where

wi(n, t, e) = irjf max{

pv(n-i,t-l,e-l)+(l-p)v(n,t-l,e),

pu(i,t-I,e-l)+(i-p)[l+v(n,t-I,e)])

is the value of the G(n, t, .!) game when the adversary makes
an (i, n - i) split on theJirst trial.

Proof. The proof follows directly by noting that when n is
even and i = s is substituted in equation (4) of figure 1 we
obtainthetermpv(F,t-l,e--l)+(l-p)(l+v(n,t-1,6))
which is minimized for p = 1. Moreover, for i = n/2

the probability functions defined in Lemma 5 both reduce
to 1. By Lemma 6, this implies that for n even the value

IJ$ (n, t, !) (equation (5)) is equal to the value given by equa-
tion (4) after setting i = n/2. This concludes the proof. [1
Intuitively, Corollary 7 says that if there are labels remaining
and the adversary uses a (n/2,n/2) split, then an optimal
algorithm can predict either randomly or deterministically
on that trial. This is because the optimal algorithm will re-
quest the label, and in our model the learner is not charged

a mistake when the label is requested. Since the recursion
in figure 1 and in Corollary 7 are equivalent (i.e. they both

compute the same function), in the following we will use the
simpler definition given in Corollary 7.

Remark:
It is not difficult to see that when the value of the game
is computed as in Corollary 7, the probabilities given in
Lemma 5 are also the minimizing p for the value ~i(n, t, e)
of the game. An important special case is when t = e + 1.

In this case we have that for any integer i 5 [n/2J,

w:(n,t+ I,!) =
w(n - i,e,e - 1)

(w(n - i, e, e - 1) - ~(i, e, e - I) + 1).
(11)

Although, our attempts to find a closed form for the value
of the game have been unsuccessful, the next Theorem in-
dicates that the game has exploitable structure allowing the
z)(n, t, &?) values to be computed efficiently.

Theorem8 Foranyn 2 1,foranye 2 Oandd 2 1, we
have

v(n,e+d,e) =du(n,L+l,e). (12)

Proof. The theorem is proved by using a double induction
on d and C. The proof is provided in the appendix. 0
The important feature of Theorem 8 is that it removes the
time parameter t from the recurrence. By pre-computing the

values v(n, C + 1, .!), an algorithm can easily obtain the prob-
ability p from Lemma 5 that minimizes the expected number
of mistakes made. This is the basis for the algorithm pre-
sented in section 4.4

224

4.3 A LOWER BOUND ON THE VALUE OF THE
GAME

We next prove a lower bound on the value V(R, t, f?) of the

G(n, t,e) game in the label efficient prediction model we

have been considering. We begin with the following defi-
nition.

Definition 9 For any n 2 2 andfor any t _> 1, we define
f(n, t) to he the function

{

l/2 if n 2 2’

f(n,Q = l/3, if 2”-’ < n < 2t

so+3 if ?I _< 21-1

where s(n, t) is the smallest s satisfying 2’-‘-l - (t - s) <

n- t < 2t-S - (t - s).

We now present the main result of this section.

Theorem 10 For any n _> 1, for any t 2 0 andfor any C 2

0, the value v(n, t, f) of the G(n, t, f) game can be bounded

by

v(n, t, f) > Lcm(n, f, f)

where

{

0 if t 5 Corn = 1

Low(n, t, f) = w if P=Oandn> 1
(t - P)f(n, I + 1) otherwise

and f(n, f + 1) is the,function given in definition 9.

Note that, when t < 0 or 72 = 1 or (e = 0 and n > l),

the lower bound given in Theorem 10 trivially holds since in
these cases ~(n, t, e) = Low(n, t, E). Thus, the bound need
only be proved for n 2 2, t > P and P > 1. Lemma 11
below shows that for the special case t = I + 1 the function
f(n, I + 1) is a lower bound on the value v(n, I + 1, P) of the
G(n, d + I, c) game. The bound of Theorem IO then follows
immediately since by Theorem 8 of section 4.2, fort > P we
have ~(72, t, E) = (t - 8) V(TA, P + 1.8).

Lemma 11 For any n > 2 andfor any P > 1

v(n,f+ l,!!) >_ f(n,!!+ 1). (13)

Proof. By definition (see Corollary 7 of section 4.2) we have

u(n,!+ l:P) = max(i~N:*ll~J){1I:(n,e+l,~)}where

,((n, e + 1, I) (14)

= i;fmax{pv(7l - i,f.e - 1) + (1 -p) v(n,e,e),

pv(i, e, f - 1) + (1 - p)(l + v(n, I, t))}

= i;fmax{pl,(n - 1:,P,l- l),p(v(i,p,f - 1) - 1) + 1)

v(71- i,f,f - 1)

=v(n-i,&,e-l)-v(i,I,P-l)+l’
(15)

where the second equality follows from the fact that
u(n, f, 4) = c) and the last equality by noting that the best

choiceforpisp= l/(v(n-i,e,li-l)-v(i.P.P-l)+l).

Using the fact that for any j 5 [n/2]

v(n,f + l,e) > v(,(72,t+ l,e), (16)

different lower bounds on the value v(n, e + 1, a) of the game
can be derived by assuming different splits on the first trial.
NOW, to prove (13) three cases must be considered depending
on the relationship between n and P.

We start by analyzing the case n 1 2’+‘_ Since 71 2

2’+’ and only C labels can be asked during the whole game,

the best strategy for the algorithm is to always ask for the
label, hence incurring no mistakes during the first P trials.

On the last trial, where no further label can be asked, the
algorithm incurs no mistakes if the version space contains
only a single expert, and an expected number of mistakes
equal to l/2 if the version space contains at least two experts.
The best strategy for the adversary is to choose a sequence of
splits such that the version space on the last trial contains at
least two experts. It is easy to see that if the adversary uses

(roughly) even splits on all of the trials when n > 2’+’ then
v(n,C+ 1,P) = l/2 = f(n,P+ 1).

Next, we consider the case 2’ < n < 2’+‘. Using in-
equality (16) with j = n - 2’ we obtain

v(n,e+ 1,C) > v,-2c (?l> F + 1, P)

11(2C, e, e - 1)

= 21(2ye,e - 1) - v(n, - 29,~ - 1) + i

1

where the first equality follows from equation (l5), and the
last equality from the fact that ~(2’. P. I - 1) = l/2 (see the
analysis for n > 2[+‘). Then, the lower bound f(nl 8+ 1) =
l/3 immediately follows by noting that v(n - 2’. P. P - 1) >
0.

Finally, we consider n < 2’. Proceeding similarly to the
previous case but with j = 1, we obtain

v(n,f+ i,e) > vl(n,B+ 1,P)

?I{71 - 1, e, e - I)

= 7i(n-l,e.p-l)-v(l,P.P-l)+l

1
ZZ

1+ ’
(17)

7r(n-l,E.f-1)

where equality (17) follows by noting that v(1, t, P - 1) = 0.
Now, for any pair of integer (n? t) where n 5 2’- ’ con-

sider the succession rule whose ith term is (n - %: t - i) for

i =O,l,...,min{n-l,t-l}anddefinea(n,t) = i’where

i* = argmini,o,l$., ,rninl,~-l,t~l~{21-2-1 < 71-1 < 2L--1}.
By setting A = 72 - t the succession can be written con-
veniently as (A + i, i) for i. = t. t - 1,. ,O. where now
s(n,t) = t - i’ and i* = argmax,=t,t-1, ,r,{2i-’ - i <
A < 2’ - i}. It is not difficult to see that s(n. t) is the small-
est s satisfying 2t-S-’ - (t - s) < 71 - t < 2’~” - (f - s).

Since for the first s(n,P + 1) trials we have that n’ 5

2e’-1 where n’ denotes the size of the version space on the

225

trial been played and .f? the number of remaining trials, by re-
cursively applying the lower bound (17) to each of the values
occuring in the right hand side of (17) we obtain

w(n,C + l,!) 2
1

4% 1 + 1) + u(n”,J:+l,(“)

1
>
- s(n,C+ 1) +3

(18)

where (18) follows by observing that 2”’ < n” < 2”‘+l
and that, from the analysis of the previous case, ~(n”, !” +
1, P’) 2 l/3. This concludes the proof of the Lemma. 0

Although upper bounding ~(n, t, t?) has proven difficult,

we believe that the lower bound given in Theorem 10 is quite
tight, and conjecture that for n and t greater than I, the value

v(rz, t, a) is at most a factor of two greater than our lower

bound.

4.4 AN OPTIMAL PREDICTION STRATEGY

We now give the optimal prediction strategy for the
g(N, T, L) game described above, where N is the number
of experts in the pool, T is the number of trials, and L is a
bound on the number of labels that can be requested by the
learner during the game. Recall that the state of the game at
the beginning of a trial is the triple (n, t, e) where n is the

size of the current version space, t is the number of remain-
ing trials, and e is the remaining number of labels that the
algorithm can request.

Prediction Strategy PS.

- Upon receiving the advice of the N experts the PS strategy
predicts the same way as the experts if the version space is
unanimous. Otherwise, it predicts with an unbiased random

bit in the special cases when either C = 0 and n > 1 (no
further labels can be asked) or the experts’ advice splits the
version space into two sets of exactly equal size. Normally,
the PS strategy predicts in the same way as the majority of
the experts in the current version space.
- If either e = 0 or the version space is unanimous then the
PS strategy does not request the label, else it uses the values

~(n, t, e) of the G(n, t, e) to compute a probability of asking
for the label as described below.

l The algorithm asks for the label with probability p = 1
whenever t < e, n 2 2t, or when the predictions of
the experts in the current version space are evenly split,
otherwise

l the algorithm exploits Lemma 5 by computing the prob-
ability function

1

p=v(n-i,t-l,e-l)-v(i,t-l,e-l)+l’

and asks for the label with probability p.

226

We introduce some notation before analyzing the perfor-
mance of the prediction strategy PS. Given an adversary
A for the G’(n, t,e) game, we define Mps,~(n, t,e) to be
the expected number of mistakes made by PS when it plays
against adversary A in the G(n, t, e) game. We also define
M,yy(n,t,e) tob e th e supremum over all possible adversary

strategies A of the expected number of mistakes incurred by
the prediction strategy PS during the G(n, t, e) game, that is

&Sht,e) = ~UPwh,A(7#)).
A

The main Theorem concerning the prediction strategy
PS is the following.

Theorem 12 For any N 2 1, for any T 2 0 and for any
L 2 0, for the PS strategy we have

MP.s(N, T, L) = 0, T, L),

where v(N, T, L) is the function satisfying the recurrence
given in figure 1, or equivalently, in Corollary 7.

Proof. The Theorem is proved by induction on T. When
T = 0 both sides are zero and the thesis holds. Now assume
that the assertion is true for some T - 1 2 0, i.e. for any

N 1 1 and L 2 0 we have MPS(N,T - 1, L) = v(N,T -
1, L). We will now show that Mps (N, T, L) = V(N, T, L)
is also true. Assume that an (i, N - i) split is chosen by the
adversary on the first trial. Since PS asks for the label with
probabilityp= l/(w(N-i,T-1,L-1)-w(i,T-1,L-
1) + 1)) the maximum expected number of mistakes made by
PS during the game is equal to fi (N, T, L) where

h(N, T, L) = m=4

pMps(N - i,T - 1,L - 1)

+(I- P)MPs(N>T - 1, L),

pMps(i,T - 1, L - 1)

+(I - P)[MPs(N,T - 1, L) + 11).

Since we have Mps(N - i, T - 1, L - 1) = v(N - i, T -
1, L - l), Mps(i,T - 1, L - 1) = v(i,T - 1, L - l), and
Mps(N, T - 1, L) = v(N, T - 1, L) by the inductive hy-
pothesis, we can substitute in the value used for p by PS and

rewrite fi (N, T, L) as

(v(N - i, T - 1, L - 1) - w(i, T - 1, L - l))v(N, T - 1, L)

v(N-i,T-l,L- l)-v(i,T-l,L-l)+l

v(N-i,T-l,L-1)

+v(N-i,T-l,L-l)-o(i,T-l,L-l)+l’

The same techniques used to prove Theorem 8 (see Ap-
pendix) can be used to show that the maximum over i 5
[N/2] of the above expression is equal to (T - L)v(N, L +
1, L). Thus,

MPS(N, T, L) = ,i<~~2,piwJH

= (F- L)V(N, L + 1, L)

= 4N, T, L),

concluding the proof of the Theorem. 0

Note that an improved prediction strategy can be obtained if
the strategy PS asks for the label with a probability p = 1

when 1 is the minimizing p of ~i(n, t, P) and its usual p other-
wise. Although this does not change the worst case expected

mistake bound, it will slightly improve PS’s performance
against weak adversaries.

Theorem 12 shows that PS is an optimal strategy for
the G(N. T. L) game. However, we have not yet shown that
PS can be implemented efficiently. A straightforward im-
plementation takes O(TLN”) time per prediction to com-
pute the required ~(71, t, I) values (say, using dynamic pro-
gramming to build a table of all v(n, t, I) with n < N,

t 5 T. and f < L). Although we can assume L < N

(else v(N, T, L) = 0, and the PS strategy will always ask
for the label when the version space disagrees), the value of
T need not be polynomial in N. Fortunately, Theorem 8
of section 4.2 shows that ~(71, t, !) = (t - f)v(n, !! + 1, e).
Therefore the algorithm need only compute a size N2 table
of ~(11, J! + 1,8) values using dynamic programming. Since
we know the best value of p, each entry can be computed in

O(N) time by maximizing over the split. and the entire ta-
hle can be built in 0()X’“) time. Note that this table need be

computed only once, and using the table the algorithm can
compute its probability of asking for the label in constant
time.

4.5 RANDOMIZED PREDICTION IN THE
C(iV. T. L) GAME

Up until now we have considered sensible learners that pre-
dict in the same way as the majority of the experts in the cur-

rent version space unless either the version space is evenly
split or no more labels can be asked by the algorithm. In this
section WC show that learners which randomize their predic-
tions are no better than the sensible PS learner of the previ-
ous section.

In the standard expert setting, it is well known that the
expected number of mistakes when the learning algorithm is
allowed to make randomized predictions is exactly half of

the mistake bound when the learner is forced to make deter-
ministic predictions. Thus, it is natural to ask whether ran-

domized predictions also lead to improved prediction strate-
gies in our more general label efficient model. Surprisingly,
it turns out that randomization is not beneticial in our set-
ting and that algorithms which predict randomly only when
the version space is evenly split (or the algorithm is out of
labels) have the optimal expected mistake bound.

We introduce some definitions before presenting this sec-
tion’s main result. We define G~(rr, t, a) to be the game de-
scribed in section 4 when the prediction strategy is allowed to

make randomized predictions during the game. This means
that in the protocol of section 2, the learner may flip a biased
coin to determine its prediction 9. We use the subscript R in
the notation of the game to emphasize the use of randomized
predictions. As with the G(n. t, J!) game, the value ~~(72, t, P)

of the GR(~z, t, P) game is defined inductively as in figure 1
except that now the value IJH, (n., t, e) of the SR(?L, t, e) game
when an (i, R. - i) split is used by the adversary on the first
trial must also account for the randomized prediction. In par-

ticular, for any i 5 In/a],

WR; (n, t, a) = ‘b”,‘ma{

p2r47L-ii,t-l,P-l)

+(I - P)[(l - ‘1) + uR(n, t - 1. e)],

pVR(i,t - 1,t - 1)

+(I - p)[q + 7IR(? t - l,!)]}. (19)

Here q represents the probability that the algorithm predicts

in the same way as the majority of the current version space.
Since in our model the algorithm is not charged a mistake
when the label is requested, randomized predictions only
matter when the algorithm doesn’t ask for the label. In this
case, equation (19) can be easily justified by noting that the
algorithm incurs a mistake either when the majority is cor-
rect and the algorithm, with probability 1 - q, predicts with
the minority, or when the majority is wrong and with prob-

ability q the algorithm predicts with the majority. We now

present the main result of this section.

Theorem 13 For any n > 1, t > 0. and t! > 0, we have

?1(72, t, f) = WR(R, t, C) Gw

where v(n, t,e) und uR(n, t, P) are the values of the

G(n, t, e) and the GR(ri, t, e) games respectively.

As a simple first Corollary, we see that the prediction

strategy PS presented in section 4.4 has the optimal (ex-
pected) mistake bound in the label efficient randomized pre-
diction model considered in this section.

Corollary 14 For uny N 2 1, for any T 2 0 und.for an}
L 2 0, for the PS strutegy of section 4.4 we hove

Mps(N, T, L) = u(N, T, L) = VR(N, T, L)

where u(N, T, L) and VR(N, T, L) are the v&es of the

G(N, T, L) and GR (N, T, L) gumes respectively.

To prove Theorem 13 we need the following technical
Lemma.

Lemma 15 For uny 71 > 2, I 2 1, f 2 P + 1, und for uny

integer i 5 171/21, the minimizing (p,q) of ?!R,(n, t,@) is

q = landeitherp= lorp= ~/(IIR(~ - i.t - l,f- 1) -

VR(i,t--l,f-l)+l).

Proof. It is not difficult to see that the minimizing p of the

max in the right hand side of (19) is either p = 1 or p =
p(q) = (2q - 1)/(uR(7% - i, t - 1, f - 1) - w~(i, t - 1, f -
1) + 2q - 1). Since the algorithm is not charged a mistake
when the label is requested, it follows that when 11 = 1 is

the minimizing p of the right hand side of (19) then any q,

227

in particular q = 1, can be used. Now we consider the case

P = p(q).
For ease of notation, we let a = v~(n - i, t - l,! - l),

b = YR(~, t - l,e - 1) and c = v~(n,t - 1,C). When
p = p(q) is substituted in the right hand side of (19) we
obtain the function f(a, b, c, q) where

f(a, b, c, 4) =
aq + ac - bc - b + bq

a-1+29-b

Now finding the q minimizing YRi (n, t, c) (and thus min-
imizing the expected number of mistakes) is equivalent to
minimizing the function f(a, b, c, q). Computing the deriva-
tive of f(a, b, c, q) with respect to q we obtain

af(a,b,c,q) = a2 - a + b - b2 - 2ac + 2bc

89 (a-l+2q-b)2 ’ (21)

Since the sign of the derivative is independent of q, the min-

imizing q of f(a, b, c, q) is at the boundary, either q = 0 or

cl= 1 depending on whether the derivative is positive or neg-
ative. Now we show that af(a, b, c, q)/(aq) 5 0 which in
turn implies that q = 1 is the desired solution.

Since the denominator in the right hand side of (21) is
always positive, it follows that af(u, b, c, q)/(aq) 5 0 iff
g(a, b, c) 2 0 where

g(a, b, c) = a2 - a + b - b2 - 2ac + 2bc.

Note that a, 6, and c are all non-negative, and that a 2 b. If
we set a = b + d, we can rewrite g(a, b, c) conveniently as
g(a, b, c) = d(2b + d - 1 - 2~). It is now sufficient to show
that 2b + d - 1 - 2c <_ 0, or equivalently, that

2?,R(n,t-I,[)+1 > vR(n-i,t-l,C-l)+wR(i,t--l,e--1).

(22)
To show that (22) holds we argue as follows. Since Lemma 4
of section 4.2 holds also for 2)R(n, t, e), we obtain 2 VR(n, t-
1, e) + 1 1 2 ~n(n,t,e). Furthermore, since for any i 5

b/2] 9 uR(% 6 e) 1 wRi (n, t, e) it fdhvs that 2 vR(n, t -
1, e) + 1 >_ 2 vni (n, t, e). Now to simplify the proof, we
define

TMc(P,q) = pvR(n--i,t-he--1)

+(l-P)[(l-q)+21R(n,t-l,C)];

TMw(Prq) = Pvz(irt - I,!- 1)

+(I - P)[q + vR(%t - l,e)].

Using the fact that inf,,,r max{A(p, q), B(p,q)} 2
inf,,,[(A(p, q) + B(p, q))/2] the following chain of inequal-
ities can be derived.

2 vR(?Z, t - 1, t) + 1 2 247%, t, e) 2 22)& (n, t, e)

= 2 kgf m=@h4,@, 91, Ti5h b, q))

2 Z$af{(ThfC(PA + TA4W(P>9))/2)

(23)

228

Since the right hand side of (23) is a linear function in p and
q, the integers (p, q) minimizing (23) are in the set p, q E
(0, 1). Noting that the right hand side of (23) is minimized
when p = 1 and q = 0 or q = 1, which in both cases yields
2~~(n,t-1,!)+1 1 v~(n-i,t-l,e-l)+~~(i,t-l,b-
l), showing (22). This concludes the proof of the Lemma. 0

Proof of Theorem 13.
To simplify the proof we define

f(p,q,i) = max{pwR(n-i,t-l,e-1)+(1-p)

[(I - 9) + vRi(%t - 1, e)],

pVR(i,t - l,e - 1) + (1 -p)

[q + vR(% t - 1, [)I)

The Theorem is proved by induction on t. The thesis trivially
holds for t = 0. Now assume that the assertion holds for

some t - 1 2 0, i.e. for any n 2 1 and e >_ 0 we have ‘u(n, t -

14 = VR(n,t - l,!!). We need to show that w(n, t,e) =
‘uR(n, t, .!) is also true. Using Lemma 15 we have that

= m,v{vi(n, t, e)} = ~(72, t, !)

where the third equality follows by the inductive hypothesis.

This conclude the proof of the Theorem. 0

5 CONCLUSIONS

In this paper we have presented a new on-line prediction
model that explicitly represents labels as an important re-
source. Our results are phrased in the expert model, and we
make the assumption that one of the experts makes perfect
predictions. Since there are many settings in which the cost

of labels is higher than that of (unlabeled) instances, it is im-
portant to understand how to do label-efficient learning.

Our first results show that if the sequence of trials is un-

bounded then an adversary can force any algorithm to either
make an expected number of mistakes that is unbounded, or
request a number of labels equal to the number of experts
minus one. Despite this rather negative result, one can prove
interesting bounds on the expected number of mistakes and
expected label requests when there is a known bound T on
the number of trials. We present a simple adversary showing
that if L is the expected number of labels requested by the
algorithm and L is at most one-third the number of experts,
then the expected number of mistakes grows at least as fast
as T/L. In a complementary result we give an algorithm
showing that this lower bound is tight to within a log factor
in general, and tight to within a constant in many cases.

Our main result is the analysis of the game that results
when there is a fixed bound on the number of labels that the
learner requests. The value of this game has an extremely
complicated behavior. Although we currently have a lower

bound, we have been unable to prove a suitable upper bound
on it. However the game does have structure that allows its
value to be efficiently computed. This structure is exploited
hy our PS algorithm. The PS algorithm usually predicts

deterministically, but does make random predictions when
the version space is evenly split or it has run out of labels.

Interestingly, this basically deterministic predictor is optimal

even when randomized predictions are allowed in general.

One of the strengths of this model is that it separates the
prediction from the label requests. In other on-line models
the predictions of optimal algorithms must be randomized
as a “hedge” against the adversary. In the label efficient
model, the algorithm uses the probability of requesting the
label as the hedge against the minority being correct. This

allows an optimal algorithm to make (essentially) determin-
istic predictions, and seems a more appropriate way of ran-

domizing against the adversary. It would be interesting to
see if divorcing the label requests from the predictions has
a similar effect in different settings. Examination of these
problems could generate additional insight into crucial ex-
ploration/exploitation tradeoff issues.

Several interesting issues remain unresolved. Although a
simple closed form for the value of the fixed-label game may

not exist, it would be interesting to get an upper bound that
approximately matches our (or an improved) lower bound.

Would variations of the game (such as charging mistakes
when a label is requested) be easier to evaluate?

Although worst-case bounds can be very illuminating,
they are often overly pessimistic and the random generation
of instances can give more realistic learning bounds. One
important open problem is to define and analyzing a simi-
lar label efficient model when the instances are generated at

random instead of adversarially.

On the other hand, we make the strong assumption that

some expert always predicts the correct outcome. Another
important way to generalize the model is to deal explicitly
with inaccurate experts. The generalization to experts mak-
ing real-valued predictions is a natural second step in that
direction, as it gives the experts a way to express their con-
fidence in their predictions. Work in this direction is under-
way.

References

[ACL+90] Les Atlas, David Cohn, Richard Ladner, M.A.
El-Sharkawi, R.J. Marks II, M.E. Aggoune,
and D.C. Park. training connectionist net-
works with queries and selective sampling.
Number 2 in NIPS, 1990.

fAng881 D. Angluin. Queries and concept learning.
Machine Learning, 2(4):319-342, April 1988.

[CBFH+93] N. Cesa-Bianchi, Y. Freund, D. P. Helmbold,

D. Haussler, R. E. Schapire, and M. K. War-
muth. How to use expert advice. In Proc. 25th
Annu. ACM Sympos. Theory Comput., pages
382-39 I. ACM Press, New York, NY, 1993.

Expanded version in Univ. of Calif. Computer
Research Lab TR UCSC-CRL-94-33, From
Santa Cruz, CA.

[CBFH+94] N. Cesa-Bianchi, Y. Freund, D. Haussler, D. P.
Helmbold, R. E. Schapire, and M. K. War-
muth. How to use expert advice. Techni-

cal Report UCSC-CRL-94-33, Univ. of Calif.

Computer Research Lab, Santa Cruz, CA,
1994. Accepted subject to revision by JACM.

[CBFHW96] N. Cesa-Bianchi, Y. Freund, D.P. Helmbold,

[FSST93]

[I-ILL921

[HW95]

[Lit891

[LW94]

[SOS921

[Val84]

[Vov90]

and M.K. Warmuth. On-line prediction and
conversion strategies. Machine Learning,
25(1):71-l 10, October 1996.
Yoav Freund, H.S. Seung, E. Shamir, and
N. Tishby. Accelerating learning using query
by committee. NIPS, 1993.

D. P. Helmbold, N. Littlestone, and P. M.
Long. Apple tasting and nearly one-sided
learning. In Proc. of the 33rd Symposium
on the Foundations of Comp. Sci., pages
493-502. IEEE Computer Society Press, Los
Alamitos, CA, 1992.
D. Helmbold and M. K. Warmuth. On weak
learning. Journal of Computer and System

Sciences, 50(3):551-573, June 1995.

N. Littlestone. From on-line to batch learn-
ing. In Proc. 2nd Annu. Workshop on Comput.

Learning Theory, pages 269-284, San Mateo,
CA, 1989. Morgan Kaufmann.
N. Littlestone and M. K. Warmuth. The
weighted majority algorithm. Information and
Computation, 108(2):212-261, 1994.

H. S. Seung, M. Opper, and H. Sompolin-
sky. Query by committee. In Proc. 5th Annu.

Workshop on Comput. Learning Theory, pages
287-294. ACM Press, New York, NY, 1992.
L. G. Valiant. A theory of the learnable.
Commun. ACM, 27(11): 1134-I 142, Novem-
ber 1984.
V. Vovk. Aggregating strategies. In Proc.
3rd Annu. Workshop on Comput. Learning

Theory, pages 371-383. Morgan Kaufmann,
1990.

APPENDICES

A Proof of Lemma 6

The Lemma is proved by induction on d. We first show that
the statement is true for d = 1. In this case, upon expanding
the value 21,(2n, C + 1, e) for the G(2n, P + 1, e) game (see
figure 1), we find

v,(2n,e + i,e) =

i;f{pv(n,e,e- 1) + (1 -p)(i +~(2n,U))}

= i;f{1/2 + p(rr(n, e, P - 1) - l/2)}, (24)

229

where (24) follows by noting that v(2n, C, a) = 0. The thesis

then follows from the fact that, by Lemma 4, ~(71, !, ! - 1) -
f 5 0 and thus that p = 1 minimizes (24).

Now, let d - 1 > 0 and assume that the thesis holds for
the G(2n, &! + d - 1, 1) game, i.e. for any n 1 1 and for any
t> l,v,(2n,e+d-l,e) =v(n,C+d-2,C-1). Weneed

to show that the assertion is also true for the G(2n, f? + d, l)
game. As with the case d = 1, upon expanding the value

21,(2n, C + d, i?) we find

v,(2n, .! + d, l) = inpf{l/2 + v(Sn,C + d - 1, e) +

p[u(n,!+d-1,&-1)-l/2

-v(2n, .! + d - 1, a)]}. (25)

If we can show that the term multiplying p is non-positive
then (25) is minimized when p = 1. To show that this term
is non-positive we use the following:

1/2+v(2n,C+d-1,I) 2 1/2+~~,(2n,e+d-1,C)

= 1/2+v(n,C+d-2,t- 1)

2 v(n,e+d- l,C- l),

concluding the proof. [I

B Proof of Theorem 8

Throughout the proof we use the recursion presented in
Corollary 7 for computing the value of the game. The Theo-
rem is proved by using a double induction on d and e. Since

when only a single expert is left in the version space the value
of the game is zero, throughout the proof we will assume
71 _> 2. We first show that the statement is true when either
d = 1 or e = 0 (base of the induction). The case d = 1 is
trivial. When t = 0, i.e. the algorithm is left with 0 labels,
the best strategy for the algorithm is to predict randomly thus
v(~z, d, 0) = $ and u(n, 1,0) = f and the claim holds.

Now, let d - 1 and C - 1 be two arbitrary non negative
integers and assume that for all rz > 2,

1. Vt>O,v(n,e+d-l,C)=(d-l)v(n,e+l,C),

2. Vd>l,v(n,e-l+d,e-l)=dv(n,&C-1).

We need to show that w(n, f! + d, e) = d v(n, e + 1, e) is also
true. We first prove that v(n,e + d,e) 5 dv(n,e + 1,e).
Using the Remark of section 4.2 we can upper bound the
value u(n, e + d, e) of the G(n, e + d, e) game by

max {
lJ(n-i,t-1,t-1)

{i<lFJ} W(?I-i,t-l,fZ-l)-V(i,t-l,!?-l)+l+

+ (v(n - i, t - 1, e - 1) - V(i, t - 1, e - l))v(n, t - 1, e))

v(n-i,t-l,I-l)-zJ(i,t-&C-1)+1
(26)

where in the above t = C + d. Noting that by the inductive

hypothesis v(n - i, .!! - 1 + d, e - 1) = dv(n - i, e, e - l),
v(i,e-l+d,e-1) =dv(i,e,e-l)andv(n,e+d-i,e) =
(d - i)t+,e+ i,e), we can write equation (26) simply as

v(n,e+d,e) 5 max {-
d(d - 1) v(i) v(n, e + 1, e)

tillSJ1 d(v(n - i) - v(i)) + 1

+dv(n - i)(l + (d - l)~(n, L + 1, a))

d(v(n - i) - v(i)) + 1 ’

(27)

where, for ease of notation, we have denoted v(x,P -

L4 by 4~). Substituting the expansion v(n,e +
1,t) = v(n - i*)/(v(n - i*) - v(P) + 1) where i* =
argma{ieN: i<LT)){V:(n,l + l,e)} (see the Remark of
section 4.2), into (27) we obtain

v(n,e+ d,e) 5
dv(n - j)

d(v(n - j) - v(j)) + 1+

d(d - 1) v(n - i*)(v(n - j) - u(j))

+ (d(v(n - j) - v(j)) + l)(v(n - i*) - v(i*) + 1) ’ (28)

where j < [?J maximizes the right hand side of (27). It
is now sufficient to show that the right hand side of (28) is
upper bounded by d ~(n, e + 1, e). This is equivalent to prove
that f(i*,j) > 0 where

d(v(n - i*)(l - v(j)) - w(n - j)(l - I))

f(i*7j) = (d(v(n - j) - v(j)) + l)(v(n - i*) - w(i’)~;9:)’

Since the denominator in (29) is always positive, it follows
thatf(i*,j) 1 Oifandonlyifg(i*,j) >Owhere

g(i*,j) = v(n - i’)(?J(n - j) - v(j) + 1)

-?J(n - j)(w(n -i’) - v(i”) + 1). (30)

Now, by definition of i’ , we have for any j 5 15]

v(n - i*) f~(n -A
v(n - i*) - u(i*) + 1 > 7J(n - j) - V(j) + 1

which implies g(i*, j) 2 0 and thus ~(rz, e + d, 1) 5
dv(n,e + l,f!). Finally, we prove that v(n,e + d,e) >
dv(n,l + l,e) also holds by applying the following chain
of inequalities

+e+d,e) = ~,~13g+,e+d,e)} 2 qn,e+d,e)
t- 2

v(n- j,!+d- i,e- i)+,e+d- i,e)
=v(n-j,e+d-i,e-i)-~~(j,e+d--l,e-i)+l

v(j,e+d-i,e-i)tf(n,e+d-l,e)
-+--j,e+d-i,e-i)-v(j,e+d-i,e-I)+1

+-j,e+d-i,e-1)
+v(n-j,e+d-l,e--l)-u(j,e+d-l,e-l)+l

= d+,e+i,e),

wherej = argm={iEN: ills)~{u:(rz,e+l,e)}. Thiscon-
&de the proof. 0

230

