Realtime Response of Shortest Path Computation

Lin Qi & Markus Schneider
University of Florida
Department of Computer & Information Science & Engineering
_ Gainesville, Florida, USA
{lgi, mschneid}@cise.ufl.edu

ABSTRACT

Computing the shortest path between two locations in a net-
work is an important and fundamental problem that finds
applications in a wide range of fields. This problem has at-
tracted considerable research interest and led to a plethora
of algorithms. However, existing approaches have two main
drawbacks: complete path computation before movement
and re-processing when node failure occurs. In this paper,
two novel algorithms, RSP (Realtime Shortest Path) and R-
SP+ (Realtime Shortest Path Plus), are proposed to handle
both shortcomings. We perform a network pre-processing
to ensure a constant time response of retrieving the shortest
route for an arbitrary node to an important set of destina-
tions. RSP+ further divides the complete path into smaller
partial paths, which can then be computed in parallel. Be-
sides, considering the continuous changes of the network,
like traffic jams and road constructions, where certain paths
are blocked, a fast recovery method to efficiently find the
best alternative route is integrated into RSP+. Empirical
studies have shown that RSP+ can achieve an average query
processing time of 0.8 microseconds. Besides, the effective-
ness of the recovery mechanism demonstrates that alterna-
tive routes can be obtained to avoid unavailable areas.

Categories and Subject Descriptors

H.2.8 [Information Systems|: Database Applications —
data mining, spatial databases and GIS

General Terms

Design, Algorithm, Performance

Keywords

Shortest path, road network, pre-processing, node failure

1. INTRODUCTION

The shortest path problem is one of the fundamental prob-
lems of graph theory with many practical applications on a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ACM SIGSPATIAL IWCTS’ 14, November 4, 2012. Dallas, TX, USA
Copyright (c) 2014 ACM X-XXXXX-XX-X/XX/XX ...$15.00.

wide spectrum of graph types such as road networks and
social networks [6]. Finding a solution to this problem is
a basic and critical step in GIS network analysis, such as
urban traffic planning, optimal pipelining, robot navigation,
and especially transportation.

Classical approaches like Dijkstra [4] and Bellman-Ford [3]
algorithms traverse the nodes in the graph with an ascend-
ing order of their distances from a source to a destination
and terminate once the destination has been reached. They
are often inefficient for sizeable road networks. To improve
the efficiency of shortest path processing, a number of al-
gorithms that exploit the characteristics of road networks
have been proposed [9, 11, 12]. They are based on the ob-
servation that shortest paths with source nodes close to each
other will have an overlapping path if the destinations are
geometrically adjacent. Methods described in [1, 2, 5, 8,
10, 13] rest on the property that some nodes or edges are
more important for long distance travel (e.g. highways) and
pre-compute all-pair shortest paths to these nodes.

A key observation from the related literature is that the
shortest path between a source and a destination is com-
puted completely, in which all nodes on the route have to
be determined prior to any movement. In many cases, it
would be preferable that a partial path that belongs to the
optimal shortest path can be returned timely. For example,
when using navigation products, it would be more satis-
fying to know which turn should be made immediately in
front of an intersection. Moreover, considering that a road
network is not be static all the time, in which traffic jam,
accidents, or road constructions (called node failures) could
occur. As a result, some nodes or paths may be blocked
which will invalidate existing pre-processing results. Thus,
a time-consuming reprocessing has to be performed.

In this paper, we propose a novel algorithm, RSP, which
performs like a target-oriented depth first search. First, we
apply a pre-processing step, in which we record all pairs of
shortest distances for an arbitrary node to a set of impor-
tant nodes in respect of network structure or user interests.
Given a source node, by checking information of accumula-
tive distance to the destination on all adjacent edges, the
algorithm returns the edge with smallest value to guide the
movement. After that, the algorithm moves to the node a-
long the chosen edge and marks this edge as visited, then
considers all adjacent edges of the new node and terminates
once the destination is reached. The time complexity of the
algorithm depends on the average degree in the network.
Given that the degree of a road network is usually a small
integer, this query can be executed in constant time.

Considering the huge size of road networks, e.g. the total
road length of United States is 6,586,610 km with about 24
million nodes and 58 million edges, the scalability of the al-
gorithm should be taken into account. In order to further
speed up the search and to take advantage of parallel com-
puting, an improved algorithm, RSP+, is introduced. The
key idea is to cut a whole shortest path into small segments,
and return them in order. Multi-thread technologies are
applied to the whole computation process as those partial
paths can be computed in parallel. Empirical studies exhibit
an average response at a scale of fraction of microseconds to
shortest path queries. This outperforms Sanders [10] by two
orders of magnitude and appears to be the fastest approach
referring to the evaluation results [15].

In general, the main contributions of this paper include:

e An innovative and lossless spatial mapping from the
original network to our spatial network model in a pre-
processing step.

e a distance table assigned to both directions of each
edge, which enables constant lookup time.

e two novel and parallel friendly algorithms to provide
realtime response.

e a fast-recovery mechanism to quickly adjust to tem-
porary node failures and layout changes without per-
forming pre-processing each time.

The rest of the paper is organized as follows: Section 2
discusses about related work regarding shortest path com-
putation. In Section 3 we will introduce the pre-processing
method for the network. Our spatial network model as well
as the structure of the distance table will also be described.
The details of our shortest path algorithms are explained in
Section 4. Various experiments are then performed and pre-
sented in Section 5. Finally, Section 6 concludes this paper
and proposes potential working directions.

2. RELATED WORK

Over the past two decades, a plethora of techniques have
been proposed to address the deficiency of Dijkstra’s algo-
rithm by exploiting the characteristics of road networks [15].
These research efforts have produced a number of short-
est path algorithms as well as extensive empirical findings
regarding the computational performance. Algorithms de-
scribed in [2, 8, 13] are built upon the observation that cer-
tain vertices in a road network are more important in path
queries. Methods in [5, 8, 10, 13] perform a pre-processing of
the network by ordering the vertices according to their im-
portance and pre-compute the shortest paths among these
important vertices to accelerate query processing. However,
a small change in the network layout, e.g. a road mainte-
nance or a traffic light construction, may require the pre-
processing to be performed again on the whole network. As
RSP+ offers a quick-recovery mechanism that could provide
a feasible path even if maintenances happen in the network
without additional efforts of pre-processing. Algorithms de-
scribed in [1, 2] share some similarities to our approach:
they introduce a concept of transit nodes where all pairwise
shortest distances are precomputed among those nodes to
help speed up non-local shortest path queries. Such transit
nodes are a special case in our approach, where we could set
important destinations as those transit nodes. In addition,
we provide more flexibility that users could customize such
important destinations based on their interests.

There exists some other research focuses including net-
work hierarchy analysis, network characteristic analysis, etc.
Some representative methods include RE [6], Arc Flags [7],
etc. Among these methods, ALT preprocesses the road net-
work by first selecting a small set of vertices, called the
landmarks, and then it pre-computes the distance from each
vertex to each landmark. This concept shares similarity to
what we call Important Points (IPs) in our algorithm. But
we further cluster those interested destinations into multi-
ple levels to reduce the query processing time for the reason
that if one directed arc does not have access to a higher s-
cope, there is no need to examine the lower levels of IPs. In
addition, researches in [16] provide an evaluation of particu-
lar predefined route from recorded GPS traces and authors
in [14] estimate travel time by leverageing historical data
archive.

3. NETWORK PRE-PROCESSING

In this section, we will introduce the network pre-processing,
which consists of two steps: spatial network generation and
distance information assignment.

3.1 Spatial Network Model

In an actual road network G = (V, E, w) with a vertex set
V', an edge set E and a weight function. Each edge e € E is
associated with a weight w(e) : e — (R).

For a dual-directed edge, there are two travel directions.
Generally, the accumulative travel cost to the same desti-
nation is not identical for two directions, thus we need to
attach the distance information to the appropriate directed
edge. We call such directed edges as directed arcs. An ex-
ample of network generation is shown in Figure 1. One edge
from the original graph can be mapped to either one (for
a one-way edge (w,v)) or two directed arcs (for a two-way
edge (u,v)). Let SNet be the newly generated spatial net-
work, with A as the set of directed arc, and N as the set of
nodes. Therefore, the spatial network generation step can
be defined as the following spatial mapping &:

£ :G(V,E,w) — SNet(N, A, w), where
(()Vaec A,F€cE,st.e=dlle=a"
(if) Ve € B, |£(@) <2
(755) Vn € N,Tv e V,st. n=v
(iv) Ve, a in (i), w(d) < w(é)
(v) Given v € V,Ve € C(v),

3d € C(&(n)) where €= ¢ 1(a)

where symbol * means uniqueness and T represents the
transpose form. C/(n) represents the set of edges or arcs
connected to n. Condition (¢) and (i7) ensure that for each
edge, there can be at most two directed arcs correspondingly.
Similarly, condition (#i¢) restricts the mapping of each vertex
to one node. The weight function remains the same after
projection for the same edge as shown in (iv), however, we
could also allow asymmetric travel cost easily by modifying
the new weight function as per need. Condition (v) retains
the connectivity and topology.

3.2 Distance Information Assignment

Storing all-pair distance information is a heavy burden
and is not scalable when network becomes huge. However,
there exist certain points in the network which are more im-
portant. For example, transportation hubs usually appear

in shortest paths, whereas places like travel spots and ho-
tels are more of users’ interest. In essence our approach will
identify a small set of such Important Points (IPs), for ex-
ample, people trend to travel to a certain set of destinations,
and these destinations are of more importance and are also
queried more frequently. Further, a cumulative distance to
every [P is propagated and stored in each directed arc. For
example, as in Figure 1, arc (w’,v’) has a total distance of
200 to node u’ while arc (z’,w’) has a cumulative distance
of 300 to v’ by adding the length of itself. As a result, at
query stage a simple lookup yields the exact distance from
an arbitrary source node to any of the IPs, thus providing a
realtime response.

A

Distance table
<w’, 100>
<v’, 225>

£<u’, 300> ...

A
A"

Figure 1: Mapping to spatial network from original
network

A set of vertices are pre-defined for IPs, where users have
the flexibility to add or remove destinations that they are
interested in or not. The increment of the set of IPs will
trigger a round of distance assignment, but only restricted
to the newly added destinations. The form of distance in-
formation w.r.t. each IP is a key-value pair where the key
represents the id of a certain IP and the corresponding value
yields the shortest distance to this IP. Such distance infor-
mation is attached to each directed arc, and each arc can
hold multiple key-value pairs for all feasible IPs, formulat-
ing a distance table. To provide constant lookup time, a hash
table is employed to represent distance table structure.

Time and Space Complexity. The assignment of dis-
tance information starts from all IPs. For each IP, for arcs
directly connected to that point will have the distance value
as their edge length. And then the distance value propa-
gates in a back-tracking manner. The distance values are
gradually increased by the length of corresponding directed
arc as we travel along the network. Finally as soon as all
directed arcs are spanned, the assignment is finished. Over-
all, this pre-processing takes O(k % (|V| + |E|)) where k is
the number of IPs. After the assignment, based on the dis-
tance information stored at each directed arc, the pairwise
shortest paths from an arbitrary node to this set of nodes
are then established.

Space consumption of our approach is highly correlated to
the number of IPs and total number of directed arcs. And
for a huge network, the number of IPs could also be large.
Considering the fact that shortest paths in road networks
are often spatially coherent, i.e. the shortest paths to the
destinations which are geometrically close to each other will
share an overlapping path in long distance travels, we will
cluster our IPs in a hierarchical structure based on their
geographical location. For example, there could be 1000 ho-
tels in Orlando city and one of them is our destination. But
when we are driving from Atlanta, we only need the distance

—

1

to Orlando city which is an estimate to our destination and
by the time we enter the city area, detailed distance infor-
mation to the hotels is then provided. In this case, for all
edges representing the highways outside Orlando, we only
need to store the distance to Orlando city itself, which is
a higher-level IP. Furthermore, a multiple-layer clustering
structure could be provided and adjustable to the network
scale. In the U.S. road network, with 24 million of nodes
and 58 million of edges, if 240,000 IPs (1 % of total nodes)
are picked, in worst case where all IPs are accessible from all
edges, it will consume around 1 MB per edge. With three
layers of clustering at a ratio of 100, the space consumption
will be reduced to 4 bytes per edge.

4. RSP AND RSP+ ALGORITHMS

After the network pre-processing, in this section, we will
introduce our shortest path algorithms. We will start with
RSP (Realtime Shortest Path), to show the steps how the
shortest path is computed with distance information. After
that, an improved version RSP+ is then developed to fulfil
the needs of providing realtime response. Both of the al-
gorithms are performed in a manner of depth first search.
But with the target as the destination, this search is not
expanded arbitrarily but with a target orientation.

4.1 RSP

As shown in Algorithm 1, initially we start with the di-
rected arc that roots at S with smallest distance value w.r.t.
D in line 1. Next, we create a list of visitedArcs that s-
tores the directed arcs that we have visited. This is to avoid
traveling in loops. Each time we perform a lookup to pick
the directed arc that is closest to the destination and add to
visitedArcs. This is shown in line 4 to 11. We repeat this
searching process until the destination is reached.

Algorithm 1: RSP Algorithm

Input: SNet(N, A, w), Source S, Destination node D
Output: Shortest path from S to D
Pick the arc roots at S with smallest distance to D and
assign to currArc;
Path FinalPath < null;
while currArc # null do
if wvisitedArcs. Contains(curr Arc) then
L continue;

visitedArcs.Add(currArc);
if currArc.Head == Destination D then
L break;

FinalPath.Add(currAre);
currArc < the outgoing arc of currArc with
smallest distance to D;

1 return FinalPath;

—

QO WO Uik WN

THEOREM 4.1. (RSP’s Correctness) Given T as a s-
patial network, if there exists a path from the source node
S to the destination node D in T, RSP will compute and
return the shortest one.

PROOF. Given destination D, and the outgoing arcs of
source {outArcs®}, if Yarc € {outArcs®}, D does not ap-
pear in the distance table of arc, there will be no possible
path to D from S, and RSP will terminate.

Next, we need to prove that the path RSP returns, P,
is the shortest one. Assume that there exists a different
path ® which is the shortest one. ® is consist of a list of
directed arcs < a1, as, ..., a, >, and similarly for ®', the list
is < ay,ab,...,al, >. Since ® and @’ is different, there must
be a starting point ¢ € [1, min(m,n)] where aq # a;, and for
i € [1,q]: a; # a;. Since the distance to D along the directed
arcs in a path is strictly monotone decreasing, the path that
has steeper slope would be the shortest one. From line 15
in Algorithm 1, we always pick the outgoing arc which has
the smallest distance to D, i.e. closest to D. Therefore the
distance to D from a4 will be less or equal to the distance
from aj, in other words, we always pick the global minimum
directed arc that can lead us to the destination. In this case,
if path @' chooses ay, it picks a detour compared to aq which
will not give us the shortest path. This is contradictory to
our assumption that ®’ is the shortest path. Therefore, RSP
is guaranteed to return the shortest one. []

Algorithm 2: RSP+ Algorithm

Input: SNet(N, A, w), Source node S, Destination
node D, Search diameter §

Output: Partial path along the shortest path

1 Start one thread: Pick the arc roots at S with
smallest distance to D and assign to currArc;
Path PartialPath < null;
int partial PathLength < 0;
while currArc # null do

2

3

4

5 if visitedArcs. Contains(currArc) then

6 L continue;

7 visitedArcs.Add(currArc);

8 if currArc.Head == Destination D then
9 L return PartialPath;

10 else

11 if partial PathLength > 6 then

12 PartialPath <— GeneratePartialPath(S,
currArc);

13 Start another thread: Recursively call
RSP+ algorithm to compute the partial
paths until we hit D with updated source
node and search diameter;

14 return PartialPath;

15 PartialPath.Add(currArc);

16 currArc < the outgoing arc of currArc with

smallest distance to D;
17 partial PathLength <+
partial PathLength + curr Arc.length;

4.2 RSP+

In a transportation application, for example a navigation
system, it would be more satisfying that we could get the
very first direction guidance with realtime response especial-
ly when the network is huge and when source and destina-
tion are located far apart. Therefore, our idea is to cut the
complete shortest path into partial paths and return them
in sequence.

As shown in Algorithm 2, we have introduced a parame-
ter named search diameter. It is a threshold that indicates
the extension boundary of the partial path, while we extend

the path to a certain length which exceeds this threshold,
we will cut the complete shortest path to this point and re-
turn the partial path. This serves as another exit criteria of
the algorithm in line 12 to 15. In addition, while returning
the partial path, another thread is initiated with updated
source node to this current point and perform RSP+ algo-
rithm recursively to return a sequence of partial paths till
the final destination is reached. Note that this can be done
in background execution, but in front end, user will get the
very first partial path as the result. Sub-procedure Gen-
eratePartial Path(S, currArc) is a method that generates a
path from precedent stored for each directed arc and trace
back until we hit the source node. This process is similar
to Algorithm 1 but with different terminating criteria. It is
omitted here due to space limit.

As an improved algorithm based on RSP, RSP+ enjoys
the aforementioned features that RSP holds. Additional-
ly, as the computation of partial paths are parallel friendly,
we could feed the algorithm recursively with updated source
node. In general, the time complexity of both algorithms
depend on the average number of edges connected to each
node in the network. However, such node degree is usually
a small constant especially in road networks. In worst case,
time complexity is still bounded O(|E| 4 |V]) for both al-
gorithms, when all edges and nodes are visited. But again,
as the benefit of partial path concept provided in RSP+,
from a user’s perspective, he will be getting the response in
constant time and rest of the computation can be done in
parallel. It is noted that RSP+ has a flexibility based on
the size of search diameter §. If we set § to co, RSP+ will
turn into RSP. And by adjusting the values of §, we have
a strong control of how long we are expecting our partial
path. Theoretically it is expected that with a smaller §, we
will achieve lower latencies. This is proved in the experi-
ments in Section 5.

4.3 Fast Recovery Mechanism and Safe Route
Generation

The algorithms described above assure us the shortest
path from source to destination. However, in the under-
lying networks, node failures can happen from time to time.
A node failure temporarily puts this node down from the
network so that no movement unit could travel through this
node. A typical example could be a construction site in road
networks. In existing works, with such layout change, a redo
of pre-processing of the whole network is required. However,
to avoid such a time-consuming process from happening too
often, we propose a fast-recovery heuristic of route regener-
ation, named SafeRoute, which is integrated in our RSP+.

It is possible that the failure node M has no impact in
this path query from S to D. Therefore in line 1, we first
check whether M appears in the shortest path from S to
D. If not, we directly return the shortest path from S to D
as the safe route. Otherwise we first construct a connect-
ed sub-network around M. This sub-routine will start from
node M, and insert M’s neighbors into the sub-network, in-
cluding incoming and outgoing arcs. We continue extending
from the neighbor nodes to their neighbors also until the
generated sub-network is fully connected (i.e. there exist
possible routes for all-pair nodes). We call M as a central
node. It is possible that we cannot find such a network, be-
cause that M is located in a crucial connecting location of
the network so that without it, the network will be isolated.

Algorithm 3: SafeRoute Algorithm

Input: SNet(V, A, w), Source node S, Destination
node D, Failure node M
Output: An alternative path excluding midpoint M
1 if AppearInPath(M, RSP+(S,D)) then
2 SNet T' = ConstructSubNetwork(M, 7);
3 if T == null then
4 L return null;
5 Redo distance assignment within network T7;
6 Path ®; < Shortest path from S to the closest
node B of the boundaries of T';
7 Choose node B°“* in the boundaries with the
smallest distance to D;
8 Path ®; < RSP+(B™,B");
9 | Path &3 « RSP+(B°“ D);
10 return Path ® < Combine(®1, P2, P3);
11 else
12 L return RSP+(S,D);

In this case we will return null as the safe route. After the
generation of the new sub-network, then we assign distance
information within this new sub-network 7', note that M is
not included in this network thus it will not be considered in
the distance assignment. This assignment is to ensure that
every boundary node of T' will store its shortest distance to
all other boundaries.

& Failure node
= Safe route

Sub-network

Figure 2: Illustration of SafeRoute algorithm of find-
ing alternative route

Next, we pick the node from the boundaries which is clos-
est to source S, we denote this node as B". Similarly, we
also pick the node from the boundaries that is closest to
destination D, named as B°“'. Since M is in between of
these nodes, it is certain that B is different from B°“‘.
Finally our safe route from S to D is consist of three sub-
paths: shortest path from S to B, from B™ to B°*!, and
from B°** to S in line 6 to 10. This combined path will
be proved in Theorem 4.2 that it would not travel through
node M, and therefore is a feasible path. Figure 2 gives an
illustration example.

THEOREM 4.2. (Safe Path Feasibility.) Given a spa-
tial network and a path query from S to D, if there exists
an alternative path w.r.t. the failure node M which lies on
the shortest path from S to D, then SafeRoute algorithm will
return one feasible path excluding M.

PROOF. After construction of a new sub-network around
node M, from one node S outside of this network, if there
exists a shortest path from S to B™, we must hit node
B™ before we can come to node M as B™ is the precedent

of M. Similarly, there will exist a shortest path from B
to another boundary node B°“* without traversing through
M. By combining the paths S — B, B — B°% and
B°“* — M, a feasible route from S to D excluding M has
been found. [

S. EXPERIMENTS

In this section, we will design and perform three sets of
experiments regarding shortest paths and feasible routes.
The results show that our algorithm is much more efficient
than classical approaches. In case of random node failures
in the network, our algorithm will return an alternative and
feasible route avoiding unavailable areas.

5.1 Experimental Setup

The algorithms are implemented in Microsoft’s Visual S-
tudio framework, and they use common subroutines for sim-
ilar tasks. We have conducted experiments on a computer
running Windows 7 with an Intel i7-4770 3.4 GHz CPU and
16 GB RAM with stable working state. An 800 km of real-
world rail network from Australia near Hedland is taken in
our experiments. The network is an undirected graph con-
sists of 26,140 nodes and 45,252 edges.

5.2 Performance Evaluation

The first set of queries is multiple-source shortest paths
from a variety of locations to one fixed destination. We
randomly pick 10, 50, 250, 1250 nodes respectively as the
source nodes. In this experiment, the destination is fixed to
a pre-defined IP. The total response time of different path
search algorithms are shown in Figure 3.

100000
RSP+
10000 | RSP —]
Dijkstra H—

1000 - Bellman-Ford M b

100 k!

Running time (millisecond)

0.01 F 4

0.001

10 50 250 1250
Number of sources

Figure 3: running time of different algorithms with
increasing number of sources

We compare the efficiency for shortest path queries of
four different algorithms: RSP+, RSP, Dijkstra’s algorith-
m, and Bellman-Ford algorithm. Figure 3 shows that RSP+
and RSP significantly outperform Dijkstra’s algorithm and
Bellman-Ford algorithm. Dijkstra performs slightly better
than Bellman-Ford, and RSP leads the performance by a
factor of 30. In addition, RSP+, dramatically reduces the
searching time by five orders of magnitude. On average, each
shortest path query is answered in 0.8 microsecond with R-
SP+. It is a realtime response resulting from a partial path
concept and parallel computing technique. The search di-
ameter § is set to 20,000 meters as default value in RSP+.

Next, we evaluate the influence of changing § values. Re-
call that ¢ indicates the search boundary of the algorithm,
i.e. the maximum length of the partial path. As expected,

5

T T T T T T
— Each measurement is repeated 10 times

@

2

g

8 I ——_
L WLE"H
E Wﬁw

£ e

Ag #‘Hadz

£ ,

S @

ot

0.1
0

Figure 4:
values

shown in Figure 4, with the increasing of § value, the run-
ning time also follows an increasing manner. We measure
the running time with a step of 1 km increase starting from
1 km till 100 km. Interestingly, we observe a steeper slope
of increasing before ¢ reaches around 20,000. After that,
the running time increases with a steady but lower trend.
This is because that when J is small, we need more par-
tial paths to formulate the shortest path, thus each partial
path is relatively small. It will take less time to generate
the first partial path. When § becomes greater than around
90,000, the running time stops increasing but rather oscillat-
ing around 2.333 ms. This indicates that our § has reached a
peak that further increasing of this value will have negligible
impact on the running time. The reason is that this § value
has covered the whole length of the complete shortest path.

In this case,

60000

10000 20000 30000 40000 50000 60000 70000 80000 90000 10000C

delta values (m)

running time of RSP+ over different §

RSP+ turns into RSP algorithm.

50000 -

40000

30000 -

Length (m)

20000 -

10000

T
Reprocessing I

SafeRoute I

Figure 5: SafeRoute evaluation based on path length

PathLength RunningTime

and running time

In the last set of experiments, we evaluate the effective-
ness of SafeRoute algorithm described in Algorithm 3. From
Figure 5, we could see that the algorithm could return us
an alternative route with 43550 meters.
pre-processing, we successfully find the shortest path with
length 41440 meters, which is 4.8% less. However, the pre-
processing takes around 480 ms, while directly running SafeR-
oute algorithm will only take 2 ms, which is 99.58% less.
This result shows that the route that Safe Route returns may
not be the overall shortest path in the network, but it takes
much less time to compute. The algorithm will be extremely

practical in a realtime responsive system.

6. CONCLUSIONS AND FUTURE WORK

In this paper, two novel shortest path computation algo-

Running time (ms)

After redo the

rithms are introduced. They could provide constant time
response of retrieving shortest path for an arbitrary node
to an important set of destinations. The algorithms are de-
signed to be applicable to all kinds of networks by allowing
users to add or remove interested destinations to the pool
based on their interests. In future, we will be conducting
more experiments on various networks, especially large-scale
networks.

7.
1]

2]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

REFERENCES

H. Bast, S. Funke, and D. Matijevic. Transit: ultrafast
shortest-path queries with linear-time preprocessing.
In Proc. of the 9th DIMACS Implementation
Challenge, pages 175-192, 2006.

H. Bast, S. Funke, P. Sanders, and D. Schultes. Fast
routing in road networks with transit nodes. Science,
316(5824):566, 2007.

R. E. Bellman. On a routing problem. Quarterly of
Applied Mathematics, 16:87-90, 1958.

E. W. Dijkstra. A note on two problems in connection
with graphs. Numerical Mathematics, 1:269-271, 1959.
R. Geisberger, P. Sanders, D. Schultes, and D. Delling.
Contraction hierarchies: Faster and simpler
hierarchical routing in road networks. In WEA, pages
319-333, 2008.

A. V. Goldberg, H. Kaplan, and R. F. Werneck. Reach
for a*: Efficient point-to-point shortest path
algorithms. In ALENEX, pages 129-143, 2006.

M. Hilger, R. H. Mohring E. Kohler, and H. Schilling.
Fast point-to-point shortest path computations with
arc-flags. In Proc. of the 9th DIMACS Implementation
Challenge, pages 73-92, 2006.

M. Rice and V. J. Tsotras. Graph indexing of road
networks for shortest pth queries with label
restrictions. In PVLDB, volume 4, pages 69-80, 2010.
H. Samet, J. Sankaranarayanan, and H. Alborzi.
Scalable network distance browsing in spatial
databases. In SIGMOD, pages 43-54, 2008.

P. Sanders and D. Schultes. Engineering highway
hierarchies. In 1/th European Symposium on
Algorithms (ESA’06), pages 804-816, 2006.

J. Sankaranarayanan, H. Alborzi, and H. Samet.
Efficient query processing on spatial networks. In GIS,
pages 200-209, 2005.

J. Sankaranarayanan and H. Samet. Query processing
using distance oracles for spatial networks. IEEE
Trans. Knowl. Data Eng, 22(8):1158-1175, 2010.

D. Schultes. Route Planning in Road Networks. PhD
thesis, University Karlsruhe (TH), 2008.

Y. Wang, Y. Zheng, and Y. Xue. Travel time
estimation of a path using sparse trajectories. In
Proceeding of the 20th SIGKDD Conf. on Knowledge
Discovery and Data Mining, volume 2, 2014.

L. Wu, X. Xiao., D. Deng, G. Cong, A. D. Zhu, and
S. Zhou. Shortest path and distance queries on road
networks: An experimental evaluation. In PVLDB,
volume 5, pages 406417, 2012.

B. Yang, C. Guo, and C. S. Jensen. Travel cost
inference from sparse, spatio temporally correlated
time series using markov models. In The 39th
International Conference on Very Large Data Bases
(VLDB), volume 2, 2013.

