
On the Computational Complexity of Sequence Design Pkoblems 
(Extended Abstract) 

William E. Hart* 

Sandia National Laboratories 
Algorithms and Discrete Mathematics Department 

P. 0. Box 5800 
Albuquerque, NM 87185-1110 

August 9, 1996 

Abstract 

Inverse protein folding concerns the identification of an amino acid sequence that folds to a 
given structure. Sequence design problems attempt to avoid the apparant difficulty of inverse 
protein folding by defining an energy that can be minimized to find protein-like sequences. We 
evaluate the practical relevance of two sequence design problems by analyzing their computa- 
tional complexity. Vc'e show that the canonical method of sequence design is intractable, and 
describe approximation algorithms for this problem. We also describe an efficient algorithm that 
exactly solves the grand canonical method. Our analysis shows how sequence design problems 
can fail to reduce the difficulty of the inverse protein folding problem, and highlights the need 
to analyze these problems to evaluate their practical relevance. 

1 Introduction 

The goal of the inverse protein folding problem (IPF) is to  design a polymer sequence that folds 
to  a given target conformation. Three criteria have been proposed for evaluating the success of a 
protein sequence that has been designed for a target conformation [l, 71. First, the  protein sequence 
should fold to the target conformation. This means that the energy of the sequence in the target 
conformation is not greater than the energy of the sequence in any other conformation. Second, the 
target conformation is the only conformation in which the sequence folds to  the minimal energy. 
This means that there is no degeneracy of ground states for the sequence. Yue and Dill [7] weaken 
this criterion to require that the degeneracy of the sequence be no greater than the degeneracy of 
any other sequence that folds to the target conformation. Third, there should be a large gap in 
the energy of the sequence in the target conformation and the energy of the sequence in any other 
conformation. 

At present very little is known about the computational complexity of IPF. IPF appears to 
involve a search over sequences as well as a search over conformations to guarantee that the sequence 
has minimal degeneracy. No algorithm is known that can reliably solve IPF without this exhaustive 
search, which involves an exponential number of conformations. In fact, we conjecture that IPF is 
intractable (i.e., NP-hard).' 

*wehartQcs.sandia.gov; http://www.cs.sandia.gov/.uwehart/ 
'A brief description of computational intractability and its relationship to NP-hardness is given in the appendix. 

http://www.cs.sandia.gov/.uwehart
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Recently, a variety of methods have been described that attempt to solve IPF without perform- 
ing this exhaustive search [l, 3,4,  5 ,  6, 71. These methods are heuristic algorithms because they do 
not guarantee that the sequence engineered by the algorithm solves IPF. In general terms, these 
methods attempt to capture two aspects of IPF that are intuitively related to the criteria described 
above: (i) positive design - the sequence folds to the given conformation, and (ii) negative design - 
the sequence does not fold to other structures with the same or lower energy. These algorithms have 
been tested on small conformations for which exhaustive search of the exact solution is possible, as 
well as conformations taken from the PDB database. 

These heuristic methods can be separated into two categories. First, the authors use obser- 
vations about the properties of proteins to justify algorithms that design sequences [3, 71. These 
algorithms are heuristics that run quickly but are not guaranteed to solve IPF. The second cat- 
egory of heuristic methods are those in which the authors propose an alternative formulation of 
IPF [l, 4, 5, 61. This alternative formulation attempts to capture the positive and negative de- 
sign issues by defining a heuristic sequence design (HSD) problem. An implicit assumption of this 
approach is that a sequence that satisfies the HSD problem is likely to solve IPF. 

Ideally, the HSD problem should not require the exhaustive enumeration that is currently used 
to exactly solve IPF. Thus it should be possible to find the sequence that satisfies the HSD problem 
for the target conformation in a polynomial number of steps (in the length of the protein sequence). 
If this is not true, then the reformulation of IPF is less interesting because it does not reduce IPF 
to a problem that can be solved efficiently. Although analyses of intractable HSD problems may 
provide insight into IPF, only problems that can be solved efficiently are of practical relevance. 

In this paper, we evaluate the practical relevance of two HSD problems by examining their com- 
putational complexity. The problems that we analyze are the ‘canonical method’ of Shakhnovich 
and Gutin [5] and the ‘grand canonical method’ of Sun et ai. [6]. To solve these HSD problems, 
these authors use stochastic search algorithms that provide only weak guarantees that the best 
sequence is generated. Consequently, the computational complexity of these two HSD problems 
remains an open question. 

Our results show that the canonical method is intractable (i.e. NP-hard), but we describe 
an algorithm that efficiently constructs sequences that approximate the best canonical sequence. 
Surprisingly, for the 2D cubic lattice it is possible to efficiently construct a sequence whose energy 
(as defined by the canonical method) is no greater than one above the energy of the best sequence. 
For the 3D cubic lattice we show that the algorithm efficiently constructs a sequence whose energy is 
guaranteed to be within a factor of two of the energy of the best sequence. For the grand canonical 
method we describe a polynomial time algorithm that constructs sequences whose energy is optimal 
for 2D and 3D cubic lattices. 

2 Definitions 

In this paper we consider two HSD problems defined for the HP lattice model [I. This model uses 
uses contact energies to  determine the energy of a protein sequence in the target conformation. The 
HP model categorizes amino acids as either hydrophobic (nonpolar) or hydrophilic (polar). The 
contact energy gives an energy of -1 to hydrophobic-hydrophobic contacts and an energy of 0 to all 
other contacts. 

Let a target conformation be described by a graph G = (V, E )  with vertices V; that correspond 
to  amino acids, and edges E 2 VxV, that define a self-avoiding walk on a 2D or 3D cubic lattice. 
Recall that /VI is the number of vertices in V .  Let Gh be the set of all target conformations for 
which the length of the chain is IC (i.e., IVI = I C ) .  Given a conformation G = (V’E), we can 
construct a contact graph G = (V,E)  induced by G, where an edge (a ,6 )  is in I? if a,B E V 
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Figure 1: Illustration of (a) a target conformation along with (b)  its corresponding contact graph. 

and ( a , b )  is an edge in the lattice. Figure 1 shows a target conformation in a 2D cubic lattice 
along with its corresponding contact graph. For a sequence s, let E(G,s)  be the conformational 
energy of s when the vertices of G are labeled with the sequence of amino acids defined by s; the 
calculation of E(G, s) implicitly depends upon the energy matrix defined by the lattice model. Let 
SG be the set of sequences that achieve their lowest energy in the target conformation G. Formally, 
SG = {s E { H , P } "  I E(G,s)  5 E(G',s),'v'G' E G"}, where n = IVI. We say that a sequence s folds 
to  G if s E SG. 

3 The Canonical Method 

Shahknovich and Gutin [5] define the canonical method, a HSD problem for protein sequences in 
the HP model. Shahknovich and Gutin observe that for any target conformation, the conformational 
energy can be minimized simply by using the sequence of all hydrophobics, but that this sequence 
is unlikely to  achieve its lowest energy with the given target conformation. To account for this, 
they limit the number of hydrophobics that can be used in a protein sequence by fixing the ratio 
between hydrophobic and hydrophilic amino acids. 

We formulate the HSD problem posed by Shaknovich and Gutin as follows. Let L be a 2D or 
3D cubic lattice and let G = (V, E )  be a target conformation in L. Let X E Q represent the fraction 
of hydrophobics that we will allow in a protein sequence. The canonical method is the problem 
of minimizing E(G,s)  subject to the constraint that no more that [An1 hydrophobics be used to  
design s. Shahknovich and Gutin [5] use a Monte Carlo method to search through the space of 
conformations to  find a sequence that minimizes E(G, s) subject to this constraint. This type of 
stochastic search algorithm only provides a weak probabilistic guarantee that the optimal sequence 
is generated. 

In the following section, we consider the possible intractability of this problem. We prove that 
this problem is intractable by showing that it is NP-hard for both the 2D and 3D cubic lattices. 
Then we present positive results that show that this problem is approximable in polynomial time. 
For the 2D lattice, we show that a sequence can be designed in polynomial time whose energy 
differs from the energy of the best sequence by at most one. For the 3D lattice, %-e show that a 
sequence can be found in polynomial time whose energy is within a factor of 2 of the energy of the 
best sequence. 

3.1 Intractability Results 

Since the canonical method is an optimization problem, we define the following decision problem: 



Sequence Design Problems August 9, 1996 4 

( L ,  A, HP)-Inverse Protein Folding 
Given: A conformation G = (V, E )  embedded in L; an integer IC 
Question: Is there a protein sequence s E {H,P}”, n = IVI, with [An1 or fewer 
hydrophobic amino acids such that E(G,s )  5 I<? 

The following theorem shows that (L, A, HP)-IPF is NP-complete for the 2D and 3D cubic lattices. 
This shows that it is highly unlikely that there exists a polynomial time algorithm that exactly 
solves this problem for all instances of ( L ,  A, HP)-IPF. Note that this is a robust intractability 
argument that proves NP-completeness for an infinite class of problems that are indexed by the 
value A. Thus for any value of A, the problem remains difficult. 

Theorem 1 Let L be either the 2D or 3D cubic lattice. Then ( L ,  A, HP)-IPF is NP-complete. 

This intractability argument could be strengthened in two ways. It would be interesting to 
determine whether this problem remained intractable for other lattice models using contact poten- 
tials with different alphabets and contact energy matrices. In fact, we suspect that this problem 
remains NP-complete for a wide variety of other lattice models. 

This argument would be also be strengthened if we could restrict the target conformations 
to the “compact” and “native-like” structures to which IPF is likely to be applied. The proof 
of Theorem 1 uses sparse, elongated target conformations to prove that (L,A,HP)-IPF is NP- 
complete. It is unclear whether this result would hold if (L,A,HP)-IPF was restricted to more 
interesting target conformations. One possible restriction is the definition of compact conformations 
used by Deutsch and Kurosky [l]. For a sequence of length n, they call a conformation compact if 
it has (n. - 2)/2 or more contacts. However, the proof of Theorem 1 uses target conformations that 
are compact by this definition. 

3.2 Approximation Algorithms 
Performance guaranteed approximation algorithms for ( L ,  A, HP)-IPF quickly design a sequence 

that is guaranteed to have an energy that is close to the energy of the best possible sequence. 
Because a two-dimensional target conformation can be embedded on a 3D lattice, the set of possible 
contact graphs for the 2D cubic lattice is a subset of the set of possible contact graphs for the 3D 
cubic lattice. Consequently, an approximation algorithm for the 3D lattice will be an approximation 
algorithm for the 2D lattice. In this section we describe a performance guaranteed approximation 
algorithm for the 3D lattice and refine the analysis of this algorithm to prove a much tighter 
performance guarantee on the 2D lattice. 

Figure 2 describes Algorithm A. Algorithm A labels components and parts of components in 
the contact graph with [An] hydrophobics. This algorithm divides connected components of the 
contact graph into three classes: (1) components with no cycles, (2) components with one cycle and 
(3) components with two or more cycles. Given this division, Algorithm A attempts to label the 
amino acids in components with the most cycles first, which maximizes the total energy of protein 
sequence. 

Figure 3 illustrates the application of Algorithm A for different values of A; black squares 
represent hydrophobic amino acids and white squares represent hydrophilic amino acids. The 
initial classification of connected components in step 2 can be done efficiently using a variation 
of depth first search, and all other steps clearly have polynomial complexity. Consequently, the 
complexity of Algorithm A is polynomial in the number of vertices in the target conformation. 

Let A(G, A) be the energy of the sequence constructed by Algorithm A on target conformation 
G for a given value of A. Let OPT(G,  A) be the energy of the best sequence possible. The following 
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1. Compute the contact graph G from G. Let J = [An1 

2. Classify the connected components in G into three classes: (1) components with no cycles, 
(2)  components with one cycle, and (3) components with two or more cycles. 
Let n; equal the total number of vertices in the components in class (i). 

3. If J 2 722 + 723, then 
Label all components in classes (2) and (3) as hydrophobic, 
Sort the components in class (1) by size 
Iteratively label the components in class (1) as hydrophobic from smallest to  largest 
Partially label the last component as hydrophobic using a DFS method, and 
Label remaining unlabeled vertices as hydrophilic 

2. If 722 + n3 > J 2 723, then 
Label all  components in class (1) as hydrophilic, 
Label all components in class (3) as hydrophobic, 
Iteratively label the components in class (2) as hydrophobic in any order 
Partially label the last component as hydrophobic using a DFS method such 

Label remaining unlabeled vertices as hydrophilic 
that the cycle is filled first (if possible), and 

3.  If 723 > J ,  then 
Label all components in class (1) as hydrophilic, 
Iteratively label the components in class (3)  as hydrophobic in any order 
Partially label the last component as hydrophobic using a DFS method such 

Label remaining unlabeled vertices as hydrophilic 
that the cycle is filled first (if possible), and 

Figure 2: Algorithm A 

Figure 3: Illustration of the application of Algorithm A to the target conformation shown in 
Figure la: (a) X = 1/5, (b) X = 2/5, and (c) X = 2/5. The sequence shown in (c) has the 
same energy as the sequence shown in (b), but it has fewer exposed hydrophobics. Algorithm A 
arbitrarily chooses one of these two solutions. 
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proposition proves that Algorithm A generates a sequence whose energy is within a multiplicative 
factor of two of the optimal energy. 

Proposition 1 A(G,  A) 5 $OPT(G, A). 
Proof. Let E! equal the energy of a connected component of the contact graph from class i 

with k vertices. Note that E: = - k  + 1, E4 = - k  and El  5 - k  - 1. Consequently the optimal 
sequence labels components hydrophobic in class i + 1 before labeling components hydrophobic in 
class i. 

If Algorithm A executes step 3, then A(G,A) = OPT(G,A) because this step minimizes the 
number of components included from class (1)) thereby maximizing the total energy of the designed 
sequence. 

Otherwise, a sequence s has been designed such that E(G,s) 5 -J + 1. For the optimal 
sequence each hydrophobic can have at most four contacts except for two hydrophobics that can 
have five. Also, at least eight of the vertices with degree three or less, because there are eight 
“corners” to  the three-dimensional conformation. Thus we have 

f -3J /2  , J 5  8 
, J = 9  
, J = 1 0  
, J > 10 -(24 + 10 + 4 ( J  - 10))/2 = -2J + 3 

Consequently, A(G, A) 5 iOPT(G,  A). 

Proposition 1 shows that there exists a performance guaranteed approximation algorithm for 
the canonical method for both the 2D and 3D cubic lattice. On the 2D lattice, there are only nine 
topological classes of contact graphs possible because there are at most two vertices in the contact 
graph that have degree three (these are the endpoints of the protein chain). The following lemma 
proves that on a 2D cubic lattice Algorithm A generates a sequence whose energy comes within 
one energy unit of the optimal energy. 

Proposition 2 A(G, A) _< OPT(G,  A) + 1. 
Proof. Recall that the optimal sequence labels components hydrophobic in class i + 1 before 

labeling components hydrophobic in class i .  
If Algorithm A executes step 3, then A(G,A) = OPT(G,A) because this step minimizes the 

number of components included from class (1)) thereby maximizing the total energy of the designed 
sequence. 

If Algorithm A executes step 4, then A(G, A) 5 OPT(G, A) + 1. Because each component in 
class (2)  with 5 vertices adds - k  to  the energy, if any collection of components from this class can 
be filled exactly the total energy of these components will be - (J  - 123). If any component is only 
partially filled with k vertices, then its energy is at most -k + 1. Since the optimal labeling may 
exactly fill a set of components from class (2)) this implies that A(G, A) _< OPT(G, A) + 1. 

If Algorithm A executes step 5, then A(G, A) 5 OPT(G, A) + 1. On the 2D cubic lattice there 
exists two topologically distinct possible connected components in class (3). Furthermore, there 
can exist at most a single component from these two categories because there are at most two 
vertices with degree three in the contact graph. Now if this component were completely filled, it 
would have energy - J  - 1. Since it cannot, the optimal energy is greater than or equal to  - J .  
Algorithm A fills in this component to form a connected subcomponent of hydrophobics that has 
energy no greater than - J t 1. Consequently, A(G, A) 5 OPT(G, A )  + 1. 
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4 The Grand Canonical Method 

Sun et al [6] define the grand canonical method, which is a HSD problem for a variation of 
the HP model. Like the HP model, their model uses a contact energy potential that categorizes 
amino acids as either hydrophobic (nonpolar) or hydrophilic (polar). The contact energy gives an 
energy of -2 to hydrophobic-hydrophobic contacts, an energy 1 for every solvent accessible site on a 
hydrophobic amino acid, and 0 for all other interactions. This contact potential is used to eliminate 
the need to  specify the fraction of hydrophobics in the sequence needed by the canonical method. 
Because hydrophobics are penalized for their exposure to solvent, this contact potential implicitly 
limits the number of hydrophobics in the sequence. 

The goal of the grand canonical method is to label a subset of the vertices in a contact graph 
hydrophobic such that E(G, s) is minimal. The remainder of this section shows that this problem 
can be solved exactly in polynomial time for contact graphs embedded on 2D and 3D cubic lattices. 
Let c(v;,V) be the number of contacts that the ith amino acid makes with the amino acids in V, 
and let w(v;) be the number of solvent-residue contacts that the ith amino acid makes. Now 
suppose there exists an amino acid vi for which ~ ( v ; )  - 2c(w,,V~) > 0, where VH V are the 
amino acids labeled hydrophobic. If this amino acid is labeled a hydrophilic, then the energy of 
the conformation will decrease. 

This observation leads to a simple greedy algorithm that iteratively scans each of the amino 
acids v,, relabeling them as hydrophilic if w(v;) - 2c(v; ,V~) 2 0 and removing v, from VH. Fig- 
ure 4 describes this algorithm, Algorithm B. The DOLABEL subroutine implements this greedy 
relabeling of hydrophobic amino acids to hydrophilic amino acids. The MAIN routine calls DOLA- 
BEL to find an initial set of hydrophobic amino acids. It then performs several additional calls to 
DOLABEL to see whether a lower energy sequence could be designed by labeling the endpoints (vl 
and v,) of the sequence hydrophilic. 

Proposition 3 proves that the sequence s designed by Algorithm B is the sequence that minimizes 
E(G,s) .  Subroutine DOLABEL makes at most n passes through the outer loop, since each pass 
ensures that at  least one amino acid is labeled hydrophilic. The inner loop requires a check of at 
most n amino acids to pick the amino acid for which w(v)  - 2 c ( v , V ~ )  is maximized. Thus, the 
complexity of Algorithm B is O(n2) .  

Proposition 3 Let s be the sequence generated by Algorithm B for a contact graph G embedded 
on the 2D or 3D cubic lattice. Then s minimizes E(G,s) .  

Proof. We consider the performance of Algorithm B for contact graphs embedded on the 3D 
cubic lattice. Since the 2D cubic lattice is a subset of the 2D cubic lattice, it follows that this 
analysis also applies to Algorithm B when restricted to contact graphs embedded on the 2D cubic 
lattice. 

We begin by showing that the optimal set of vertices labeled hydrophobic is V* C VI. Suppose 
that V* sf VI.  Consider the sequence of vertices that are labeled hydrophilic and removed from 
15 by Algorithm B. Let v be the first vertex in this sequence that is contained in V*, and let 1; 
be the set of hydrophobic vertices just before v is labeled hydrophilic. Since v @ we know that 
w(v) - 2c(v,V,) 2 0. We also know that w(v) - 2c(v,& < 0 because v E V*. This implies that 
c(v,V*) > c(v’,&), but this is impossible because V* E V,. Consequently, V* 

Suppose that G is embedded on the 3D cubic lattice. Then w(v)+c(v,  VH) 5 w(v)+c(v, V )  _< 5. 
For 2: E VI,  ~ ( v )  - 2c(v,v1) < 0. Consequently, every v E VI has the property that it is one of 
the following (e(.}, w(v)) pairs: (#,O),  (4,1), (3,2), (3 , l ) )  (2,3}, (2,2), (2,1), or (1,l). Among these 
pairs, only the (2,3) pair has the property that ~ ( v )  - c ( u )  > 0. 

VI. 
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MAIN(V) 
BEGIN 
(el, V I )  = DOLABEL(V) 
(e2,V2) = DOLABEL(% - { V I } )  

( e 3 , V 3 )  = DOLABEL@ - {Q}) 
( e 4 , V 4 )  = DOLABEL(V~ - {v1,v2}) 

i = arg minj ej 
for all v E 
for all v E V - 
END 

label v hydrophobic 
label v hydrophilic 

(e,Vf) = DO LABEL^) 
BEGIN 

t = l  
DO 

v , = v  

Pick v’ E V, such that ~ ( v ’ )  - 2c(v’,&) 2 ~ ( v )  - 2c(v,&) for all v E V, 
IF (w(v’) - ~c(v‘ ,&)  2 0) 

V,+l = V, - {vf> 
ENDIF 
t++ 

VNTIL ( I & \  = 0 OR \&I  = I&-ll) 

I V’ = vt 

I Figure 4: Algorithm B. 
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Figure 5 :  Illustration of the application of Algorithm B to the 2D target conformation in Figure la. 

If V I  is composed of vertices that are non-(2,3) pairs, then it is optimal. Removing any vertex 
can only increase the total energy. Consequently, we must focus on removing the vertices that are 
(2,3) pairs. There can only be two such vertices, because these vertices must be the endpoints 
of the amino acid. Consequently, we can exhaustively determine whether labeling these vertices 
hydrophilic leads to  a decrease in the total energy. This is reason Algorithm B performs the three 
additional calls to  DOLABEL. It follows that the optimal set of hydrophobics is identified by 

Figure 5 illustrates the application of Algorithm B on to  the target structure shown in Figure la. 
Algorithm B can only label solvent accessible vertices as hydrophilics, so this HSD problem preserves 
a reasonable notion of a hydrophobic core. 

Algorithm B. 

5 Discussion 

Our analysis of the canonical and grand canonical methods illustrates two ways in which compu- 
tational complexity can provide insight into sequence design. First, a complexity analysis provides a 
well defined measure of the practical relevance of a HSD problem. Our intractability analysis of the 
canonical method shows how sequence design problems can fail to reduce the apparent difficulty of 
the inverse protein folding problem. Because this problem is intractable, its practical utility seems 
quite limited. Our analysis of the grand canonical method demonstrates that sequences can be 
efficiently designed, thereby ensuring that this method can be used in practical contexts. Although 
careful experimentation is also necessary to  evaluate the practical utility of HSD problems, com- 
putational analyses provide a rigorous basis for evaluating their practical utility. Prior work with 
both of these HSD problems used weak stochastic methods to design sequences, so our analyses 
provide the first critical evaluation of the computational difficulty of these problems. 

The second way complexity analyses can provide insight is through the rigorous evaluation of 
the HSD problems. Our analysis of approximation algorithms for the canonical method suggests 
that it is relatively easy to  find near optimal sequences for the 2D cubic lattice, since it is possible 
to  quickly determine sequences that differ from the optimal by at most one. However, our weaker 
bound on the 3D cubic lattice might indicate that finding near optimal sequences for this problem 
is more difficult. 

. Similarly? our analysis has led to  new understandings about the relative strengths and weak- 
nesses of these models. For example, Figure 3 illustrates how the Canonical method can be indif- 
ferent to factors like the number of solvent accessible hydrophobic amino acids. Also, a careful 
examination of the grand canonical method reveals that there can exist subsets of V* that can be 
labeled either hydrophilic or hydrophobic (as a whole) without affecting the total energy of the 
sequence. This implies that there may not be a single best sequence predicted by the grand canon- 
ical method, but a potentially large number of best sequences. This observation suggests that we 
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should be careful when evaluating the solution to  this method in the context of the IPF problem. 
This work has raised a variety of open problems related to 1PF:The complexity of IPF remains 

the most important unresolved question, and we conjecture that solving IPF is in fact NP-hard. As 
we mentioned earlier, it would be interesting to  evaluate the complexity of the canonical method 
when the space of possible conformations is restricted. Our analysis of the grand canonical method 
leaves several questions unanswered. First, can this analysis be extended to  related models where 
the contact energy is -a, Q E Q+? For specific values of a this problem can be solved efficiently, but 
the analysis presented in here does not generalize to  certain cases. Similarly, it would be interesting 
to  extend the analysis of the grand canonical method to  handle contact graphs generated by off- 
lattice conformations. 
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Appendix 

Computational intractability refers to  our inability to  construct efficient (i.e., polynomial time) 
algorithms that can solve a given problem. Here, “inability” refers to both the present state-of-the- 
art of algorithmic research as well as the possible mathematical statement that no such algorithms 
exist. Customary statements about the intractability of a problem are made by showing that the 
problem is NP-complete. The best known algorithm for any NP-complete problem takes more than 
a polynomial number of computational steps, which makes these problems “practically intractable.” 

The class of problems NP includes a wide variety of notoriously difficult combinatorial problems, 
such as the traveling salesman problem, various scheduling problems, and network design. An 
instance is the information needed to  specify a particular example that needs to  be solved (e.g., the 
target conformation). Problems in NP have the property that given an instance of the problem and 
a potential solution, one can efficiently determine whether the potential solution actually solves 
the problem instance. A problem is NP-complete if (a) it belongs to NP, and (b) if there is a 
polynomial algorithm that can solve this problem then this algorithm can be adapted to  solve all 
of the other problems in NP. Hence, the problem is at least as hard as every other problem in NP. 
For a thorough treatment of NP-completeness see Garey and Johnson [2]. 

Formally, NP-complete problems are decision problems, for which the answer is either yes or no. 
Optimization problems are not directly considered within the framework of NP-completeness. How- 
ever, optimization problems can be transformed into a decision problem by introducing a threshold 
B and asking whether a solution with value less than or equal to B exists. The corresponding 
optimization problem is at least as hard as the decision problem, since finding the optima1 solution 
would answer this decision problem for every value of B. Consequently, an optimization problem 
is NP-hard if its corresponding decision problem is shown to be NP-complete. 
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Technical Appendix to  “On the Computational Complexity of Sequence 
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A Proof of Theorem 1 

To prove Theorem 1, we use a reduction from the following NP-complete problem [a].: 

SUBSET SUM 
Given: A = { a l , .  . ., a k } ,  ai E Z+; B E Z+ 
Question: Does there exist a subset A‘ C A such that 

= B ?  
aEA’ 

Proof. The following reduction is used to transform an instance of SUBSET SUM to an instance 
of ( L ,  A, HP)-IPF. Let v, S E Z+ such that X = v/S. Let A = ( a l ,  . . . , a k } .  For each a; we construct 
a subconformation of the final conformation as shown in Figure 6a. The subconformations for ai 
and a;+l are connected together by sharing the points at the ends of the chain folded in Figure 6a. 
Thus the complete conformation, G, can be viewed as a chain of independent subconformations; 
this conformation has n = 1 + 7k + CaEA 8a vertices. The transformation constructs this chain, 
and defines K = -4B and X = 4B/n. 

Figure 6: Illustration of the subconformation used to construct contact cycles of length 4a for every 
a E A: (a) the subconformation, and (b) the corresponding contact graph. 

Suppose there a subset A’ 2 A such that CaEA, a = B. Then we can design a protein sequence, 
s, for this conformation by labeling the subconformations corresponding to the a E A’ as follows. 
Label each of the amino acids that has zero or one contacts as a hydrophilic and label remaining 
amino acids as hydrophobics. For subconformations corresponding to the a E A-A’,  label all amino 

mailto:cs.sandia.gov
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acids as hydrophilics. For each a E A', the corresponding subconformation has 4a hydrophobic- 
hydrophobic contacts, and all other subconformations have none. Thus 

E ( G , s ) =  - 4a= -4B 5 li 
aEA' 

Now consider a sequence s with [An1 or fewer hydrophobics for which E ( G , s )  5 .Ti. Let n~ 
equal the number of hydrophobics in s. The maximum number of contacts each hydrophobic can 
make is two, so E(G,s)  2 -nH >_ - [nAl = -4B = K .  Now E(G,s )  5 K, so n H  = [nAl. The 
contact graph contains connected components that are even length cycles with lengths 4a, a E A .  
To guarantee that each hydrophobic contributes exactly one to the total energy, the hydrophobics 
have to be used to fill cycles in the contact graph; if any cycle is filled only partially, there will 
exist a hydrophobic that only has one contact, from which it follows that E(G,s )  > K ,  which is 
a contradiction. Now let A' represent the set of elements in A that correspond to cycles that are 
completely filled. It follows that 

a = -E(G, s)/4 = B. 
aEA' 

We have shown that an optimal sequence for G has energy K if and only if there is a subset 
of A with size B. Now the transformation from SUBSET SUM requires polynomial time, and 
we can quickly verify whether or not a given sequence has energy less than or equal to I<. Thus 
we conclude that ( L ,  A, HP)-IPF is NP-complete. This argument utilizes embeddings into the 2D 
cubic lattice. Since this is a subset of the 3D lattice, this argument applies for both the 2D and 3D 
cubic lattices. 


