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Abstract 

We present two supervised learning algorithms for hidden 
Markov models (HMMs) for sequence discrimination. When 
we model a class of sequences with an HMM, conventional 
learning algorithms for HMMs have trained the HMM with 
training examples belonging to the class, i.e. positive ex- 
amples alone, while both of our methods allow us to use 
negative examples as well as positive examples. One of our 
algorithms minimizes a kind of distance between a target 
likelihood of a given training sequence and an actual likeli- 
hood of the sequence, which is obtained by a given HMM, 
using an additive type of parameter updating based on a 
gradient-descent learning. The other algorithm maximizes 
a criterion which represents a kind of ratio of the likelihood 
of a positive example to the likelihood of the total example, 
using a multiplicative type of parameter updating which is 
more efficient in actual computation time than the additive 
type one. We compare our two methods with two conven- 
tional methods on a type of cross-validation of actual motif 
classification experiments. Experimental results show that 
in terms of the average number of classification errors, our 
two methods out-perform the two conventional algorithms. 

1 Introduction 

In the recent computational molecular biology field, hid- 
den Markov models (hereafter referred to as HMMs) have 
been the most widely-used approach in a number of basic 
and crucial tasks such as computing profiles or aligning se- 
quences [B]. HMMs are stochastic models suitable for time- 
series or sequences including deletion, insertion or even iter- 
ation, and this feature makes HMMs suitable for analyzing 
biological sequences in one-dimensional level. 

In training the parameters of HMMs, there is a well- 
known algorithm called “Baum-Welch” [4], which is the most 
popular method in a variety of fields to which HMMs are 
aonlied. This algorithm. which is based on a dvnamic nro- 
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gramming approach, is ‘a type of EM (Expectation Maxi- 
mization) algorithm [7] and is extremely efficient in com- 
putation time in training an HMM. When given an HMM 
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representing a certain class and the examples belonging to 
the class, i.e. positive examples, this algorithm trains its 
parameters to maximize the sum of log-likelihoods of given 
positive examples. However, molecular biological sequences 
such as nucleotide or amino acid sequences are obtained by 
only time- and money-consuming biochemical experiments, 
and thus the number of positive examples is usually lim- 
ited, while Baum-Welch requires a number of positive ex- 
amples to achieve high discrimination accuracy for unknown 
sequences. 

In light of this disadvantage of the Baum-Welch algo- 
rithm, a number of approaches have been proposed to im- 
prove sensitivity of HMMs. These approaches include a 
prior-based approach proposed by a UC Santa Cruz group [6] 
and the learning methods of Krogh et a1.[12] and Eddy 
et a1.[9], both of which introduce new criteria for training 
HMMs using positive examples, instead of the maximum 
log-likelihood criterion used in Baum-Welch. 

In this paper, we present two supervised learning meth- 
ods for HMMs to improve sequence discrimination sensitiv- 
ity, both of which enable us to use not only the sequences 
belonging to a class represented by an HMM but the se- 
quences which do not, i.e. negative examples. One of the 
two methods smoothly minimizes a kind of error-distance 
between a target value of the likelihood of a given sequence 
and a calculated value of that when given a model, using a 
gradient-descent algorithm which additively updates param- 
eters and is typically used in training feed-forward type neu- 
ral networks. Thus, this method allows us to use a dataset 
in which each training sequence has its own real-valued tar- 
get likelihood which should be output by the model for the 
sequence. This gradient-descent algorithm enables us to 
smoothly change parameters, and Baldi and Chauvin 131 
also used this additive smooth parameter change to train 
HMMs using positive examples alone. On the other hand, 
the other method maximizes a criterion representing a type 
of ratio of the likelihood of a given positive example to the 
likelihood of the given total example, using a multiplicative 
type of parameter change which corresponds to a modifi- 
cation of the Baum-Welch algorithm. Since a multiplicative 
type of parameter change is used, this algorithm is more effi- 
cient in actual computation time than our smooth algorithm 
or Baldi’s smooth one, both of which let the parameters of 
HMMs change slowly and require a much greater number of 
iterations in training HMMs. We evaluate our two methods 
with a type of cross-validation in an actual motif classifi- 
cation problem and compare the results with those of two 
other methods, i.e. the Baum-Welch algorithm and Baldi’s 
algorithm. 
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In our expf+meuts, we used a consensus pattern of sugar 
transport proteins, which is noted in the I’R.OSITE database [2], 
and from Swiss-Prot database [l] Release 29.0, obtained 68 
partial sequences corresponding to the consensus pattern, 
of which 49 arc regarded as positive examples and 19 neg- 
ative. We divided this data into two datasets. In train- 
ing, w<’ trained HMMs using one dataset and in test, using 
the trained HMMs, tried to classify the other dataset into 
two classes, i.e. positive and negative. For each learning 
algorithm and at each size of HMMs, we repeated this ex- 
perimental procedure twenty-five times with random initial 
values and wii h randomly divided datasets, and evaluated 
the discrimination accuracy of the learning algorithms by 
the avclrage number of classification errors over the twenty- 
five trials. Experimental results showed that for HMMs of 
all sizes, our two methods greatly out-performed the Baum- 
Welch and Baldi methods in terms of the number of errors 
generated in classifying unknown sequences. From these re- 
sults. we conclude that our two methods using negative ex- 
amples are effective in this type of classification problem for 
discriminating unknown biological sequences. 

2 Hidden Markov Models 

In this paper, we consider a first-order HMM which has been 
typically used for representing biological sequences [ll]. The 
HMM has states, at each of which a symbol is generated, 
and arcs, each of which allows a transition between two 
states. There are two types of probability parameters, i.e, 
state transition probabilities and symbol output probabilities, 
which are attached to arcs and states, respectively. We spec- 
ify on<’ or more starting and finishing states in an HMM. 
Possible transitions are made successively from a starting 
state to a finishing state, and the relevant transition prob- 
ability and symbol out,put probability can be multiplied at 
each transition to calculate the overall likelzhood of all the 
outputted symbols produced in the transition path up to 
that point. When all transitions are finished, the HMM 
generates a symbol sequence according to the likelihood of 
each path along which a sequence could have been formed. 
In other words, when the sequence is given, there are one 
or more transition paths that could have produced it, each 
of which would generate the sequence with a specific likeli- 
hood that the sequence is in the path. We regard the sum 
of the likelihoods obtained for all such transition paths as 
the likelihood that the sequence was gen.erated by the HMM. 

According to the definition of [14], let the number of 
states be N, the number of symbols be M, the state transi- 
tion probability from state i to state j be aij (; = 1, , N, j = 
1,. . , N), and the symbol output probability at state i be 
hi(c) (C = 1, .. , h/l). Let the HMhl which is defined by the 
above notat,ion and is used hereafter in this paper be H. 
The HMM H has the first state from which any transition 
starts and the last state at which any transition finishes, and 
does not genrrate any symbol at these two states. 

The probabilities given above must, satisfy the following 
constraints: 

5 OL,J = 1, 5 bj(C) = 1. 

, c 

oil > 0, b,(c) L 0. (1) 

Let the length of the s-th training sequence 0” be I, 
and tho t-th symbol of 0” be 0; (i.e. 0” = 0; 0; ), 

\Ir, define the forward probability at(j), which “is the 
probability that the partial sequence 0; 0: is generated, 

and that the state at time t is j. The forward probability 
can be iteratively calculated as follows: 

N 

m(j) =c a,,bj(O;)at-l(i) (t = 1,. . .1=), 

so(j) = 1, if j can be the first state, and 

so(j) = 0, if not. 
N 

n1 I +1(j) =C a,,cu,. (i). 

Similarly, we can define the backward probability /Jt(i), which 
is the probability that the partial siquence Of+, . Of,” is 
generated, and that the state at time t is i. The backward 
probability also can be iteratively calculated as follows: 

N 

A(4 = ~Q,(O;+dPt+dj) (t = 1, - l,...,O), 

131,+1(i) = 1, if i can be the last state, and 

pl,*+l(i) = 0, if not. 

Note that c, w,+l(iM,+l(i), as well as C, ao(i)Po(i), 

corresuonds to the likelihood that the niven training se- 
quench 0” is generated by the HMM H, re. P(O”IH)r 

We further define the two probabilities y and 6 which are 
used in the description of the learning algorithms of HMMs, 
as follows: 

-Q(i) = at (i)Pt (i) 
P(O”1H) ’ 

<t(i,d = 
at(i)aijbj(O~+*)Pt+,(j) 

P(O”lH) . 
ct = o, ..., 1 _ 1) 

.9 > 

Here rt(i) corresponds to the probability that the sequence 
0” is generated by the model Ii, and that the state at time 
t is i. [,(i, j) is the probability that the sequence 0” is 
generated by the model I-I, and that the state at time t and 
t + 1 arc i and j, respectively. 

3 Learning Algorithms 

In this section, we first show two existing learning algorithms 
for HMMs, i.e. the Baum-Welch algorithm [4] (hereafter re- 
ferred to as the BW) and Baldi’s smooth algorithm [3] (here- 
after referred to as the BA), and next show our two learning 
algorithms for HMMs for sequence discriminations, i.e. a 
smooth algorithm [13] (hereafter referred to as the MA) and 
an efficient algorithm (hereafter referred to as the SEM). 

In both the BW and BA, the parameters of an HMM 
which represents a certain class of sequences are trained t,o 
maximize the sum of the log-likelihood of each training se- 
quence belonging to the class. That is, their goal is the 
maximum likelihood estimation and they use only positive 
examples as training data. 

On the other hand, the MA is an algorithm which mini- 
mizes a kind of distance between a given target value of the 
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likelihood of each training sequence and the actual likelihood 
of the sequence output by a given model. Thus, this algo- 
rithm allows us to use even a dataset in which each sequence 
has a target value of the likelihood which should be emitted 
by the trained HMM. The SEM is also an algorithm which 
uses the data which does not belong to positive examples, 
i.e. negative examples, but the data dealt with by the SEM 
comprise only two classes, i.e. negative and positive. The 
parameter updating rules of the SEM are similar to those 
of the BW, but the goal of the SEM is not so simple as the 
maximum likelihood criterion. 

3.1 Baorn-Welch Algorithm (BW) 

We use the the y and [ to briefly describe the BW [14] 
which is the most popular algorithm for training HMMs and 
updates u L3 and b,(O;). The goal of the algorithm is to 
maximize the likelihood of the observed sequence 0” when 
given the model H, that is, fl, P(O”JH). 

The probability iLi3 is reestimated using the y and <, as 
the expected proportion of the transitions made from state 
i that have state j as their destination among all the transi- 
tions made from state i. Similarly, 6,(c) is also reestimated 
using the y, as the expected yropor2ron of the symbols gener- 
ated at state i that are c (as opposed to any other symbols). 
The equations of these reestimations are shown as follows: 

3.2 Baldi’s Smooth Algorithm (BA) 

As in the BW, the BA[3] aims at maximizing the log-likelihood 
of the observed sequences, but this algorithm allows us to 
implement a smooth parameter change, i.e. an additive type 
of parameter updating, which is different from a multiplica- 
tive type of parameter updating in the BW. 

The BA first introduces real-valued parameters w;j and 
n,(c), from which a,, and b,(c) are calculated respectively 
using the following Boltzman distribution-like equations used 
in [5]. 

$9 (cl 
bj(c) = 

eke 
Xv)(k) ’ (2) 

where X is a constant. The equations allow wij and vj(c) 
to be any real value, satisfying the constraints of Equations 
(1) for a,, and bj(c). 

The BA gradiently changes these real-valued parame- 
ters, wij and vi(c), instead of ozj and hi(c), based on the 
gradient-descent algorithm which is typically used in train- 
ing feed-forward type neural networks. We show the smooth 
updating rules of the BA as follows: 

Aw;, = 
(W:3’w = w:;” + Aw,~ ) 

(u, (c)new = Vj (c)Old + AU, (c)) 

where C, and C!, are Constants. 

Online versions of these are shown as follows: 

Awij = C, C(G(i:j) -atjrt(i)), 

t=1 

- 
A’u~(c) = Cb fJYt(j)O;=c - bj(c)yt(j)). 

t=1 

3.3 A Smooth Algorithm for Sequence Discrimination (MA) 

As mentioned earlier, the MA [13] allows us to use a dataset 
including training sequences with a variety of their target 
likelihoods, and t,his method tries to minimize a kind of 
error-distance between the target likelihood for each sequence 
and the actual likelihood of the sequence, which is obtained 
by a given model. This algorithm also uses an additive type 
of parameter updating used in the BA. The MA first replaces 
the probability parameters e;j and bj (c) with real-valued pa- 
rameters w;j and u5 (c), as is done in the BA. 

When given the HMM H and n training sequences, let 
p, be the likelihood of the s-th sequence, i.e. P(O”lH), 
and p: be the likelihood which is set as the target value of 
the likelihood of the s-th sequence. 

The MA introduces the following d, ,and d,,, : 

d, = log($), 

d - log(&), maz - 
PZnin 

where pkaz is the maximum value of p: (s = 1, . . . . n) and 
pt;, is the minimum value of p: (s = l,...,n), or d,,, is 
fixed as any real number which satisfies d,,, > Ids/ (s = 
1, . . . . 7~) before the first iteration of this algorithm. The goal 
of this algorithm is that for each training sequence, d, should 
be 0 , and thus we train the real-valued parameters, w;j and 

vj (c), so that the error-distance function c. - log(w) 
11107 

is minimized. 
In order to achieve this goal, the MA presents the fol- 

lowing smooth learning rules for optimizing real-valued pa- 
rameters, wij and vJ (c). 

Au,(c) = c,): s (d%..d, cl:) t=l $J(Tt(j),;=c - bj(c)yt(j)), 

(zQ(c)‘=’ = v, (c)Old + Au,(c)) 

where C, and Cb are constants. 
Online versions of these are shown as follows: 
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and is twelve to fourteen residues long. In the pattern, the 
highly conserved “G - R - [RK]” motif is said to be a peculiar 
feature of transmembrane proteins including STP. 

AU;, = C, d,s &,A - a,,rt(i)), 
(&a, - &I t=l 

From the Swiss-Prot database [l] Release 29.0, we ob- 
tain 68 sequences, each of which comprises the consensus 
pattern. Of the sequences, we use 49 which are actually in 
the STP sequences as positive examples and 19 which are 
not as negative examples. It is worth noting that the neg- 
ative examples are false positive examples in terms of the 

3.4 An EfFicient Algorithm for Sequence Discrimination (SEM) 
consensus pattern of the STP motif. Concretely, we cannot 
recognize posit,ive examples from all the 68 sequences using 

We show the SEM for sequence discrimination, but this al- 
gorithm deals with only two types of examples, i.e. posi- 
tive anti negative examples, while the MA is able to handle 
the dataset in which each training sequence has any desired 
likelihood which should be output after training HnlM pa- 
rameters. 

Here: we as.c,ume that p: = 1 if the s-th sequence is a 
positive one; ol,herwise p: = 0. In the SEM. we maximize 
~~s,p~~~l~ ti” instt=ad of maximizing &,,,,z=,, ps as is 

done in the BW and the BA. 
Updating rules to satisfy this criterion are shown as fol- 

lows: 

ij(C) = 
&s,p:=l) rc”(4 - + c, PsY:(i) 
-j&pf=l) r=(i) - + C,PsYW’ (4) 

where y:(i) = ~~~,~,=, rt(l:). A brief derivation of 

Equation (3) is shown in Appendix, and Equation(4) is de- 
rived similarly. As shown in Equations (3) and (4), the SEM 
is a kind of modification of the BW, i.e. the maximum like- 
lihood, and is expected to be efficiently calculated in actual 
applications. 

4 Experimental Results 

We evaluated the sequence discrimination ability of our two 
learning algorithms and two conventional algorithms for HMMs 
with a protein motif classification problem. The HMMs we 
used here have between seven and fourteen states and are 
fully-connected HMMs. That is, any state except for the 
last (finishing) state has links to any state except for the 
first (starting) state, and the last, state has no link. In train- 
ing HMMs with the BA and MA, both C, and Cb are set 
as 1 in the MA and lo-‘.’ in the BA, and p: is set as 
( ~)o.olxl.3 and (~1 ’ i ygxfZ for positive and negative exam- 
ples, respectively. These values are adjusted to achieve high 
sequence discrimination ability through simple preliminary 
experiments. 

4.1 Sugar Transport Proteins Consensus 

We used the “sugar transport proteins (hereafter referred 
to as STP)” motif [lo] in our experiments. Its consensus 
pattern noted in the PROSlTE datahase[2] is “[LIVMSTA] 
- [DE] - x - [LIVMFYWA] - G - R - [RK] - x(4,6) - G ” 

the consensius pattern only, since both positive and negal 
tive sequences have the same pattern. Thus, the problem 
we now try to solve is rather difficult in that we have to 
separate positive examples from “Calse positive ” examples. 

4.2 Cross-Validation 

Using the obtained sequences: we conducted a type of cross- 
validation to evaluate the sequence discrimination ability of 
the MA and SEM and tcl compare them with those of the 
conventional BW and the BA. The procedure of this cross- 
validation comprises the following t,hree points. 

1. Positive and negative examples are randomly divided 
into two classes, i.e. training and test. 

2. In training HMMs, the BW and BA use only positive 
training examples while the MA and SEM use both 
positive and negative examples. In testing, using the 
trained HMM, we distinguish positive test examples 
from negative ones, based on the likelihood for each 
test sequence. All four methods use both positive and 
negative examples in testing. 

3. For each training dataset, we repeat the training five 
times with different random initial values, and we ran- 
domly generate the training and test datasets five times. 

Furthermore, in testing, in order to compare test se- 
quences having a variety of lengths with each other, we 
calculate the modified log-likelihood (hereafter referred to 
as the MLL) of each sequence, which is obtained by di- 
viding the log-likelihood calculated for the sequence by its 
length. The discrimination ability of trained HMMs is mea- 
sured by the minimum number of errors (hereafter referred 
to as MNE) which can be obtained while changing a cut- 
off value for the MLLs for test sequences, which classifies 
test examples into two classes, i.e. positive and negative 
examples. 

For four learning methods in this cross-validation, Fig- 
ure 1 shows the average MNE over all the repeated trials for 
all sizes of HMMs. In all HMM sizes, the MA reduces the 
average MNEs of the BW and BA. The SEM also reduces 
the average MNE of the BW and BA in all cases except 
two. Both results indicate that our methods using nega- 
tive examples reduce the average number of errors made by 
conventional approaches in training HMMs. In particular, 
the figure shows that the MA which achieves the minimum 
number of errors in all HMM sizes except one is the best 
method for this sequence discrimination problem among the 
four types of methods. 

Figure 2 shows the distribution of MNE for HMMs with 
no less than ten states, for four types of learning methods. 
This figure much more clearly shows the advantage of the 
use of negative examples in this problem. That is, the MNEs 
of the MA and SEM concentrate on only “one” while those 
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Figure 1: Average MNE for four types of learning methods 

1 BW 1 BA 1 MA 1 SEM 
computation time set ) 1 16.8 1 243.0 1 85.6 1 24.2 

Table 1: Example of actual computation time for training 
HMMs 

of the BW and BA are distributed over “one to three”, and 
in short. our two methods surpass the BW and BA in this 
motif classification problem. Totally, from Figures 1 and 2, 
the MA presents the most favorable result for this problem 
among the four learning methods. However, in Figure 2, 
the SEM surpasses the other three methods in the number 
of HMMs in which the MNE is equal to zero. 

For four learning methods in the cross-validation, Table 
1 shows the actual computation time in training an HMM 
on a Silicon Graphics Onyx graphic workstation, as mea- 
sured under equal conditions. Each is averaged by ten tri- 
als using HMMs with seven states. Note that both the MA 
and SEM deal with negative examples and thus they require 
longer training time than those of the BA and BW even if 
the computation time for a single sequence is uniform over 
the four methods. Further note that the computation time 
greatly changes in the BA and MA according to the values 
of the constants in their learning algorithms. As shown in 
the table, the BW and SEM are faster in training HMMs 
than the other two adopting smooth algorithms which basi- 
cally require more iteration than the multiplicative type of 
iterations done in the BW and SEM. 

In this cross-validation test, there are a number of HMMs 
with only seven states trained by the SEM which actually 
achieve “zero” error, and we show two examples of them in 
Figures 3 and 4. In these figures, we draw only the links 
whose state transition probabilities exceed 0.1 and the sym- 
bols whose output probabilities also exceed 0.1. 

In Figure 3, the second st,ate from the right corresponds 
to the two positions fixed at G in the STP consensus pat- 
tern, and each of the states except for the tist state from the 
left corresponds to two or more positions in the consensus 
pattern. In particular, the region “x(4,6)” in STP consen- 
sus pattern is modeled by only one state with a self-loop, 
i.e. the third state from the right. Under this condition, 
this HMM classifies test examples perfectly. This result in- 

dicates that in terms of sequence discrimination sensitivity, 
the HMM modeling the STP motif can be represented by a 
rather smaller number of states than the minimum length 
of the obtained consensus sequences of the STP motif, if 
appropriate good priors for HMM parameters are given. 

In Figure 4, there is also the state outputting G with 
high probability, and the “G - R - K/R” motif which is said 
to be peculiar to a transmembrane region is modeled by the 
two states on the right-hand side of the figure. The region 
“x(4,6)” in the consensus pattern is modeled by the other 
three states in the figure, and the result is different from 
Figure 3. That is, the states in this figure are split into 
either a particular motif region or another region at which 
amino acids appear relatively randomly. This result would 
also support the expectation that with respect to sequence 
discrimination, an HMM of relatively small size would be 
sufficient for modeling the STP motif. 

5 Conclusion and Discussion 

We have presented two learning algorithms, the MA and 
SEM, for HMMs for sequence discrimination. In experi- 
ments, we evaluated these learning methods in comparison 
with two conventional methods, i.e. the BW and BA. Ex- 
perimental results show that for any size of HMMs, our two 
methods reduce the number of discrimination errors made 
by the two conventional ones. From the experiments, we can 
conclude that our two methods using negative examples are 
effective for the motif classification problem shown in this 
paper. 

Each of our two methods has its own merits and demer- 
its, as we described earlier. One advantage of the MA is that 
it can handle a dataset in which each sequence has a real- 
valued target likelihood while the SEM deals with only two 
types of data, i.e. positive and negative. Another advantage 
is that the MA makes fewer discrimination errors than the 
SEM (Figures 1 and 2). On the other hand, the SEM is more 
efficient in terms of computation time for training HMMs, 
as shown in Table 1. From this comparison, we might say 
that the MA is the best method for sequence discrimination 
so long as there is no strong time constraint. 

In Figure 1, the difference in the average MNE between 
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MA 
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” 
2 3 

MNi4 
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Figure 2: Error distributions of four learning methods 

V:O.67 R:0.49 R:0.57 ~:0.28 G:0.99 
1:0.12 D:0.28 K:0.31 1:0.18 

start s:o.12 E:0.22 f inieh 

0.99 0.99 0.99 0.48 

0.48 

Figure 3: An example of trained HMM 

our methods and the others might appear to be small. Actu- 
ally, even the maximum margin of the average MNE between 
the best of our two methods and the worst of the other two 
ones, which is obtained in ten-state HMMs, is no more than 
1.0. This result indicates that it is rather easy to discrim- 
inate the dataset used here into two classes and that the 
BW and BA also achieve a relatively small number of er- 
rors. Another possible reason for this result lies in the small 
number of data used here. That is, due to the need for cross- 
validation in the test, we used only 34 of the 68 sequences 
obtained. If we were to use a somewhat larger dataset com- 
prising the sequences which cannot easily be separated into 
two classes, a greater difference in the average MNE between 
our methods and the others would be seen. 

As in our experiments, when we discriminate only two 
types of examples, i.e. positive and negative, practically we 
can consider a number of criteria including n 

{slP:=l) * 
used in the SEM, each of which should be maximized and 
each of which represents a kind of proportion of the like- 
lihood of a positive example to the likelihood of the total 

example. As in the SEM, we would be able to derive for all 
the criteria a similar type of updating rule corresponding to 
a modification of the BW, i.e. a multiplicative type of pa- 
rameter change. However, using negative examples in this 
way cannot be applied to a dataset in which each example 
has its own target likelihood, which dataset can be handled 
by the MA. To train HMMs with such a type of dataset, we 
currently have to use an additive type of parameter updat- 
ing as in the MA, and this requires more computation time 
than the use of multiplicative updating learning methods. 
Thus, one possible subject for future work is to build an 
efficient multiplicative type of algorithm for HMMs, which 
would allow us to deal with a dataset in which each train- 
ing sequence has its own target likelihood to be output by 
a trained model. 
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D:0.21 
E:0.17 
T:0.15 n o.55 

finish 

L:o.31 A:0.22 G:0.99 
v:o.21 F:0.20 
R:0.13 

Figure 4: An example of trained HMM 

Appendix 

We define a log-likelihood L as follows, and the SEM tries 
t,o maximize the L. 

L = log(n,$hg p, ) 

9 

= c hp.9 -1ogcp. 
IsIP:= 3 

In this algorithm, we search for &ij which maximizes the 
L, that is, &ij satisfying L’ = 0. We use Equations (2) to 
derive the following differentiation : 

Here, pl = e and we calculate two terms of the above 

equation and d&ive the following two equations : 

ill T,-I 

c 

PS 
-i- (Et(4.i) -&j%(i)) 

tslP:=l) 
Pa = cc 

{slp:=l} t=1 

C.A - = C,P.9 C~~~‘(tt(i~j) - &jYt(i)) 

c, Ps CSPS 

Using both equations, we obtain the &ij as in Equation 
(3). 
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