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Abstract 

Recently, Gelfa‘nd, Mironov and Pevzner (Proc. Nat/. Acad. 
S’ci. USA (1996) 93, 9061-9066) proposed a spliced align- 
ment approach to gene recognition that provides 99% ac- 
curate recognition of human gene if a related mammalian 
protein is available. However, even 99% accurate gene pre- 
dictions are insufficient for automated sequence annotation 
in large-scale sequencing projects and therefore have to be 
complemented by experimental gene verification. 100% ac- 
curate gene predictions would lead to a substantial reduction 
of experimental work on gene identification. Our goal is to 
develop an algorithm that either predicts an exon assembly 
with accuracy sufficient for sequence annotation or warns 
a biologist that the accuracy of a prediction is insufficient 
and further experimental work is required. We study subop- 
timal and error-t,olerant spliced alignment problems as the 
first steps towards such an algorithm, and report an algo- 
rithm which provides 100% accurate recognition of human 
genes in 37% of cases (if a related mammalian protein is 
available). For 52% of genes, the algorithm predicts at least 
one exon with 100% accuracy. 

1 Introduction 

In 1995- 1996, the area of gene prediction in cukaryotic DNA 
experienced a shift from statistical procedures to combina- 
torial algorithms based on similarity search. The similarity- 
based approach responds to the challenge of using GcnBank 
For gene predictions and promises to be the method of choice 
in the future. 

Conventional statistical approaches l,o gene recognition 
(Gelfand, 1990, Green and Hillier, 1991, Uberbacher and 
Mural, 1991, Guigo et al., 1992, Gelfand and Roytberg, 
1993, Snyder and Stormo, 1993, Solovyev et al., 1994, Xu 
et, al., 1994) use the facts that (i) coding function puts con- 
straints on nucleotide sequences, and (ii) splicing machinery 
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puts constraints on splicing sites. Thus one can measure 
these constraints using coding potential and strength of splic- 
ing sites (Fickett, 1995, Gelfand, 1995). However, none of 
these measures are sufficiently reliable: one either gets a lot 
of false exons or loses some true exons. Currently, corre- 
lation between predicted and actual genes is around 70%, 
with less than 50% of exons predicted correctly even for the 
best gene recognition programs which do not use similarity 
search (Burset and Guigo, 1996). Use of these predictions 
for sequence annotation in databases is hardly possible since 
it would create a clutter of unreliable feature tables. It indi- 
cates that conventional programs for gene recognition prob- 
ably have reached the limit of accuracy. This not comforting 
conclusion was offset by a very important observation made 
by Burset and Guigo, 1996. They noticed that a similarit.y- 
based approach (Seely et al., 1990, Gish and States, 1993) 
greatly improves t,he accuracy of gene recognition: a sin- 
ple use of sequence similarity in GeneParser (Snyder and 
Stormo, 1995) and GeneID led to an immediat.e increase in 
the correlation coeficient by 15% (see Burset and Guigo, 
1996 for the definition of correlation coefficient). 

Gelfand et al., 1996 suggested a spliced alignment al- 
gorithm for similarity-based gene recognit,ion and demon- 
strated that many human genes can be accurately predicted 
eveq in the cases when only distantly related bacterial or 
yeast proteins are available. The spliced alignment algo- 
rithm provides 99% accurate recognition of human gene (i.e. 
average correlation coefficient of prediction is 99%) if a rr- 
lated mammalian protein is available. Although 99% ac-cu- 
rate gene predictions look almost like an acme of pcrfect~iorl, 
they are not sufficiently reliable for sequence armotation. 
The quest,ion arises: why do biologists want such inaccurate 
predictions if they cannot provide a reliable datubase nnno- 
tntion and protein sequence? The answer to t,his question is 
simple: biologists use the predictions as clues to direct fur- 
ther experimental work. However, a biologist might prefer 
an accurate prediction of primers rather t.hnn an inaccll- 
rat,e prediction of entire genes. Since accurate prediction 
of primers can be done wit,hout, accurate gene recognition 
(Storm0 and Haussler, 1994, Roytberg et al., 1996), we feel 
t,hat, any gene predictions with less than 100% accuracy have 
rather limit,ed applications. From lhis perspective, we are 
trying to develop an algorithm that, either predicts an exon 
assembly with accuracy sufficient for sequence annot.at.ion 
(say in half of thp cases) or warns a biologist t,hat, accuracy 
of a prediction is insuffIcient and further experimental work 
is required t,o complete the annotalion (in this case, 0111 
goal is t.o provide biologists with accurate primer- preclic- 

tion). An 100% accurate gene prediction in half of the cases 
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would greatly reduce experimental work on gene verification 
in large-scale sequencing project,s. 

Algorithms which provide a correct answer in some cases 
and have an option “no answer” in other cases are known 
as Las Vegus algorithms in computer science (Brassard and 
Bratley, 1996). The term “Las Vegas” was introduced to 
distinguish algorithms that “reply correctly when they re- 
ply at all” from Monte Carlo algorithms that occasionally 
make mistakes. Similar to many Las Vegas algorithms in 
computer science that benefit, from the “no answer” op- 
tion, Las Vegas algorithms for gene recognition use the “no 
answer” option to avoid unreliable predictions and bene- 
fit from reduction in experimental work in the “correct an- 
swer” cases. Conventional gene recognition algorithms may 
be compared to Monte Carlo algorithms with a very high 
error rate (Burset and Guigo, 1996), while the spliced align- 
ment gene recognition algorithm (Gelfand et al., 1996) may 
be compared to Monte Carlo algorithms with a relatively 
low error rate. Ilowever, a biologist has no way to find out 
whether a given prediction is correct or not and therefore 
has to experimentally verify the Monte Carlo predictions 
anyway. 

Although it is generally agreed that recognition of a hu- 
man gene by a related yeast protein is a difficult problem, 
some people think that accurate recognition of a human gene 
by a related mouse protein is a simple problem. If a re- 
lated mouse protein is available, a common practice in many 
sequencing centers is to look for local similarities between 
the mouse protein and the human gene and mark areas of 
high local similarity as potential exons. Although such ap- 
proaches have proved to be successful for primer selection, 
it can hardly be used for the exact resolution of exon end- 
points and reliable sequence annotation. Even worse, short 
exons frequently do not correspond to areas of best local 
similarities thus leading to inaccurate predictions. A num- 
ber of examples from Gelfand et al., 1996 demonstrate that 
even for such close species as mouse and human, similar- 
ity may be distributed unevenly over the length of proteins 
and, as a result, exact predictions may be hard to obtain. 
Moreover, as Burset and Guigo, 1996 noted, even when an 
error-free cDNA encoded by a given genomic sequence is 
known, finding exons may be a non-trivial problem. For ex- 
ample, in the human gene HSTUBAG, an error-free cDNA 
does not allow one to find exon locations unambiguously by 
similarity search since the genomic DNA has two identical 
copies of the initial exon at positions 533 and 990 (with 
conventional splicing sites). As another example, in the hu- 
man gene HUMNTRI, the initial exon (positions 2627-2801) 
can be replaced by two exons (positions 1934-1938 and po- 
sitions 263222801) having the same concatenated sequence 
with conventional splicing sites. 

We observed that in many cases of inexact predictions 
the score of the optimal spliced alignment almost coincides 
with the score of the alignment corresponding to the true 
structure. This naturally leads to the problem of finding 
suboptimal spliced alignments. We describe an algorithm to 
generate, evaluate and rank suboptimal spliced alignments. 
The key ingredient of our approach is an estimate of predic- 
tion quality. 

Imagine that both human and mouse genomes have been 
sequenced and all mouse genes have been experimentally 
confirmed. Do we still need to verify predictions of human 
genes experimentally? Unfortunately, the answer is “yes” 
unless we can design an 100% accurate gene recognition al- 
gorithm. Below we describe a Las Vegas algorithm which 
provides extremely accurate gene recognition in 37% of cases 

(on a sample of all human genomic sequences with mam- 
malian relatives). The key difference between the algorithm 
in Gelfand et al., 1996 and the new algorithm is that the 
new algorithm allows a biologist to avoid (or significantly 
reduce) experimental gene verification in these cases. For 
the new method, the accuracy of computational gene pre- 
diction is comparable with accuracy of experimental gene 
verification (experimental verification with further compu- 
tational analysis would produce ambiguous results for some 
genes in the sample). The idea of our new algorithm comes 
from the observation that if the optimal spliced alignment, 
is unique and has high prediction quality, t,he prediction is 
likely to be correct. 

Performance of many gene recognition programs falls sig- 
nificantly in the presence of sequencing errors. We describe a 
version of the spliced alignment algorithm which uses align- 
ment of nucleotide sequences instead of alignment of protein 
sequences. This version is insensitive to sequencing errors for 
close target proteins (although performance falls for distant 
target proteins). A simple but practically very important 
variant is the problem of searching for exon assembly given 
noisy cDNA or EST data (Boguski, 1995). 

2 Spliced Alignment 

2.1 Statement of Spliced Alignment Problem 

The gene recognition problem is to find a gene encoded in 
experimentally determined genomic sequence. A gene is a 
set of exons, where each exon is a substring of the genomic 
sequence G. If B = g; . ..gJ and B’ = g;,...gl, are sub- 
strings of G (potential exons), denote B 4 B’ if j < i’ (i.e. 
if B ends before B’ starts). A sequence I? = { B1, . . , Bk} of 
substrings of G is a chain if B1 -X . -: Bk. Denote the con- 
catenation of strings from the chain l? by F’ = B1 *. . * Bk 
and the score of an optimal (global) alignment between two 
strings G and T by s(G,T) (see Waterman, 1995 for notion 
of alignment). 

The spliced alignment problem is formulated as follows. 
Let G = gi .g,, be a string called the genomic sequence, 
T = tl . t, be a string called the target sequence, and 
B = {Bl , , Bb} be a set of substrings of G called blocks. 
Given G, T and S, the spliced alignment problem is to find 
a chain P of strings from B such that s(P*, T) is maximum 
among all chains of blocks from f?. The genomic sequence 
G corresponds to a newly sequenced DNA fragment, the 
target sequence T corresponds to a related protein found 
by database search, and the set of blocks is defined based 
on analysis of splicing sites, open reading frames and codon 
usage. 

2.2 Spliced Alignment Algorithm 

Gelfand et al., 1996 decribed an algorithm for the spliced 
alignment problem using a dynamic programming approach. 
If A = a, . . aj . al is a string, denote its j-prefix by A(j) = 
a, . . . a3. For a block B = g, g3, first(B) = i, last(B) = j. 
A chain r = B1 *. . . c Bk is said to end at last(Bk). It ends 
before position i if last(Bk) < i. Define, for 1 5 i 5 n + 1 
and 0 5 j 5 m, 

P(i, j) = max 
all chains r ending before i 

4r*, T(d). 

P(n + 1, m) is the score of the optimal spliced alignment. 
If first(Bk) 5 i 5 last(Bk), define the i-prefix of a chain 
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r = B1 *...*Bk as r’(i) = BI *...*Bk--l *Bk(i). Define, 
for first(Btjb) 5 z 5 last(Bk) = 1 and 0 5 j 5 m, 

BL( i, j, 1) = max 
all chains I’ ending at 1 

s(r*(+ T(.i)). 

P can be expressed in terms of BL as follows. For 0 5 j 5 m: 

P(L&i) =.i.A(-,h) 

P(i, 3) = max 
{ 

P(i - l,j) 
BL(i - 1, j, i - 1) 

forl<i<n+l 

where BL(i - 1, j, i - 1) is used when there exists chains 
ending at i - 1. BL can be computed by the following re- 
currences: 

’ BL(i - 1,j - 111) + A(gt,t?) 
if j 2 1,3B : first(B) < i 5 last(B) = 1 

BL(i - l,j,l) + A(gt,-) 
if 3B : first(B) < i < last(B) = 1 

= max x P(i, j - 1) + A(gZ, t3) 
if j 2 1,3B : first(B) = i 5 &t(B) = 1 

P(i, d + Ab, -) 
if 3R : first(B) = i 5 last(B) = 2 

, RL(i, j - 1,1) + A(-, tJ) if j > 1 

where A(z, y) is the score of the alignment of letters I and 
y (symbol - corresponds to an indel). 

A block B is called prime if it contains all blocks ending 
at last(B), i.e., for every other block B’, last(B) = last(B’) 
implies first(B) < first(B’). Let cp be i Cprime B size(B). 

The described algorithm takes O(mn++mb) time and space 
to compute the spliced alignment (computing spliced align- 
ment requires backtracking through the dynamic program- 
ming matrix and thus storing this matrix). This indicates 
that the major bottleneck in implementation is space (time 
is not a problem -.-- for typical sizes it takes a few minutes 
on an UltraSparc). 

2.3 Space-EfFicient Spliced Alignment 

To reduce space requirements we use Hirschberg’s memory 
line technique (Hirshberg, 1975). Our approach follows the 
general idea of space-efficient algorithms for sequence align- 
ment (Chao et al., 1994) but includes many complications. 
The algorithm consists of a forward pass scanning through 
the first half of the genomic sequence to the midpoint, fol- 
lowed by a backward pass through the second half to the 
same midpoint. The optimal score is computed at the mid- 
point. “Gluing” is performed at the midpoint and recursions 
on the left and right, subproblems are performed as neces- 
sary. 

In addition to P and BL for the forward pass in the 
first half of the genomic sequence, variables P’ and /?L’ arc 
used for the reversed backward computation in the second 
half. But, while computing BL’, blocks starting at the same 
position are considered together instead of blocks ending 
at the same position as in BI,. So, RI,’ is not exactly the 
backward correspondence that can bc used to compute the 
@ima1 score at the midpoint. For t,rchnical reasons, we 
also define BF in the same way as BZ,’ with t,he exception 
that blocks ending at the same position are considered. 

Gluing at the midpoint is more complicated than in usual 
memory line approaches. If an optimal solution does not 
contain a block passing through the midpoint, values of P 
and P’ are used. Either the solution is completely to t,he 

left of the midpoint (use P), or the solution is completely 
to the right of the midpoint (use P’), or the solution con- 
sists of a part to the left and another part to the right of 
the midpoint (use both P and P’). If an optimal solution 
contains a block passing through the midpoint, BL and BF 
are matched against each other. Recurrences for BL and RF 
are divided into subparts. For BL, BLalign gives the values 
of BL for spliced alignments ending in a match or mismatch, 
while B&de1 gives the values of BL for spliced alignments 
ending in an insertion or deletion. BL is the maximum of 

B&i,, and Bhkl. The same is done for BF. There are 
t,wo subcases in the gluing. When the genomic sequence at 
the midpoint is a match or mismatch, BLalign and BFalign 
at the midpoint are matched subtracting the extra match 
or mismatch counted respectively. When the genomic se- 
quence at the midpoint is an insertion or deletion, BLlrldel 
and BFindel at the midpoint are matched subtracting the 
extra insertion or deletion counted. 

2.4 Spliced Alignment with Amino Acid Sequence Com- 
parison 

The spliced alignment problem as described above captures 
the major computational challenges of the similarity search 
approach to exon assembly. However, in realistic situa- 
tions, there exists important complications that do not seri- 
ously affect the running time of the algorithm although they 
greatly increase the complexity of software implementation. 

It is well known that amino acid sequence comparisons 
can reveal similarities which can hardly be detected at the 
level of nucleotides. To achieve gene recognition with dis- 
tant target proteins we use amino acid sequence comparison 
with the PAM120 matrix (Altschul, 1991) and Alr,del = -3. 
Since one codon specifies one amino acid, there are three 
possible sequences of codons for a given block, i.e., the first 
codon of a block can start from either the first, second or 
third nucleotide. These three variants correspond to three 
reading frame.9 which need to be incorporated into the dy- 
namic programming recurrences. 

Instead of a single variable P, we need a set of variables, 
one for each prefix of a codon: null string, A, C, G, ‘I‘, AA, 
AC, AG, AT, CA, CC, CG, CT, GA, GC, GG, GT, TA, TC, 
TG and TT. Each new block uses an appropriate set of vari- 
ables for each reading frame. New BL values are computed 
from old values three positions before, instead of one. It is 
also necessary t,o detect in-frame stop codons and discard 
corresponding frames. We also take into account minimum 
intron size and require predicted exons in an assembly to t)c 
separated by at least 70 nucleotides. 

2.5 Mosaic Effect 

The dinucleotides AG and GT on t,he left and right sides 
of exons are highly conserved. We distinguish four differ- 
ent types of potential exons. The first type (start block) is 
of t,he form ATG. GT, where the underlined part, forms 
an exon. l’he second t,ype (intermediate block) is of the 
form AG=GT, The third type (final block) is of 6he form 
AG,(TAAITAGITGA). Finally, a single e.con gene is of 
t,he form A’%.. (TAAITAGITGA). Exons in a mult-exon 
gene are arranged as follows: a start block, followed by zero 
or more int,ermediate blocks, followed by a final block. This 
difference in block types has to be incorporat,ed into the 
dynamic programming recurrences. 

The simplest, way to generate the set. of blocks (potm- 
tial exons) is to include all blocks of different types in B 
with the exception of blocks with stop codons in all three 
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frames. However, this approach creates a problem since a 
large number of short blocks is generated. First experiments 
with the spliced alignment algorithm revealed that incorrect 
predictions for distant targets are frequently associated with 
mosaic effect caused by very short potential exons. The 
problem is that these short exons can be easily combined 
together to fit what,ever target, protein. It is easier to “make 
up” a given sentence from a thousand random short strings 
than from a sample of the same number of longer strings. 
E’or example, with high probability, the phrase “filtration of 
candida1.e exons” can be made up from a sample of a thou- 
sand random two-letter strings (“fi”, “lt”, “ra”, etc. are 
likely to be present in this sample). The probability that 
the same phrase can be made up from a sample of the same 
number of random five-letter strings is close to zero (even 
finding a string “filtr” in this sample is unlikely). This obser- 
vation explains mosaic effect: if the number of short blocks 
is high, chains of these blocks can replace actual exons in 
spliced alignments, thus leading to predictions with unusu- 
ally large number of short exons. 

2.6 Filtration of Candidate Exons 

Each candidate exon is assigned scores reflecting the strength 
of its donor and acceptor sites and coding potential. To off- 
set mosaic effect we use strong filtration for short exons and 
weaker filtration for long exons. Separate cutoffs are used for 
each of the following block types: single, start, short inter- 
mediate (shorter than 100 nucleotides), long intermediate, 
and final; in each of the following measures: acceptor score 
(AC), donor score (DO), total site score (AC+DO), coding 
potential (CO), and total score (AC+DO+CO). A block 
is retained only if its scores are above the cutoffs, leaving 
3% of candidate short intermediate exons and 15% of long 
intermediate exons. We also observed that coding potential 
can be ignored since it almost does not affect filtration effi- 
ciency. Since intermediate exons shorter than 15 nucleotides 
are never observed, very short intermediate blocks can be fil- 
tered out. 

2.7 Spliced Alignment Quality 

A serious obstacle on the way towards improving prediction 
accuracy is the lack of statistical theory for spliced align- 
ment. Even for the relatively simple case of the score dis- 
tribution of alignment with a single block, the situation is 
far from simple (Goldstein and Waterman, 1994). On the 
other hand, estimates for the statistical significance of local 
alignments are rather time-consuming and may not work 
well for short exons (Vingron and Waterman, 1994). Lack 
of statistical theory for spliced alignment forces us to look 
for an alternative estimate of spliced alignment quality. 

GivensequencesA=al...ah~andB=bl...bN,afifitof 
A on a substring b, b, of B is simply a (global) alignment 
of A and b, b,. Spliced alignment of a genomic sequence 
with k exons defines k fits of exons on a target protein called 
the spliced alignment fit of an exon on a target protein. An 
optimal fit of A on B is a fit, with the highest score over all 
(i, j). Ideally, the optimal fit and the spliced alignment fit of 
each exon on the target protein should align the exon onto 
the same region. In this case, 

e5on quality = 
spliced alignment fit score of exon 

optimal fit score of exon 

and 

spliced alignment quality = 
spliced alignment score 

c exOn optimal fit score of exon 

should be close to 100% for reliable gene predictions. 
There are complications with the notion of spliced align- 

ment quality. Since each exon should be aligned in the cor- 
rect frame, there may be initial or terminal nucleotides that 
do not form codons. Such nucleotides are ignored in com- 
puting the optimal fit. An adjustment in the spliced align- 
ment score is therefore necessary to correct for formation of 
codons from different blocks. 

3 Suboptimal Spliced Alignment 

We have observed that in many cases of imperfect predic- 
tions the score of the biologically correct solution is only 
slightly below the score of the optimal spliced alignment. 
Such cases may be caused by alternative splicing, mosaic 
effect, using inappropriate scoring matrices, etc. One way 
to compensate for these problems is to examine suboptimal 
spliced alignments. The suboptimal spliced alignment prob- 
lem has a different flavor than the classical suboptimal align- 
ment problem (Waterman, 1983, Naor and Brutlag, 1993). 
We are not interested in different high-score alignment paths 
through the dynamic programming matrix but rather in dif- 
ferent blocks which make up suboptimal alignments. More 
precisely, for any block assembly, we compute the optimal 
alignment between the concatenated sequence and the tar- 
get sequence, which we will refer to as suboptimal spliced 
alignment. 

To find out whether a block B belongs to a suboptimal 
spliced alignment, we compute the score of an optimal align- 
ment containing B (block score of B). A subset of blocks 
with block scores above a threshold (suboptimal blocks) are 
retained, and a search procedure is used to find all sub- 
optimal assemblies of blocks from this subset with spliced 
alignment scores above threshold SC. 

The algorithm for finding the score of an optimal align- 
ment containing a given block uses a full forward pass and a 
full backward pass to accumulate P and P’ values (similar 
to the forward and backward passes of the space-efficient 
algorithm for optimal alignment except that computation 
ranges over the entire genomic sequence for both passes). 
For each block B, appropriate P values are used to initialize 
forward alignment scores at the left of B, while appropriate 
P’ values are used to initialize backward alignment scores 
at the right of B. A forward pass is performed from the 
left of B using simple recurrences until the right of B is 
reached. Gluing is then carried out at the right of B using 
these forward and backward scores. 

Although we can find all chains of suboptimal blocks with 
spliced alignment scores above SC by exhaustive search, this 
approach is rather time-consuming. Even with some branch- 
and-bound optimization, suboptimal spliced alignments for 
genomic sequences 10,000 nucleotides long using 50 subop- 
timal blocks take a few hours on an UltraSparc. 

To avoid generating all suboptimal block assemblies, we 
instead, for each suboptimal block B, find the best block 
assemblies containing B. Of course, when the real biological 
solution is far from optimal, it may not correspond to a best 
block assembly for any block. But, if this is the case, the 
real biological solution would be hard to find anyway. 

For each block B with score SC (optimal score contain- 
ing B), we outline a procedure to compute all optimal block 
assemblies containing B. Let B’ be the set of blocks wit,h 
scores at least SC. We use similar procedures as before ex- 
cept that blocks in conflict with B (blocks that cannot form 
a solution with B) are excluded. A forward pass and a back- 
ward pass are used to accumulate P and P’ values using only 
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blocks in B’ and requiring that B be in an alignment. Glu- 
ing is performed for each block B’ in L3’ finding the score 
SC’ of B’ considering only solutions containing B (alterna- 
tively, it is the optimal score containing B and B’). Only 
blocks in &?’ that have the highest SC’ (= SC) can be in an 
optimal solution containing B. We subject these blocks to 
the exhaustive search procedure, giving all optimal solutions 
containing E. 

We are now able to find a set of suboptimal solutions 
which is likely to contain the correct exon assembly. The 
problem is how to find the correct solution among the sub- 
optimal ones. Among many potential ranking strategies, we 
have chosen to runlc suboptimal solutions in decreasing order 
of adjusted spliced alignment score AS: 

AS = spliced alignment score spliced alignment quality. 

4 Las Vegas Algorithms for Gene Recognition: 100% Ac- 
curate Prediction in 37% of Cases 

We now describe a Las Vegas algorithm for gene recogni- 
tion. The algorithm makes use of the notion of competing 
solutions, which is defined as follows. Let S be the set of 
suboptimal solutions having spliced alignment scores above 
a threshold. For a given parameter Q, define the set of com- 
peting solutions CS(Q) to be all solutions in S in which 
all predicted exons have exon quality > Q. Intuitively, we 
want to find a parameter Q such that &(Q) is a small non- 
empty set and the true gene structure is guaranteed to be 
in CS(Q). There are tradeoffs associated with the choice of 
Q. When Q is very high (i.e. lOO%), CS(lO0) will be empty 
in many cases. When Q is low (i.e. 80%), CS(80) might 
be too large, but there will be far less cases when CS(80) is 
empty. 

In reality, there are always exceptional cases and the 
true gene structure is not always among competing solu- 
tions. Figure 1 shows the percentages of cases when the 
correct solution is among the top n competing solutions in 
CS(lOO), CS(95) or S on a sample of all complete human 
genomic sequences with mammalian relatives (see below). 
In 97 out of 253 cases (38%), t,he set CS(lO0) is empty. In 
the remaining 62% of cases, the size of CS(lO0) varies from 
1 to 5 and the true solution is in CS(lOO) in all but 8 cases. 
In 54 out of 253 cases (al%), the set CS(95) is empty. In 
the remaining 79% of cases, the size of CS(95) varies from 1 
to 25 and the true solution is in CS(95) in all but 14 cases. 
Finally, in 9 out of 253 cases (I%), the set S is empty. In 
the remaining 96% of cases, the size of S varies from 1 to 94 
and the true solution is in S in all but 38 cases. 

We develop a strategy to determine simple conditions 
for 100% accurate gene prediction. These conditions are 
(i) CS(lO0) contains only one solution, and (ii) this solu- 
tion is the only optimal spliced alignment. When a solution 
meets all these requirements, we declare it to be the ac- 
tual gene structure. Under these conditions there are no 
mistakes in our sample (predicted experimentally proven al- 
ternative splicing does not count as a mistrake). In 37% of 
253 genes, the above conditions generate gene predictions 
which are perhaps at least as accurate as experimental gene 
verification. 

In long multi-exon genes, it is frequently the case that. 
some exons have exon quality below 100%. To complement 
the above approach, we would like to accurately predict 
some exons in cases when we cannot accurately predict en- 
t,ire gene structure. A natural approach is to find a set, of 
solutions such that exons appearing in all solutions in the 
set are true exons. ‘The following approach works for our 

sample: Find the lowest spliced alignment score LS among 
all solutions in CS(lO0). Consider the set of all suboptimal 
solutions having spliced alignment scores > LS and declare 
exons appearing in all such solutions to be true axons. This 
simple algorit.hm generates at least one sure exon in 132 
genes (52%). 

5 Error-Tolerant Spliced Alignment 

Every practical system for gene recognition should be to- 
erant to DNA sequencing errors. The best rurrently avail- 
able system for gene prediction in the presence of errors 
was described by Xu et al., 1995. lnsertions and delet.ions 
of nucleotides cause major difficulties for conventional gene 
prediction programs since they trigger a frameshift. Sub- 
stitutions and sequencing ambiguities are easier to handle 
unless they bring a stop codon in the middle of an exon 
or “destroy” the conservative donor/acceptor dinucleotides. 
However, these events are relatively rare. 

Frameshift sequencing errors cause difficult problems fol 
t,he spliced alignment algorithm with amino acid sequence 
comparison. Although algorithms for correcting sequencing 
errors (States and Botstein, 1991, Guan and Uberbachrr, 
1996) work well for detecting protein similarities, they can 
hardly be incorporated into the spliced alignment algorithm. 
On the other hand, spliced alignment with uucleotide st- 
guence comparison (Amatch = 1, Amismatch = -1, Alrlde] = 
-2) is extremely tolerant to sequencing errors. One can even 
view the nucleotide sequence of a target protein as cDNA 
of a genomic sequence with a very high rate of sequencing 
errors. Adding 1 to 3% of “real” sequencing errors on top 
of these “mutation-caused” errors almost does not affect ac- 
curacy of spliced alignment. However, prediction accuracy 
for distant targets is lower in the nucleotide version than 
in the amino acid version (since conservation of protein se- 
quences is more pronounced than conservation of nucleotide 
sequences). Solutions found by the nucleotide version of the 
spliced alignment algorithm may not be biologically plau- 
sible since the concatenated sequence length may not bc a 
multiple of three and a solution may contain stop co&ms in 
frame. IIowever, error corrections of frameshift,s in a solu- 
tion can be found by associating frameshifts wit,11 indels in 
the spliced alignment. 

We also tested 171 genes with the nucleotide version of 
the Las Vegas algorithm. Sure gene structures are obtained 
in 28% of cases and at least, one sure exon is found in 43% 
of genes. 

6 Data Sets 

We used a t,est sample of all complet,e hurr~m genomic se- 
quences from GenBank which have related proteins from 
ot,her species (Gelfand, 1996, personal communication) and 
a subsample of this sample from Gelfand et, al., i996. For 
each genomic sequence, a list of relat,cd proteins was con- 
struct,ed using the ENTREZ database of BLAST similarity 
scores. I’roteins having t,he highest, BI,AS’l’ scores were re- 
t,ained in each of the following categories: mammals, warn- 
blooded organisms, colti-blooded organisms, chorda&,, irl- 
sect,s, animals different from the above, plants, f&i includ- 
ing yeast and other unicellular fungi, eukaryot,es differcrlt, 
from the above, organelles, and finally bact,rria including 
Archaea. 

Four s(.antlartl parameters were tised to evahiate agree- 
mcnt hetwccn the predicted and true gene structures. l)e- 
notr the number of correctly predicted coding (true posi- 
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Figure 1: Percentages of cases when the correct solution is among the top n competing solutions in sets C’S(Q) (on a sample Figure 1: Percentages of cases when the correct solution is among the top n competing solutions in sets C’S(Q) (on a sample 
of all complete human genomic sequences with mammalian relatives). Set S consists of all suboptimal spliced alignments with of all complete human genomic sequences with mammalian relatives). Set S consists of all suboptimal spliced alignments with 
scores within 5% of optimal. scores within 5% of optimal. 
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tive) and non-coding (true negative) nucleotides by TP and 
TN respectively. Denote the number of missed coding nu- 
cleotides (false negative) and the number of non-coding nu- 
cleotides predicted to be coding (false positive) by FN and 
FP respectively. Performance of gene recognition algorithms 
is characterized by the correlation coefficient: 

cc = 
TP. TN- FP.FN 

&TP+FP)(TN+FN)(TP+F+N)(TAJ+FP)’ 

7 Results 

For spliced alignment with mammalian targets using amino 
acid sequence comparison (Table l), prediction accurary was 
similar to that in Gelfand et al., 1996. An important ob- 
servation is that spliced alignment quality values strongly 
correlated with CC, thus indicating that spliced alignment 
quality is a good measure of prediction accuracy. There were 
8 cases where the real soiution did not coincide with the 1st 
ranked subopt.imal solution, 4 cases where the real solution 
was not found among the first five solutions, and only one 
case where the real solution was not found among all subop- 
timal solutions. In the case of HUMEMBPA, the first exon 
is very short. In the cases of HUM1309 and HUMPPPA, 
the spliced alignment fit score of the final exon is very low. 
Finally, in the case of HUMPLPSPC, we find an experimen- 
tally proven alternative splicing. 

High exon quality values of the 1st ranked suboptimal so- 
lution were associated with either true exons or exons having 
significant overlaps with true exons. Low exon qualities in 
the cases of HUMCAPG, HUMCBRG, HUMEMBPA and 
HUM1309 corresponded to wrongly predicted exons. There 
were also cases when exon quality values were low for true 

50 60 70 80 90 100 
n 

exons: in the case of HUMGHN, the first exon is very short 
(exon quality 75%); in the case of HUMIL8A, the last exon 
is short (exon quality 86%); in the case of HUMPPPA, the 
last exon fits poorly (exon quality negative). 

For spliced alignment with non-mammalian targets using 
amino acid sequence comparison (Table 2), spliced align- 
ment quality values also estimated CC well. Let max5C 
and maxC be the maximum correlation coefficient among 
the top five suboptimal alignments and among all subopti- 
ma1 alignments respectively. The algorithm performed well 
in bringing good solutions into the set of suboptimal solu- 
tions (average optimal CC was 86%, while average max5C 
was 89% and average maxC was 92%). 

Although exon quality values were not as high as be- 
fore, there were usually at least a few exons that had high 
values. Exon qualities were less reliable for short exons 
(HUMBNPA, HUMEMBPA, HUMGAD45A, HUMUBILP, 
HUMGOSlSB with target CHKCYTO, HUMHLL4G with 
target CELBGB, etc.). 

For spliced alignment with mammalian targets using nu- 
cleotide sequence comparison (Table 3), only slight decreases 
in prediction accuracy were observed when compared to the 
amino acid version. Exon quality values were slightly lower 
in most cases. There were two cases when there were signif- 
icant drops in CC: HUMIL4A and HUMPPPA. There was 
also one case (HUMI309) when there was slight increase in 
cc. 

For spliced alignment with non-mammalian targets us- 
ing nucleotide sequence comparison (data not shown), the 
results deteriorated when compared to the amino acid ver- 
sion and CC fell by 10 to 30% in many cases. However, 
the predictions were still at least as accurate as those given 
by conventional gene recognition programs (average CC was 
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72%). Although exon qualities deteriorated significantly, in 
many cases we obtained at, least one correct exon. In terms 
of CC, there were still good predictions with CC 2 95% in 
12 cases. 

8 Discussion 

Gelfand et al., 1996 listed the suboptimal and error-tolerant 
spliced alignment problems as two important open prob- 
lems on gene recognition. This paper addresses these prob- 
lems and further attempts to estimate the quality of spliced 
alignment. Since no results on the statistical significance 
of spliced alignment are known, we introduce a combina- 
torial measure (spliced alignment qualit,y) and demonstrate 
that predictions given by spliced alignment are very reli- 
able when spliced alignment quality is high. Based on the 
suboptimal spliced alignment approach, we design the first 
Las Vegas type algorithm for gene recognition which offers 
the possibility of a significant reduction in the amount of 
experimental work for gene verification. 
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Table 1: Spliced alignment with mammalian targets (amino acid sequence comparison) 

(no) Number. (genomic) Genomic sequence. (target) Target, sequence. (opt(Z) Correlation coefficient of optimal solution. 
(optq) Spliced alignment quality of optimal solution. (subC) Correlation coefficient of 1st ranked suboptimal solution. (sub(J) 
Spliced alignment quality of 1st solution. (subexonq) Exon qualities of 1st solution in order: [+I All exon predictions are 
correct with exon quality 100% [*] R I. 1 ed exon [-I Overlap with real exon(s) [.] I ,ow exon quality --- spliced alignment, fit score 
< 0. (max5C) Maximum correlation coefficient among first five ranked solutions. (maxC) Maximum correlation coefficient 
nlnong all exon assemblies considered. (Nasm) Tot,al number of exon assemblies considered. 

optc 
100 

92 
100 
100 

99 
97 

100 
100 
100 

93 
100 
100 
100 
100 
99 

100 
100 
100 

66 
100 
100 
100 
100 
100 
100 

98 
100 
100 
100 
100 
100 
100 
100 

98 
89 

100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 

optQ subC 
100 100 

91 100 
100 100 
100 100 

98 99 
98 97 

100 100 
100 100 
100 100 

99 93 
100 100 
100 100 
100 100 
100 100 
100 99 

99 100 
100 100 
100 100 

94 66 
100 100 
100 100 
100 100 

98 100 
99 100 

100 100 
100 98 
100 100 
100 100 
100 100 
100 100 
100 100 
100 100 
100 100 
100 98 

93 89 
100 100 
100 100 
100 100 
100 100 

99 100 
100 100 
100 100 
100 100 
100 100 
100 100 
100 100 
100 100 

sub9 
100 

97 
100 
100 

98 
98 

100 
100 
100 

99 
100 
100 
100 
100 
100 

99 
100 
100 

94 
100 
100 
100 

98 
99 

100 
100 
100 
100 
100 
100 
100 
100 
100 
100 

93 
100 
100 
100 
100 

99 
100 
100 
100 
100 
100 
100 
100 

subexonQ no genomlc 
1 humapexn 
2 humazcdi 
3 humbhsd 
4 humbnpa 
5 humcapg 
6 humcbrg 
7 humchymb 
8 humcox5b 
9 humcspa 

10 humembpa 
11 humfabp 
12 humgOsl9a 
13 humgOsl9b 
14 humgad45a 
15 humgare 
16 humghn 
17 humhll4g 
18 humhmg2a 
19 humi 
20 humibp3 
2 1 humigera 
22 humillb 
23 humil4a 
24 humil5a 
25 humil8a 
26 humil9a 
27 humkal2 
28 hummif 
29 hummis 
30 humops 
31 humpald 
32 humpfilvla 
33 humpgammg 
34 humplpspc 
35 humpppa 
36 humrpsl7a 
37 humrps6b 
38 humsaa 
39 humsftpla 
40 humtfpb 
41 humthyla 
42 humtnfba 
43 humtnfx 
44 humtpalbu 
45 humtrpylb 
46 humubilp 
47 humv2r 

target 
btbap lr 
mmnel 
bt3bhsd 
pigbnp 
mmcatheg 
pig2Obhd 
dogchamc 
ratdrcovb 
musccpa 
s33799 
ratfabpx 
mmscimip 
musstcpa 
crugad45a 

wkcbr 
bovgrowp 
ratbpgal 
pighmg2 
musstcpb 
ratigfbp3a 
dogierac 
rabillb 
ssilk4 
b39881 
rabnapl 
musp4Om 
cflcallik 
musgia 
bovmis 
cfopsin 
oatthyre 
ratpf4 
rnpgmut 
mvspc 
bovsmplsm 
crurpsl.7 
ratrps6 
musamyaff 
~48768 
rabrtf 
rnthycsg 
muslta 
cattnfaa 
mvegp2b 
dogmctrpa 
musubilp 
ssvrv2a 

+ 
(100*,94*,100*,99*,94*) 
+ 
+ 
(100*,100*,100*,100*,98-,.) 
(100*,100*,100-,.) 
(100*,100*,100*,100*,99*) 
+ 
(97*,100*,99*,100*,99*) 
(20,100*,100*,100*,100*) 
+ 
+ 
+ 
+ 
(100*,100*,100*,100-,loo*) 
(75*,100*,99*,100*,100*) 
+ 

(100*,100*,9) 

~00*,100*,100*,100*,100*) 
(100*,96*,100*,100*,100*,100*) 
(98*,100*,100*,97*) 
(100*,100*,100*,98*) 
(100*,100*,100*,86*) 
(loo-,100*,100*,100*,100*) 
(100*,100*,100*,97*,100*) 
+ 
+ 
+ 
+ 
+ 

;I00*,100*.100*,100*,100-) 
(100*,90-,.*) 
+ 
+ 
(98*,100*,100*) 
+ 
(99*,96*,100*,100*,100*,100*) 

(100*,100*,100*) 
+ 

(96*,100*,100*) 

max5C WSXC Nasm 

100 100 86 
100 100 86 
100 100 90 
100 100 88 
100 100 81 
100 100 90 
100 100 87 
100 100 86 
100 100 83 

94 100 87 
100 100 92 
100 100 87 
100 100 85 
100 100 90 
100 100 83 
100 100 88 
100 100 91 
100 100 85 

70 100 89 
100 100 88 
100 100 82 
100 1.00 80 
100 100 88 
100 100 89 
100 100 86 
100 100 90 
100 100 84 
100 100 89 
100 100 83 
100 100 88 
100 100 96 
100 100 53 
100 100 91 

98 100 88 
89 95 90 

100 100 89 
100 100 86 
100 100 89 
100 100 89 
100 100 82 
100 100 87 
100 100 89 
100 100 85 
100 100 85 
100 100 88 
100 100 92 
100 100 84 
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Table 2: Spliced alignment with non-mammalian targets (amino acid sequence comparison) 

(tt) Target type: ‘V’ - vertebrate, ‘1’ ~ invertebrate, ‘E’ - other eukaryote, ‘P’ - prokaryote. 

no genomic 
1 humapexn 
2 humazcdi 
3 humbhsd 
4 humbnpa 
6 humcbrg 

10 humembpa 
11 humfabp 
1 1. 
12 humgOsl9a 
13 humgOsl9b 
14 humgad45a 
15 humgare 
15 
17 humhll4g 
17 
17 
18 humhmg2a 
18 
18 
19 humi 
25 humil8a 
28 hummif 
30 humops 
30 
30 
30 
31 humpald 
31 
33 humpgammg 
35 humpma 
36 humrpsl’ia 
36 
36 
37 humrps6b 
37 
37 
37 
41 humthyla 

tt target 
I drorrp 

V ggu15155 
P noccdh 
V anf-chick 
I’ svpks 
V pwlec 
V xelifabp 
E scmfabpl4 
V chkcyto 
V chkcyto 
V xelrbll2x 

V xehmwy 
I dmdoprec 

V leg6-chick 
V xellbl 
I celbgb 

V xelhmg2a 
I dmu13881 

E yscmaknhp 
V chkcyto 
V chkrsvind 
V chklmif 
V chkrdpsn 
v s49004 
I s53494 
I’ hhrhod 
V gdtrthy 
V trt,ranst 
P stmpgm 
V larpyy 
V wpsl7 
I drorpsl7 
E neucrp3 
V xelrps6x 
I drorps6x 
E ysprps6a 
P ecrpsfri 
V chkthylgp . 
I tpubiexta 46 humubilp 

optc OPW subC subQ 
68 71 68 71 

100 98 100 98 
83 85 93 89 

100 97 100 97 
38 71 85 86 
65 82 78 85 

100 100 100 100 
100 92 100 92 

97 95 97 95 
68 91 68 91 
78 84 77 90 
62 95 62 95 
77 78 72 84 
98 99 98 99 
99 95 99 95 
58 77 58 77 

too 100 100 100 
74 86 67 88 
53 97 53 97 

100 100 100 100 
93 95 93 95 

100 100 100 100 
100 100 100 100 
100 100 100 100 

98 98 98 98 
45 78 45 78 

100 99 100 99 
100 99 100 99 
100 100 100 100 
100 89 63 96 
100 98 100 98 
100 100 100 100 
100 100 100 100 
100 100 100 100 
100 100 100 100 
100 100 100 100 

47 78 47 78 
100 100 100 100 

72 75 65 84 

subexonQ 
(.,.,. -,52-,99*,100*) 
(100*,99*,88*,100*,100*) 
(loo-,4,64,99-,95*) 
(98*,100-,55*) 
(93*,79*,933,19) 
(79,755,47-,100-,100~,75*) 
+ 
(100*,100*,65*,100*) 
(loo-,98*,89*) 
(100,100,45,98*,90*) 
(70*,100*,94-,42) 
(12,100*,95--,97,98-) 
(24,38-,lOO-,93*,100,33-,97*) 
(50,100*,100*,100*) 
(366,100*,97*,100*) 
(56-,81,.,93,81-,69,97*,51*) 

?,61,97-,100*,100*,97*) 
(loo-,99-,62) 
+ 
(100*,98*,99*,10) 
+ 
+ 

~8*;100*,97*,98~,100*) 
(80,49-,86,87-,lOO-,50,50-) 
(94*,100*,100*,100*) 
(95*,100*,100*,100*) 
(100*,100-,loo*) 
(loo*, 100,30) 
(.*,100*,100*,100*,100*) 
+ 
(100*,100*,100*,100*,97*) 
+ 
(100*,100*,100*,100*,100*,96*) 
+ 
(100*,69,100-,56-,60-,80-) 
+ 
(55*,95*,76*,100-,100,67) 

maxsc maxC Nasm 

69 77 7x 
100 100 78 
93 93 76 

100 100 88 
85 91 87 
81 81 81 

100 100 92 
100 100 94 
100 100 90 
68 87 81 
80 87 84 
79 83 83 
72 85 81 

100 100 91 
99 99 89 
58 66 78 

100 LOO 86 
74 75 79 
56 66 90 

100 100 92 
93 100 85 

100 100 89 
100 100 86 
100 100 89 

98 98 82 
47 68 91 

100 100 97 
100 100 91 
100 100 93 
100 100 X6 
100 100 90 
100 100 88 
100 100 89 
100 100 85 
100 100 84 
100 100 83 

52 71 89 
100 100 91 

77 77 80 
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Table 3: Spliced alignment with mammalian targets (nucleotide sequence comparison) 

no g*“ORllC target optc opt4 subC subq subexonq 

1 humapexn btbaplr 100 100 100 100 + 
2 humazcdi mmnel 95 91 97 93 (89*,100*,100*,80*,70,60) 
3 humbhsd bt3bhsd 100 100 100 100 + 
14 humbnpa pigbnp 100 100 100 100 + 
5 humcapg mmcatheg 97 99 97 99 (100*,100*,100*,100*,99--,25) 
6 humcbrg pig%Obhd 97 97 97 97 (100*,100*,100-,.) 
7 humchymb dogchamc 99 100 99 100 (100*,100*,100*,100*,100-~) 
8 humcox5b ratdccovb 100 100 100 100 + 
9 humcspa musccpa 100 99 100 99 (100*,100*,99*.99*,100*) 

10 humembpa s33799 Nucleotide sequence not available 
11 humfabp ratfabpx 100 100 100 100 (100*,100*,100*,96*) 
12 humgOsl9a mmscimip 100 99 100 99 (98*,100*,100*) 
13 humgOsl9b musstcpa 100 100 100 100 + 
14 hnmgad45a crugad45a 100 100 100 100 + 
15 humgare pytgcbr 99 100 99 100 (100*,100*,100*,100~,100*) 
16 humghn bovgrowp 98 99 98 99 (71,100*,100*,100*,100*) 
I7 humhll4g ratbpgal 100 100 100 100 + 
18 humhmg2a pighmg2 100 100 100 100 + 
19 humi musstcpb 70 84 70 84 (100*,95*,.,17-) 
20 humibp3 ratigfbp3a 100 100 100 100 + 
2 1 humigera dogierac 100 97 100 97 (100*,82*,100*,94*,100*) 
22 humillb rabillb 100 100 100 100 + 
23 humil4a ssilk4 86 98 86 98 (98*,100*,100-,.,loo*) 
24 humil5a 1~39881 Nucleotide sequence not available 
25 humil8a rabnapl 100 99 100 99 (100*,100*,100*,40*) 
26 humil9a musp4Om 98 100 98 100 (loo-,100*,100*,100*,100*) 
27 humkal2 cfkallik 100 100 100 100 + 
28 hummif musgia 100 100 100 100 + 
29 hummis bovmis 100 100 100 100 (97*,100*,100*,100*,100*) 
30 humops cfopsin 100 100 100 100 + 
31 humpald oat thyre 100 100 100 100 + 
32 humpf4vla ratpf4 100 99 100 99 (100*,98*,100*) 
33 humpgammg rnpgmut 100 100 100 100 + 
34 humplpspc mvspc 98 100 98 100 (100*,100*,100*,100*,100-) 
35 humpppa bovsmplsm 75 98 75 98 (100*,92%) 
36 humrpsl7a crurpsl7 100 100 100 100 + 
37 humrps6b ratrps6 100 100 100 100 + 
38 humsaa musamyaff 100 100 100 100 + 
39 humsftpla ~48768 100 100 100 100 + 
40 humtfpb rabrtf 100 99 100 99 (100*,93*,100*,100*,100*,100*) 
41 humthyla rnthycsg 100 100 100 100 + 
42 humtnfba muslta 100 100 100 100 + 
43 humtnfx cattnfaa 100 100 100 100 + 
44 humtpalbu rnvegp2b 100 100 100 100 + 
45 humtrpylb dogmctrpa 100 100 100 100 + 
46 humubilp musubilp 100 100 100 100 + 
47 humv2r ssvrv2a 100 100 100 100 (100*,100*,99*) 

max5C mad 

100 100 
97 97 

100 100 
100 100 

99 100 
98 1.00 

100 100 
100 100 
100 100 

100 100 
100 100 
100 100 
100 100 

99 100 
100 100 
100 100 
100 100 

70 93 
100 100 
100 100 
100 100 
93 98 

100 100 
98 100 

100 100 
100 100 
100 100 
100 100 
100 100 
100 100 
100 100 

98 100 
85 86 

100 100 
100 100 
100 100 
100 100 
100 100 
100 100 
100 100 
100 100 
100 100 
100 100 
100 100 
100 100 

Nasm 

90 
SO 
91 
91. 
87 
92 
90 
90 
80 

94 
91 
89 
93 
81 
88 
94 
88 
99 
91 
87 
85 
89 

93 
92 
85 
90 
85 
91 
90 
91 
91 
88 
90 
89 
84 
91 
91 
81 
92 
91 
89 
S’ 
2 
90 
89 

309 


